
STITCH 3: zooming in on protein–chemical
interactions
Michael Kuhn1,*, Damian Szklarczyk2, Andrea Franceschini3,

Christian von Mering3, Lars Juhl Jensen2 and Peer Bork4,5,*

1Biotechnology Center, TU Dresden, 01062 Dresden, Germany, 2Novo Nordisk Foundation Center for
Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark,
3Institute of Molecular Life Sciences, University of Zurich and Swiss Institute of Bioinformatics,
Winterthurerstrasse 190, 8057 Zurich, Switzerland, 4European Molecular Biology Laboratory, Meyerhofstrasse 1,
69117 Heidelberg, Germany and 5Max-Delbrück-Centre for Molecular Medicine, Robert-Rössle-Strasse 10,
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ABSTRACT

To facilitate the study of interactions between
proteins and chemicals, we have created STITCH,
an aggregated database of interactions connecting
over 300 000 chemicals and 2.6 million proteins from
1133 organisms. Compared to the previous version,
the number of chemicals with interactions and
the number of high-confidence interactions both
increase 4-fold. The database can be accessed
interactively through a web interface, displaying
interactions in an integrated network view. It is
also available for computational studies through
downloadable files and an API. As an extension in
the current version, we offer the option to switch
between two levels of detail, namely whether
stereoisomers of a given compound are shown as
a merged entity or as separate entities. Separate
display of stereoisomers is necessary, for example,
for carbohydrates and chiral drugs. Combining the
isomers increases the coverage, as interaction
databases and publications found through text
mining will often refer to compounds without spe-
cifying the stereoisomer. The database is accessible
at http://stitch.embl.de/.

INTRODUCTION

The part of chemical space that has been charted is ever
increasing, and a large fraction of the determined protein–
chemical interactions are becoming available for public

research. Most notably, the ChEMBL database with cur-
rently over 400 000Ki, IC50 and EC50 values became avail-
able in 2010 (1). Nonetheless, the information on protein–
chemical interactions is spread over a great variety of
databases and the literature, making it difficult to get an
overview of the known interactions of any given chemical
of interest. To ameliorate this problem, we have developed
STITCH (2,3), a combined repository of data that
captures as much as possible of the publicly available
knowledge on protein–chemical associations. STITCH
(‘search tool for interacting chemicals’) allows for easy
and intuitive interactive access, for large-scale analysis
via download files, and for automated access on a small
to medium scale through an API. STITCH has been used,
for example, to study the conservation of protein–
chemical interactions between yeast species (4) and to
benchmark predicted drug–target interactions (5,6).

STITCH enables the user to query the database for
chemical or protein names, for InChIKeys and for
SMILES strings. If a chemical is entered and no target
species for the interacting proteins has been selected, the
species with the most confident interactions is chosen
automatically. The user is presented with a network view
in which nodes and edges can be clicked to retrieve more
information (Figure 1). For proteins and chemicals, the
structure, annotation and links to source databases are
shown. For edges, the available scores are shown with
links to pages with more details and, importantly, links
to source databases so that the user can ascertain the
providence of the underlying evidence. An interactive
view allows for re-arrangement and ad hoc clustering of
nodes, and three modes provide different views on the
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network. In the confidence view, single edges connect the
items with thickness proportional to the confidence. In
evidence and actions view, multiple edges can connect a
pair of items, each edge representing a given type of
evidence (e.g. text mining or experimental evidence) or
action (e.g. activation or binding), respectively.

Here, we present the third release of the STITCH
database, which can be accessed at http://stitch.embl.de.
In this release, we have added import of interaction data
from three databases: ChEMBL, TTD and DIPS (1,7,8).
Compared to the previous version, STITCH 2 (2), the
number of chemicals with interactions increases from
74 000 to 312 000. In human, interactions for 235 000
chemicals are available (Figure 2). We assign confidence
scores to the interactions to reflect the level of significance
and certainty of an interaction. 110 000 chemicals have
high-confidence interactions with human proteins (i.e. a
confidence score of at least 0.7), compared with 13 000
in the previous version. The human protein–chemical
interaction network contains 254 000 high-confidence
edges, compared to 85 000 in the previous version
(Figure 2). The number of available organisms increases
from 630 to 1133. Across all species, chemicals are
associated with 2.6 million out of 5.2 million proteins.

(As a simplification, only one gene product per gene is
considered.) We further increased the resolution of the
chemical network: it is now possible to ‘zoom in’ on com-
pounds to see the stereoisomers of each compound and
which interactions have been assigned to specific
stereoisomers.

SOURCES OF INTERACTIONS

The available information on protein–chemical inter-
actions can be divided into four groups: First, repositories
of experimental information: ChEMBL (1), PDSP Ki

Database (9), BindingDB (10) and PDB (11). Second,
manually curated sources of drug targets: DrugBank
(12), GLIDA (13), Matador (14), TTD (15) and CTD
(16). Third, manually curated pathway databases:
KEGG (17), NCI/Nature Pathway Interaction Database
(http://pid.nci.nih.gov), Reactome (18) and BioCyc (19).
Fourth, interaction information that we extract from the
literature through co-occurrence text mining and Natural
Language Processing (20,21).
The STITCH database also provides relations between

chemicals. Pathway databases link substrate and products
of metabolic reactions. Similar mechanisms of action can

Figure 1. The interaction network of neutral alpha-glucosidase C. The example screenshot shows the STITCH interface, with buttons to change the
network view on the left side. With the top three buttons, views can be selected to different types of information on the edges: in confidence view
(shown), the thickness corresponds to the confidence of the interaction. In evidence and actions view, multiple lines are shown representing the types
of supporting evidence or types of interactions. Note that ‘show stereo-isomers’ is selected in the next set of buttons, to distinguish the different
isomeric carbohydrates.
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be predicted from the NCI60 cell line panel (3) and from
the Connectivity Map using the DIPS method (8), which
tests for similarities between compounds in changes of
gene expression upon treatment. The MeSH database
has annotated pharmacological actions that also hint at
shared targets. Using these sources, we link compounds
that are predicted to have a common mechanism of action.
Thus, if a compound has little available information,
the user might be able to find better studied compounds
with similar activities. To provide crucial context for the
aggregated protein–chemical interactions, protein–protein
interactions from the STRING 9.0 database (22) are
incorporated into a seamless network view. Parts of the
source databases, like pathways from KEGG or many
kinds of curated data in ChEMBL cannot be mapped to
the STITCH network. For this reason, we include links to
the following databases in the chemical pop-up window:
PubChem (23,24), ChEMBL (1), DrugBank (12), KEGG
(17) and the SIDER database of drug side effects (25). We
also provide links to search Google and ChemSpider with
the InChIKey of the chemical compound.

Since the inception of the STITCH database, the quality
of the annotations of chemical space has improved.
PubChem has become a stable resource, and many of
STITCH’s source databases (e.g. ChEMBL and
BindingDB) now deposit their chemical entities into
PubChem, thus making it easier to link between the
chemical space as defined by PubChem and the activity
space described in the source databases.

EXPANDING COMPOUNDS INTO
STEREO-ISOMERS

When preparing the first release of STITCH in 2007 (3),
we decided to merge different salt forms and stereoisomers
of active molecules to combine as much information as
possible (Figure 3A). In the meantime, the amount of
available information has increased drastically. We there-
fore now offer the option to ‘zoom in’ on the stereoiso-
mers of a compound (Figure 3B). When a user searches
for a compound, it is checked whether the name refers to a
compound with or without assigned stereochemistry. For

Figure 2. Cumulative distribution of scores. For each confidence score cutoff, the number of chemicals (top) and protein–chemical interactions
(bottom) that have at least this confidence score in the human protein–chemical network. For example, there are 110 000 chemicals with a
high-confidence interaction (score at least 0.7). Note that interactions with confidence scores below 0.15 are not stored in STITCH. Steps in the
data correspond to large numbers of compounds that have a maximum score in manually curated databases or the ChEMBL database (with different
confidence levels).
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example, searching for ‘thalidomide’ will show a network
with merged stereoisomers. However, searching for
‘D-thalidomide’ will show this specific stereoisomer in
the stereo-specific zoom level. From the network view,
the user can toggle whether stereoisomers should be
merged or not (Figure 1).

The set of compounds displayed in STITCH is
generated from PubChem (23,24). We first merge salt
forms of compounds into the record of the main
compound, generating a set of compounds that include
stereochemistry. Second, compounds that are designated
by PubChem as having the same connectivity are merged.
This merges stereoisomers, but also isotopic isomers,
which usually have no associated interactions in
STITCH. When a user zooms in on a compound, only
those isomers with associations (in any species) are
shown. For example, thalidomide has 47 isomers in the
database, but only three of those have interactions: thal-
idomide (without assigned stereochemistry), R-(+)-thal-
idomide, and S-(�)-thalidomide.

Names are assigned in a two-step process: For a given
name, all compound identifiers are first mapped to their
main identifier (i.e. merging salt forms and isomers, as
described above). Second, after the name has been
assigned without considering its stereochemistry, it is
assigned to a specific isomer of the chosen main identifier.
For example, the name ‘rapamycin’ is associated with 15
PubChem compound identifiers, with conflicts between
important sources like KEGG, DrugBank, ChEBI and

ChEMBL. However, all but two of them correspond to
the same scaffold, i.e. are merged by the isomer-merging
step. To assign a name to the correct isomer, we have
developed heuristics that prioritize PubChem’s source
databases. (Compounds in PubChem are deposited by
many source databases, but there is no further data anno-
tation.) Based on a small set of benchmark chemicals, we
have assigned the highest priority to ChEMBL, KEGG
and LeadScope. Next come ChEBI and xPharm, then
all other sources. Names from the sources MMDB and
ChemIDPlus receive the lowest priority. For each name,
the compound with the sources of highest priority is
chosen. In case of ties, the name is discarded.
Nonetheless, if a name is supplied by only one depositing
database, it is not possible to check if it is correct. As
names without stereochemistry can be sourced from
more databases, the assignment between chemical names
and scaffolds will usually be more reliable than the assign-
ment between names and compounds with full stereo-
chemistry. In particular, there are compound names that
hint at chirality, but are associated with compounds that
do not have assigned stereochemistry.

USE CASES

Most users will access the STITCH database via its web
interface to interactively query for networks (Figures 1
and 3). Networks can be exported in different formats,
including high-resolution images. Via the download files,

Figure 3. Stereo-specific interactions of S(+)-ibuprofen. (A) The interaction network of ibuprofen with merged stereoisomers. (B) When isomers are
not merged, most interactions still connect to the form without assigned stereochemistry (labeled ibuprofen). There is also interaction evidence for the
active isomer, S(+)-ibuprofen, while R(-)-ibuprofen has almost no high-confidence edges.
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which are available under Creative Commons licenses
(with separate commercial licensing for a subset),
STITCH can also be used for large-scale computational
studies. Kapitzky, Beltrão et al. screened for protein–
chemical interactions in Saccharomyces cerevisiae and
Schizosaccharomyces pombe (4). Using the STITCH con-
fidence score, they defined a set of high-confidence inter-
actions between compounds and protein modules (i.e.
complexes or proteins with shared Gene Ontology anno-
tations), which they then used to benchmark their
screening results. Kalinina et al. developed a method to
predict drug–target interactions from 3D structures (5),
which they then tested for the overlap with interactions
in STITCH 2 (2), DrugBank (26), BindingDB (10) and
ChEMBL (1). STITCH 2 has also been used as part of
the validation in the prediction of drug–target relations by
Meslamani and Rognan (6).
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