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Leading-edge-gel coupling in lamellipodium motion
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We present a model for actin-based motility that combines the dynamics of the semiflexible region at the
leading edge of the lamellipodium with actomyosin gel properties in the bulk described by the theory of active
polar gels. We calculate the velocity of the lamellipodium determined by the interaction of the gel and adhesion
with forces in the semiflexible region. The stationary concave force-velocity relation of the model reproduces
experimental results. We suggest that it is determined by retrograde flow at small forces and gel formation and
retrograde flow at large ones. The variety of dynamic regimes of the semiflexible region reproducing experi-
mentally observed morphodynamics is conserved when we couple the leading edge to the gel.
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I. INTRODUCTION

The dynamics of the actin cytoskeleton drives the motion
of a variety of cell types. In order to crawl, the cell builds a
flat lamellipodium at the front [1]. The biopolymer actin
forms a dense network inside it. Actin filaments polymerize
preferentially at one end and depolymerize at the other, thus
generating motion from the hydrolysis of adenosine triphos-
phate (ATP). Since the actin network is mainly aligned into
the direction of motion, the growth of filaments by polymer-
ization leads to a protrusion of the plasma membrane at the
leading edge of the cell [2]. The actin network is stabilized
by proteins that cross link actin filaments. Typical cross link-
ers are motor molecules like myosin. They also contract the
cytoskeleton and retract the cell body by sliding along the
polar filaments.

Two regions of the actin network in the lamellipodium
can be distinguished. The bulk consists of long cross-linked
filaments [3] and is attached to the substrate by integrins.
Since this dense actin network has viscoelastic properties
and can be described in a continuum approximation [4], we
will call this part actomyosin gel. At the leading edge we find
the polymerizing tips of the filaments. The tips are not cross
linked yet [3]. We call the range between leading-edge mem-
brane and the average positions of the first cross linkers
semiflexible region (SR) (see Fig. 1). The SR width of a few
hundred nanometers is small compared to the gel width of
typically 10 pm.

The semiflexible region exhibits rich spatiotemporal dy-
namics. Localized retractions and protrusions of the leading
edge traveling along it have been measured indicating an
excitable dynamics [5-8]. Spatially modulated oscillatory
protrusions and retractions, which are independent from
myosin, occur as well [5,8]. A recently developed model for
the semiflexible region exhibits all these dynamic regimes
[9-11], whereas gel models only show oscillations in the
presence of myosin activity or other putative processes gen-
erating stress actively. However, microscopic polymer brush
models alone cannot determine the cell velocity, since it de-
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pends also on the properties of the gel in the bulk of the
lamellipodium and adhesion to the substrate. These processes
have been successfully modeled in a variety of studies de-
scribing the actin network as viscoelastic gel [4,12-17]. But,
so far, there is no model reproducing the dynamic regimes of
the semiflexible region and determining the cell velocity.
The force-velocity relation of motile cells is the relation
between lamellipodium velocity and an external force ap-
plied to the leading edge. Both semiflexible polymer and gel
properties are crucial for its calculation also since longer
filaments exert weaker forces. Experiments leading to very
broad semiflexible regions and consequently very floppy fila-
ments demonstrate that [18,19]. These experiments also
show that gel boundary and leading edge can move indepen-
dently and therefore both need to be modeled. There have
been several models of lamellipodium motion including gel
processes and polymerization at the leading edge (but no
semiflexible region) [12-17,20]. Prass et al. [21] compared
them with experiments and concluded that none of them re-
produces the force-velocity relation. The measured force-
velocity curve has a concave shape: a phase of constant ve-
locity at small forces is followed by a phase of rapidly
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FIG. 1. (Color) In our model, the bulk of the lamellipodium
(length =10 wum) is filled with the actomyosin gel, which is de-
scribed by a continuum gel model. The polymerizing tips of the
actin filaments at the leading edge of the lamellipodium constitute a
force and protrusion generating boundary layer (width = a few 100
nm). We refer to this part as semiflexible region (SR).
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decreasing velocity at larger ones. The ratchet-type model
exhibits a convex force-velocity relation, the velocity in the
autocatalytic branching model is force independent [22], and
the stepping motor model does not take gel properties into
account [23]. Recently, a study simulating the force-velocity
relation has been published [24] that reproduces the concave-
down shape, but stall forces are by a factor of 20-60 too
large. This model does not include a semiflexible region and
filament attachment to the membrane. We assume that this is
the reason for the large stall forces.

In summary, theoretical understanding of both lamellipo-
dium dynamics and the force-velocity relation requires com-
bining semiflexible region and gel dynamics. We use the
theory of the active polar gel that was developed by Kruse ef
al. [4] to calculate the flow of the gel. A force boundary
condition that is required for this calculation is obtained from
the coupling to the semiflexible region. We find that the com-
bined model exhibits the impact of gel properties on the
protrusion rate, the rich dynamics of the SR model, and a
concave-down force-velocity relation.

II. SEMIFLEXIBLE REGION MODEL

The dynamics of the actin filament tips in the semiflexible
region are captured by the following set of equations [9]:

é]tna = kand - kd(la,Z)l’la,

~ ny
atld = Up(ld’z) - Ug(ld’z) + kd(la’z)n_(la - ld),
d

== 5y(r2) + kg2l 1),
na

1
atz = ;[naFa(la’Z) + ndFd(ld’Z) _fext] —u. (1)

We consider the number densities of two different filament
populations: filaments are either attached to the membrane
(n,) by some protein complex or detached (n,). The actin gel
provides support for the filaments in the semiflexible region,
so that they can transfer mechanical momentum to the mem-
brane. The distance between the gel boundary and the mem-
brane is denoted by z. The freely fluctuating part of a fila-
ment measured from the gel boundary to the tip is flexed by
Brownian motion and can be characterized by its contour
length [,,,. We assume that all filaments are directed normal
to the membrane. If the filament is not attached to the mem-
brane, it pushes the membrane with an entropic force F,. The
probability density distribution P(z) of the filament end-to-
end distance defines a free energy F(z)=—kzT ln P(z), from
which the average normal force on the membrane can be
derived as [25]

dF(2)
az

(F)(z) =~ =F.F 7).

The scale of this force is given by the Fuler buckling force
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F.=kgTl, /13,

where [, denotes the persistence length of the filament
[20,26], and the scaling parameter is given by 7=1,(l,
-z)/ lfi. In the following, we use the force dependence on
contour length and semiflexible region depth F ({,,z) in the
weakly bending rod approximation derived in [26]. The deri-

vation shows that for small compression 7=0.2 the scaled

force reads
expl - —
p 4%

775/27;3/2{1 —Zerfc<#%>|’

and for strong compression,

~ 1 =3exp(=2m%
Fo= p( 7})‘

ﬁd=

1- %exp(— 277 %)

It is believed that the directionality of cell protrusions is
maintained by directed growth [27]. While detached fila-
ments always push the membrane, filaments can, depending
on their length, also exert a pulling force during attachment.
The molecular details of filament-membrane links are not yet
fully understood. We therefore assume that single filaments
can transiently attach to the membrane via linker proteins
that behave like elastic springs. We distinguish three regimes
for the force F, exerted by the serial arrangement of polymer
and linker, depending on the relation between the depth of
the semiflexible region z, the equilibrium end-to-end distance
R,, and the contour length /, [9]:

-k(z=R), z=R, (i)
F(l,2)=\=kylz=R), R <z<l, (ii)
- kl(Z - la) - keff(la - RH)’ z= Za' (111)

The three cases correspond to (i) a compressed filament that
pushes against the membrane, (ii) filament and linker that
pull the membrane while being stretched together, and (iii) a
filament that is fully stretched, but the linker continues to
pull the membrane by being stretched further. Here, &, &,
and k., are the linear elastic coefficients of polymer, linker,
and serial polymer-linker arrangement, respectively. For k
we use the linear-response coefficient of a wormlike chain
grafted at both ends [28,29], itself a function of polymer
stiffness and contour length [29], p. 27.

We assume that nucleation of new filaments and capping
of existing ones conserve the total number density n. The
density within the semiflexible region is constant in radial
direction since we consider only filaments (ransmitting
forces between leading-edge membrane and gel and reaching
across the whole semiflexible region. The numbers of at-
tached and detached filaments vary due to transitions be-
tween the two populations [see first of Egs. (1)]. Detached
filaments attach to the membrane with a constant attachment
rate k, and attached filaments detach with a force-dependent
detachment rate k,=k" exp(=dF,/kgT). k3 is the detachment
rate if filaments exert no force on the membrane. The length
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added by a monomer to the filament is d=2.7 nm. The den-
sity of detached filaments is n,=n—n,.

The second and third of Egs. (1) comprise the variation of
the filaments’ average contour lengths. The length of
detached filaments [/; increases by polymerization. The
polymerization velocity is force dependent [20]: Up
=v, ™ exp(~dF,/kpT). The force-free polymerization veloc-
ity v;”“" is determined by the concentration of actin mono-
mers in the semiflexible region. It can be assumed that the
pool of monomers is maintained by the buffering function of
profilin and diffusion from the bulk.

The length of filaments decreases by growth of the actin
gel. The gel boundary advances by microscopic processes
causing gelation like cross linking of newly polymerized
filaments and entanglement. We call the actin network a gel,
when a critical concentration of cross linkers has been
reached. The cross-linking velocity v, depends on the con-
tour length. It vanishes for /—0 since cross linkers cannot
bind when /=0. It increases with increasing / and saturates
due to limited cross-linker supply. As shown in the Appen-

dix, it can be written as v, (/)=vy* tanh(l/ 1). The character-

istic length [ is inversely proportional to the filament density,
and the saturation velocity vy** is proportional to filament
density and cross-linker concentration. If filaments are buck-
led (I>>z), progression of the gel consumes I/z times more
contour length of filaments than the distance traveled in the
laboratory frame. That causes the factor max(1,//z) in the
rate of filament shortening 0,(/,z)=max(1,l/z)v,(l) [9,10].
The last term of the /; dynamics describes the change of the
average length of detached filaments due to detachment of
attached filaments. The dynamics of /, is analogous but lacks
polymerization.

The fourth equation describes the dynamics of the dis-
tance z. The velocity of the membrane is proportional to the
total force exerted on it, i.e., the sum of an external force
density f,,, and the force from all filaments. All friction
forces or viscous drag counteracting membrane motion is
captured by the drag coefficient . The force exerted by the
filaments in the semiflexible region on the membrane acts
also on the gel front. That will provide us with the force
boundary condition required to calculate the gel flow. We
calculate the velocity u of the gel front in the laboratory
frame with the theory developed by Kruse er al. [4] that
captures viscoelastic properties of the actin network, polar-
ization of the network due to alignment of filaments into the
direction of motion, and active contractions of the network
by myosin [see Egs. (2)—(4)].

III. GEL MODEL

We use the simplified one-dimensional equations derived
in [4,30]. Taking a radial cross section through the lamelli-
podium and averaging over its height (thin-film approxima-
tion) yields the constitutive equation [30]

@_L«w )

dx_47] m_ @)

with the gel viscosity 7 and the active contractile stress
from motor molecules. Stress in the gel is described by the
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force f(x). h(x) is the height of the gel film and v(x) is the
flow field in the laboratory frame. We neglect inertial forces
in the force balance

L o), 3)

where £ is the friction coefficient of the gel with the sub-
strate, which also describes adhesion [30].

Equations (2) and (3) can be solved when boundary con-
ditions for the force at the gel front f(0)=f, and at the cell
body f(L)=f; are specified and an expression for the height
profile h(x) is given. This expression can be obtained from
integrating the continuity equation

00) + 0O} = ). @)

The gel is produced at the gel front x=0 [with height A(0)
=hy] by cross linking the filaments of the semiflexible region
with a velocity vy,,,.. The velocity of the gel front is given by
u=v;,.—v(0). We use the same velocity definition as that of
Kruse et al., i.e., v(x) is directed opposite to u and vy,.

In conjunction with the semiflexible region model, we
will use Egs. (2)—(4) for the gel behavior in a quasisteady
approximation. Some cells like, e.g., keratocytes move with
a stationary shape of the lamellipodium, but in others the
semiflexible region dynamics may become nonstationary.
Our results indicate that even when the plasma membrane
shows an oscillatory movement, the gel still moves with a
constant velocity in a wide parameter range (see below). Ad-
ditionally we performed calculations using a time-dependent
continuity equation and could show that a stationary solution
for the height profile A(x,7) is usually reached after a few
seconds, a short time scale compared to oscillation periods.
We conclude that the assumption of a quasistationary gel
profile is a good approximation, even when we couple the
gel to the semiflexible region dynamics.

Solving the gel model: Retrograde flow

To obtain an expression for the gel boundary velocity u
that depends on force boundary conditions and gel param-
eters, we scale Egs. (2)-(4) by using

v

U/=_ x/=

X
9’ 9’
Ulink L

__ I
L&v

f/
Using Eq. (4), the differential equation (2) can be written as

@_L«m@w+w )
dx 47 hovie 1)
With Eq. (3), we get

d2f/ <df/ d_f’

—_— = 4 _+1—
dx'? nf dx’ dx’

0

and the scaling parameters
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FIG. 2. (Color) Parameters a, b, and c of the fit u’=af"(0)
+bf’(1)+c as functions of v; and v,. Blue crosses: numerical solu-
tions; red lines: fitting functions (5). Fits and numerical solutions
are so close that they are almost undistinguishable in the plots.

[958 uL

VW=, Uy = .
hodn A7V finke

We now solve this equation numerically for different »;’s
and »,’s as well as different force boundary conditions f”(0)
and f'(1). Solving the boundary value problem demands
finding the root of a function of % |o- The velocity ' is then
given by 1—%|o-

It can be seen that, in good approximation, u’ depends
linearly on f’(0) and f'(1). We therefore assume that #’ has
the form u'=~af’'(0)+bf’'(1)+c and determine the coeffi-
cients a, b, and ¢ for different parameters v; and »,. The
results are shown in Fig. 2. a, b, and ¢ have been fit as
functions of v, and », by

a=(1+0.92v)"(1 +0.031,),

1+0.1v,
1+0.15», +0.0132}°

c=l]o—2 (5)
2+0.120,

Scaling back to physical units yields
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oy -y do, Ji,
link 47] 1 Lg 2 Lg 3
) 1
81 §L2 ’
20+0.12
4nhy
L2 1/2 L
g2=<1.0+0.92 ¢ ) 1.0+ 0031,
hydn 400 i,
L
1.0+0.14“
0 link
- . 6
g3 §L2 §L2 2 ( )
1.0+0.15—— +0.013( =
hodn hodn

We have fit g, g», and g5 for 0= &L?/4nhy=<50. Equa-
tions (6) are valid on the condition that pl/4 7, <1 since
the solution of the gel equations (2)—(4) diverges at finite L
[31].

The gel front moves slower than the cross-linking velocity
U Since the gel flows backward. This is called retrograde
flow and is observed in moving cells [7,32-34]. The second
term on the right-hand-side of Egs. (6) characterizes the ret-
rograde flow due to contraction by myosin motors in the
absence of external forces. Contraction slows down or (de-
pending on other parameters) even retracts the gel front in
agreement with experimental observations. The term propor-
tional to f; reflects the retrograde flow due to filaments of the
semiflexible region pushing against the gel {front. A negative
value of f,, corresponds to a pushing force, which increases
the retrograde flow and decreases the gel velocity u. The
retrograde flow is fast for small L¢ since the gel does not
have the grip to stand the force exerted by the boundary
layer. The cell will slow down or stop. Increasing L§ in-
creases the cell velocity by providing grip with the substrate.
Similarly, increasing the viscosity also increases u since the
gel provides better support for pushing the membrane.

The factor g5 of the force at the cell body f; decreases
quickly with increasing friction & and length of the lamelli-
podium. That illustrates the absorption of forces at the back
by adhesion sites. At realistic parameter values (see Table I)
g,/857~40 holds, i.e., the effect of f; on the gel boundary
velocity is much larger than the one of f;. Therefore, we will
use f;=0 in the following.

IV. RESULTS OF THE COUPLED MODEL

The lamellipodium velocity is obtained by numerically
solving the semiflexible region model (1) with Egs. (6) as the
velocity of the gel front. The force boundary condition is
fo=—ln.F (1,,2)+nF (1;,z)] and vy, equals the average
cross-linking velocity [n,v,(1,)+nw,(l,)]/n. We find station-
ary, bistable, excitable, and oscillatory regimes of leading-
edge motion. An oscillatory solution is plotted in Fig. 3. In
stationary regimes, d,2=0 and f,=—ku—f,,, hold. Therefore,
we obtain
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TABLE 1. List of model parameters and their values in Figs. 3 and 4.

Symbol Meaning Value Unit Reference
n Total filament density 300 pm™! [35]
k, Attachment rate of filaments to membrane 0.3 s! 10/s in [36]
kg Detachment constant 0.167 s! 0.5/s in [37]
i Saturation value of polymerization velocity 15 (Fig. 3), 6 (Fig. 4) um/min [20,35,38]
v;”“x Saturation value of gel cross-linking velocity 3 psm/min Assumed
1 Saturation length of cross-linking velocity 0.1 pm Assumed
K Drag coefficient of plasma membrane 0.833 nN s/um? [39]
d Actin monomer radius 2.7 nm [40]
L Persistence length of actin 15 pum [41]
k; Spring constant of linker protein 1 nN/ pum [37,42]
7 Viscosity of actin gel 50 nNs/um? 270 nN s/um? in [30], 10 nN s/um? in [14]
& Friction coefficient of actin gel to substrate 1.66-8.33 nNs/um® 30 nN s/um?® in [30], 1 nN s/um? in [14]
" Active contractile stress in actin gel 27.8 pN/ um? Assumed
hy Height of lamellipodium at leading edge 0.1 pum [35,43,44]
L Length of gel part of lamellipodium 10 pum [3,44]
fo Force at cell body 0 Assumed
uL Fout f1 The membrane velocity oscillates at small external forces,
Vtink(Fext» K) = Eg 1= L &t §_Lg3 because the stationary state becomes unstable with respect to
u= (7) perturbations of n,. Decreasing the number of attached fila-
1+ x o ments increases the load on the remaining ones accelerating
&L their detachment also. The pulling force n F, drops to very

The dependence of the average membrane velocity on ex-
ternal force f,,, is shown in Fig. 4. The curves show a dis-
tinct change in slope. In the range with small slope, vy,
depends only weakly on the external force since the free
length of polymer in the semiflexible region is larger than the

characteristic length ! of its / dependence. The membrane
velocity depends only via the term f,,,g,/ &L on the external
force, and f,,, only speeds up retrograde flow [Fig. 4(c)]. For
strong adhesion (large &), the external force term in Eq. (7)
decreases and the membrane velocity becomes almost con-
stant. When the force increases, filaments in the semiflexible
region become shorter in order to be able to transmit the
force to the gel and in accordance with the length depen-

dence of F, and F,; The polymer length approaches I, v,

small values and the membrane jerks forward. This instabil-
ity with respect to n, perturbations is crucial for the oscilla-
tion mechanism (see [9,10] for details).

The viscous force ku can slow down the lamellipodium
also, but in difference to f,,, does not cause negative u [Fig.
4(b)]. We obtain also a transition from stationary to oscilla-
tory movement and the slope change due to the saturation of

velocity (|

decreases, and the slope of the force-velocity relation be- £ 30 i
comes steep. The external force also hampers gel formation ] (© ' (d /
now. z 20 1.0 o
= /"/‘
— = » o .
£8 5 10 L / 05} Ao
£ 5 e i
E N 5
= £ 00 0.0
= = 00 01 02 03 04 05 00 02 04 06 08 10
g 2= NS ~No0= A external force fgy, (NN/um) viscous drag k (kg/(um min))
g o ¥ ¥ ¥
0 2 4 6 8 10

time (min)

FIG. 3. Example for an oscillatory solution of system (1) using
Eq. (6) for u: membrane velocity (solid line), velocity of gel front
(dashed line), and retrograde flow (dotted line). [,
=0.125 nN s/um, k,=18 min™, kgz 10 min™, v;”“x=3 pm/min,
v,“=15 pm/min, «=0.05 kg/(um min), ~=300 pml
=27.8 pN/um?, ¢=0.2 kg/(um? min), 5=5 kg/(um min), L
=10 pm, hp=0.1 pm, and f;=0. See also Table 1.

FIG. 4. [(a) and (b)] Mean membrane velocity and [(c) and (d)]
retrograde flow as functions of [(a) and (c)] external force f,,, ap-
plied to the [(a) and (c)] membrane and [(b) and (d)] drag coeffi-
cient for three different friction coefficients £ of the gel to the sub-
strate. The membrane velocity increases with £ while retrograde
flow decreases: £;=0.2 kg/(um? min), &=0.5 kg/(um? min), &
=1.0 kg/(um? min), v, *=6 pm/min, and f.,;=0 in (b) and (d);
other parameters are same as in Fig. 3. See also Table 1. Solid
curve: stationary movement; dashed curve: oscillatory movement.
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the gel formation velocity. For k— 0 and f,,,=f; =0, the vis-
cous force vanishes and retrograde flow is driven by contrac-
tion al(?ne U=V g — %gl.. If there is no contraction (p=0)
but a viscous force, it drives retrograde flow.

V. SUMMARY AND CONCLUSIONS

We arrive at the picture that the semiflexible region sets
the dynamic regime, and gel properties and the forces acting
on the leading edge determine the retrograde flow and lamel-
lipodium velocity. Since in oscillatory regimes the viscous
and external forces on the membrane are small, retrograde
flow is primarily generated by myosin motors and stays con-
stant although the plasma membrane moves with oscillating
velocity. Such a behavior has been observed experimentally
in growth cone advancement [45].

In agreement with our results, it has been shown experi-
mentally that retrograde flow increases (cell velocity de-
creases) with myosin motor activity [7,33]. The cell velocity
increases with adhesiveness in our model and in experiments
[34,46]. It decreases in experiments at very strong adhesion
again, which is not reproduced by the model, since we did
not include the coupling from cell back to front required for
that.

Our model offers a simple and biologically plausible ex-
planation for the concave-down shape of the force-velocity
relation. Our force-velocity relation for strong adhesion
shows a shape similar to experimental results [21,47] and
gives quantitatively correct stall forces. We assume that the
autocatalytic branching model [22] would provide a force-
velocity relation very similar to ours if it would be combined
with a gel model.

As mentioned above, experimentally observed force-
velocity relations are almost constant for small forces and
decrease faster for larger forces. We obtain this dependency
when adhesion is strong (£ large) and the cross-linking rate is
at its saturation value without external force, i.e., v;”“"
>v;”“". The first condition is obviously met since otherwise
the cell would slide backward on the substrate at small ex-
ternal forces. It is generally believed that protrusion is force
limited [48]. Therefore, the force-free polymerization rate is
even faster than observed cell velocities, which shows that
the second condition applies also.

When including retrograde flow into the semiflexible re-
gion model, different dynamic regimes, stationary move-
ment, and oscillations of the plasma membrane are con-
served. We have shown previously that our semiflexible
region model describes velocity oscillations of the lamellipo-
dium leading edge and localized protrusions traveling along
the edge [3,11]. For small values of the membrane resistance
x, the dynamic regime of movement does not change when
we vary the parameters of the gel that determine the strength
of the retrograde flow. In good agreement with this result,
experiments showed that the state of movement of newt lung
epithelial cells did not change when myosin activity, one of
the driving factors of retrograde flow, was inhibited [5]. On
the whole at parameter values suggested by others to apply
to experiments [14,30] (see also Table 1), the dynamic regime
is determined by processes in the semiflexible region, and
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retrograde flow, adhesion, and actin gel properties determine
the velocity of the lamellipodium. Our modeling approach
allows for describing the impact of the gel in the bulk on
membrane motion by a single algebraic expression [Eq. (6)],
whenever the gel model by Kruse er al. applies. This is a
tremendous simplification compared to simulating the com-
plete gel equations throughout the bulk.
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APPENDIX: DERIVATION OF CROSS-LINKING RATE

The transition from the semiflexible region with little
cross links to the gel with many cross links occurs gradually.
The concentration of cross linkers bound to the actin network
C, is saturated far inside the gel and decreases toward the
leading-edge membrane to zero since newly polymerized
filament parts have no cross-linker bound yet. We denote as
the gel boundary the position of a concentration value €5,
above which we expect gel-like behavior of the network. We
calculate the cross-linking velocity v in stationary state with
steady motion. We consider a reference frame along the con-
tour length of a filament in which the gel boundary is fixed.
The tip of the filament is located at x=0 and the gel bound-
ary is at x=—/. We denote with L; the width of the gel region
of the lamellipodium close to the gel boundary where C,, is
not saturated yet. Cy is the concentration of free cross linkers.
We have a pool of cross linkers in the cell body of constant
concentration C}b. We use a constant binding rate of cross
linkers in order to obtain linear analytically solvable differ-
ential equations for the concentrations. We describe binding
of cross linkers in the SR by the rate p and binding inside the
gel by ps with ps=p. That allows taking partial saturation
of binding sites inside the gel into account. The stationary
spatial distributions of bound and unbound cross linkers are
described by

2
D(Z—XC} -pcCr=0, gel,

FC
Da—xf ~pC;=0, SR,

%, =0, SR
v_ + = 9’ 9’
dx ps

(A1)
with the diffusion coefficient D. Boundary conditions at the
gel boundary guarantee a continuous and smooth function
(. Additionally, we require

=0. (A2)

x=0

ac
cl-(Ls+D]=c? —L
- Le+D)] -

The solution for Cyin the SR —/=x=0 is given by

Coo GC? cosh(kx)
7™ k sinh(kl) + G cosh(kl)’

k=L,
D
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[P
kG= BG.

(A3)

With the boundary condition C,(0)=0, the solution for the
bound cross-linker concentration inside the SR reads

p GC} sinh(kx)
vk k sinh(kl) + G cosh(kl)

b
G= ke , ()= G ,
tanh(ksLg) cosh(ksLg)

Cb = (A4)
Reaching the critical concentration of cross linkers bound to
filaments CJ"*, above which the actin network becomes a gel,
defines the gel boundary x=—/ and we can write

GCY sinh(kl .
£ - f sm ( ) — Clc)rlt‘ (AS)
vk k sinh(kl) + G cosh(kl)

The cross-linking velocity is then given by

p GC? tanh(kl)
U= ¢k tanh(kl) + G

(A6)

We assume that the binding rate p is proportional to the
filament density n squared since filaments have to get suffi-
ciently close to each other to cross link: p=bn>. That yields
in the limit G> k tanh(kl)

PHYSICAL REVIEW E 82, 051925 (2010)

Db
v= ”—CC%tanh(nz\/b/D). (A7)
b

The contour length in the semiflexible region rarely ap-
proaches zero. Even when the leading-edge motion is stalled,
retrograde flow maintains a SR and the cross-linking velocity
compensates for the flow. Nevertheless, we would like to add
a remark applying to the case /—0. We need to take into
account that cross-linker binding sites are located at average
distances [, along the filament if / becomes smaller than /.
For <1, the probability to find a cross linker between x
=0 and x=-/ is {/[,. That probability turns the cross-linker
binding rate into p=bn®1/1,. Therefore, the cross-linking ve-
locity (A6) then reads

tanh[nVbI/(DI,)]
Cs™  \bl/(DI,) tanh[n\Vb /(D) ]+ G
(A8)

_ VDblil,nC;G

D=
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