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Abstract

Background: The integration of protein-protein interaction networks derived from high-throughput screening
approaches and complementary sources is a key topic in systems biology. Although integration of protein
interaction data is conventionally performed, the effects of this procedure on the result of network analyses has
not been examined yet. In particular, in order to optimize the fusion of heterogeneous interaction datasets, it is
crucial to consider not only their degree of coverage and accuracy, but also their mutual dependencies and
additional salient features.

Results: We examined this issue based on the analysis of modules detected by network clustering methods
applied to both integrated and individual (disaggregated) data sources, which we call interactome classes. Due to
class diversity, we deal with variable dependencies of data features arising from structural specificities and biases,
but also from possible overlaps. Since highly connected regions of the human interactome may point to potential
protein complexes, we have focused on the concept of modularity, and elucidated the detection power of module
extraction algorithms by independent validations based on GO, MIPS and KEGG. From the combination of protein
interactions with gene expressions, a confidence scoring scheme has been proposed before proceeding via GO
with further classification in permanent and transient modules.

Conclusions: Disaggregated interactomes are shown to be informative for inferring modularity, thus contributing
to perform an effective integrative analysis. Validation of the extracted modules by multiple annotation allows for
the assessment of confidence measures assigned to the modules in a protein pathway context. Notably, the
proposed multilayer confidence scheme can be used for network calibration by enabling a transition from
unweighted to weighted interactomes based on biological evidence.

Background
Networks are complex structures endowed with both
statistical and topological properties ([1,2]). Biological
networks, and protein-protein interaction networks
(PPIN) in particular, require both theory and algorithms
to describe complex mechanisms and relationships. Ide-
ally, these networks can be assumed to represent snap-
shots depicted by connectivity maps observed at
particular times. Through a sequence of such maps, we
could verify how the network connectivity changes over
time, and thus conceive a topological model for inter-
preting the dynamics and conducting inference by the
built-in predictive power.

When time changes cannot be monitored, the avail-
able static pictures limit the potential for global interac-
tome analysis. Despite this limitation, there has been a
great interest in analyzing topological features of net-
works in order to cluster proteins into groups, assign
functions to uncharacterized proteins, study their simila-
rities, and establish reliability of the interactions. How-
ever, due to the impact of relatively low ratios between
true and false positives and negatives, it is hard to
accomplish those tasks before filtering interactome sig-
nals from noise.
Notably, comparative method evaluations ([3,4]) have

been proposed to extract clusters of densely connected
proteins which might indicate protein complexes or
functional modules. The meaning of these two entities
is distinct in biological terms (see [5] and [6] for an
extended discussion). We refer to a protein complex
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(e.g. transcription factors, histones, polymerases, etc.) as
a molecular machine consisting of multiple proteins
(and possibly nucleic acids and other molecules) that
bind at the same place and time. In contrast, a func-
tional module (e.g. signaling pathways) represents a set
of proteins (and other molecules) that controlor perform
a particular cellular function but not necessarily at the
same time and place, and thus may not form a macro-
molecular complex.
However, it is often hard to distinguish between these

two structures by relying only on PPIN, as in general the
analyzed protein interactions do not have temporal and
spatial information. Nevertheless, since PPIN represent
undirected binary or weighted graphs, several graph-based
inference approaches have been successfully employed to
detect modularity. The majority of such approaches evalu-
ate interactome topological features, and typical examples
are node degree and clustering coefficient, both based on
the levels of connectivity of each node.
Both global and local connectivity can be explored by

these methods, depending on the kind interactome ana-
lysis to be performed. The results may vary, as methods
are based on different principles. For instance, the two
main contributions to our work come from the applica-
tion of two algorithms, CFinder ([7,8]) and MCODE [9].
Interestingly, they deal with network modularity through
similar topological instruments, but achieve quite differ-
ent outcomes; therefore, we based our analysis on them,
while also evaluating other methods.
In parallel, a substantial heterogeneity of human inter-

actome datasets has been generated depending on the
underlying methods of identifying and characterizing
protein interactions. Besides high-throughput
approaches ([10-12]), in particular the curation of litera-
ture ([13-15]) and the provision of computational pre-
dictions ([16-18]) have allowed for the mapping of the
human interactome.
Despite the impressive size of PPIN produced by the

different approaches, their overall coverage remains lim-
ited. A general procedure to increase the coverage level
is the integration of different interaction maps. How-
ever, recent analyses [19] have revealed that the class of
integrated PPIN may display distinct functional charac-
teristics and topological features. This evidence suggests
that the analysis of integrated maps could be compro-
mised by the heterogeneity which is fused into them,
ending up with diverging modular maps.
To assess this possibility, we have defined integrated

and also individual PPIN classes; as the latter have a
source-specific characterization, they in turn generate
disaggregated interactome datasets. In particular, data-
sets have been constructed from literature, orthology,
and high-throughput experiments in an attempt to
assess the variability of the modularity maps caused by

the underlying source of interaction data. We have thus
retrieved modules by various methods and from each
interactome class, including the integrated one, and
finally compared them by multiple validations.
A comparative evaluation of human protein interac-

tome classes suggests that a scoring system should be
available. We have proposed a confidence scoring
method based on several sequential steps. Using gene
expression data and gene annotation, we assigned initial
confidence scores to PPIN modules. In order to cali-
brate the initial scores, information from GO http://
www.geneontology.org/, MIPS (http://mips.helmholtz-
muenchen.de/proj/ppi/, and KEGG http://www.genome.
jp/kegg/) was subsequently utilized. Overall, the com-
bined use of interactome classes, network clustering
methods and additional multiomic sources allows for
better characterization of the modularity map, and for
an assessment of the influence of integration and disag-
gregation on the detected and validated modules.
The integrative approach requires specific tools for

both analysis and validation, and is based on a qualita-
tive and quantitative representation of a compilation of
information from diverse biological sources. Specifically,
we have focussed on how disaggregated and integrated
interactome classes influence and characterize the
detected modules. In addition, we addressed two related
questions: Do clustering algorithms determine modular-
ity maps? To what extent is the overlap or separation of
modules induced by inherent data complexity or by
capacity of the method to partition the data?
There are limitations in the current practice of interac-

tome modularity detection and representation, and two
main factors condition the analysis: the choice of the
modularity-finding algorithm, and the choice of the inter-
actome dataset with the related biological sources. In this
article we provided evidence that quantifies the existing
discrepancies between methods whose performance is
comparatively evaluated over different interactome data-
sets. Simultaneous evaluation of both interactome meth-
ods and data may provide valuable guidance on the
overall interpretability of modularity and likely lead to
improved inference methods and models. The paper is
organized in such way that module extraction algorithms
are first introduced, then the structure of the available
datasets is presented, and finally the results of a data inte-
gration approach are illustrated.

Methods
Detection of Modularity
Following many Saccharomyces cerevisiae (yeast) PPIN
studies based on large-scale proteomic data (see for
instance [20] and [21]), and concerned with modularity
detection, similar analyses have been recently proposed
for the human interactome. Not surprisingly, the latter
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presents more challenges and requires many efforts to
substantially improve both coverage and accuracy
([10,22,23]).
Modularity is primarily studied to reveal the organiza-

tion of a protein interactome into its constituent mod-
ules, to quantify their level of intra-cohesiveness and
cross-communication, and to measure the overall parti-
tion quality based on biological grounds. To advance
our understanding relatively to all these aspects, we per-
formed extensive comparative analyses of newly com-
piled and carefully tracked interaction maps derived
from the Unified Human Interactome (UniHI) database
[24], which currently houses 253, 000 distinct interac-
tions between over 22, 300 unique human proteins. Our
study of the modular structures inhuman interactome
involved two steps: one to compare the retrieved mod-
ules obtained from integrated and disaggregated human
interactomes, and another to perform biological valida-
tion by multiple functional information sets and tissue-
based gene expression data.
Notably, the inclusion of gene co-expression complies

with earlier studies ([11,25,26]) in which the identifica-
tion of protein modules was not based on interaction
data only. We also believe that there is additional value
in gene expression data to indicate the presence of the
detected modules in certain tissues, as previous analysis
of modular structures in the human protein interactome
clearly demonstrated ([27,28]). Since gene co-expression
and physically interacting proteins tend to be correlated
for the human interactome, an integration might
increase the reliablity of modules detected by computa-
tional algorithms. Thus, we performed a proteome-wide
integration of expression and interaction data to assess
the quality of the retrieved modules, which our results
showed to be highly useful as an approach to the inte-
gration of complementary interaction maps.
In interaction maps, modules (also addressed as com-

munities) represent densely connected sub-structures
whose functions might be of biological relevance [29].
They recur frequently and with variable size in protein
interactomes. Several detection methods [30] have been
proposed to identify modules based on different princi-
ples, but with the common shortcoming of achieving
only a limited resolution spectrum (i.e all the possible
module sizes) when applied to large networks ([31,32]).
Interestingly, while the modules are expected to repre-

sent highly related functions, it has been observed [33]
that known pathways in metabolic networks do not cor-
respond to top-scoring modules, as large pathways are
composed of smaller units which are mixtures of sub-
structures associated to different pathways. The same
considerations may hold for more general protein path-
ways where hub-like proteins ([34,35]) are usually essen-
tial ([36-38]) in the network and maintain sparse links

between different modules, while other protein regula-
tors characterize modules of smaller size. Since protein
interactomes usually show heterogeneity in their module
distribution with regard to size, we elucidated this
aspect in the next section, in relation to both methods
and interactome data.

Proposed Algorithms
A novel aspect of our study is the comparative analysis of
interactome aggregation and disaggregation effects. For
the comparison, we first assembled three different
human PPIN solely derived by manually-curated interac-
tions from the literature (Lit-PI, 9321 proteins and 37690
interactions), by computationally predicted interactions
using orthology (Ortho-PI, 5091 proteins and 13639
interactions), and by high-throughput protein interac-
tions (HTP-PI, 2957 proteins and 5899 interactions).
Finally, we fused them to an integrated dataset referred
as Int-PI (11267 proteins and 54613 interactions).
In order to extract the modules (see Table 1 for the

complete summary), we applied two different network
clustering algorithms, C finder and MCODE, to all the
disaggregated and the integrated datasets, and then
compared the retrieved modules. These two determinis-
tic methods are topology-based and centered on ‘cliques’
as the reference entities to identify modules. Therefore,
they both depend on local node-connectivity due to the
definition of clique, i.e. a maximally connected graph or
an induced sub-graph which is a complete graph, or
equivalently a graph with every pair of distinct nodes
connected by a link. In contrast, both algorithms differ
considerably with regard to their computational imple-
mentation strategies (details are reported in the Appen-
dix). We considered the deterministic definitions of
cohesive subgraphs from both MCODE and CFinder as
possible ways to explore the degree of separation versus
overlapping of protein groups through their complex
underlying clique structure.
We have then applied a third method [39] to our

datasets. Q-modularity, whose maximization is here
addressed as the MaxMod approach, aims at partition-
ing a network in modules that emphasize deviations
from purely random dynamics. In particular, for a parti-
tion in N modules, with eij establishing links between
modules mi and mj , and given Ei = ∑jeij and Tr[E] =
∑ieij , the modularity function can be formulated (see
also [40-42]) as follows:
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Thus, Q associates proportions of links within each
module with proportions of all links (i.e. expected in the
whole network, within and between modules); equiva-
lently, it compares observed modular to inherently non-
modular network architectures. Intuitively, a good
modular
partition would lead to high values for the
trace, and Q would approach 1; vice versa, a
large presence of random links between nodes
(i.e. poor modularity) would make Q approach-
ing 0. In general, a modular partition shows
dense intra-modular links and sparse inter-mod-
ular links. Equivalently, the detected modularity
structure presents a few local maxima capturing
the most relevant information of the internal
network organization.
MaxMod leverages on a greedy optimization algorithm

that starts by modules of one element, i.e. each node,
and iterates a merging process designed to join the
module pair whose amalgamation creates the largest
modularity increase (see Figure 1). As said, the optimi-
zation function is defined to be zero in one case, when
the fraction of within-module links is equal to what we
would expect for a randomized network of equivalent
size. Otherwise, non-zero values indicate deviation from
randomness (a value around 0.3 is commonly retained a
lower bound for the presence of modular structure).
We note that the induced sparsity implies a poor

identification power with regard to the resolution spec-
trum, especially for small and intermediate module
sizes. Due to the retrieval of coarse resolution modules,
whose large sizes depend on incremental merging of
small modules, a weakness of the MaxMod approach
concerns its possible interpretation in biological applica-
tions. In addition, more reasons of concern exist with
reference to methodological aspects. First, more than
one partition could reach the maximal modularity (local
maxima). Second, the modularity definition could reveal
only some groups (due to bias). Third, as modularity
calculation is sensitive to noise, an optimal partition
may not be achieved. Consequently, the MaxMod sub-
optimality effect of limiting the coverage for the network
resolution spectrum requires investigation when all
module sizes may in principle count.

Then, we extended the analysis to a random walk
(RW) search, and thus considered a stochastic optimiza-
tion approach centered on the definition of a distance
that measures structural similarity between nodes. We
have thus applied the Walktrap algorithm [43], freely
available in the igraph R package, in order to know
whether a resolution refinement is possible in the mod-
ularity structure by allowing more chances of escaping
from high-density regions. RW introduces probabilistic
elements in the hierarchical scheme underlying most of
the algorithms, and can be compared with the previous
algorithms.
Since our two benchmark methods rank their outputs

according to an internal scoring system, we selected
only highly ranked sub-networks for further investiga-
tion (more details appear in the Appendix, Method
parameterization section). Specifically, we refer to 65
groups from CFinder’s results (21 for Int-PI, 14 for Lit-
PI, 21 for Ortho-PI and 9 for HTP-PI), and to 45 groups
from MCODE’s results (14 for Int-PI, 13 for Lit-PI, 14
for Ortho-PI and 4 for HTP-PI).
We also considered network inference aspects invol-

ving protection against random effects, such as design of
randomization schemes and generation of possible null
models. The matter is still controversial [44], and in our
study we present distinct interactome data and methods
that prevent from conceiving a unified scheme, but
some remarks are as follows.
MCODE was designed and tested to be robust; for

instance, it was shown in [9] that large-scale and noisy
experimentally derived interactions do not remarkably
affect the prediction of complexes by MCODE, while [3]
referred to increased robustness compared to other
methods in terms of negative control and unassigned
nodes.
As for CFinder, the randomization effects have been

evaluated on a large set of generated random networks
[19], in particular on homogeneous scale-free networks.
The results indicated that the observed number of k-cli-
ques (with k > 5) is indeed highly significant, while for
small-sized communities there is an increased chance of
results that become close to random outcomes.
Consequently, the retrieved number of CFinder com-

munities may be indeed overestimated, likewise the real
distance between the extremes (MCODE and CFinder)

Table 1 Modules by method and dataset

CF comm. CF-range of k 2-core MC MC-range of k MaxMod comm. Walktrap comm.

Int 1096 3 - 17 136 2 - 19 179 314

Lit 779 3 - 11 101 2 - 10 170 254

Ortho 397 3 - 17 141 2 - 18 211 250

HTP 61 3 - 4 11 2 and 3 129 151

Summary of CFinder, MCODE, MaxMod and Walktrap modules for UniHi datasets.
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of the resolution scale emphasized by the distribution of
module sizes. In turn, such evidence justifies our
approach based on thresholding. Moreover, recent
results [45] suggest that both algorithms and datasets
should be considered in order to establish acceptable
solutions such as hierarchies of null models.

Confidence Scoring
Following an original approach [46] previously proposed
for an integrated interactome analyzed by CFinder, we
have combined the module ID extracted from each dis-
aggregated interactome with the variables listed and
described in Table 2, and with the compendium of gene
co-expression measurements generated from the Human
Gene Atlas data source http://biogps.gnf.org. Since we
do not focus in our study on a particular tissue, we have
chosen to utilize a compendium of gene expression pro-
files comprising a large number of tissues and generated
on a single platform to minimize experimental
variability.
The term “co-annotation” refers to the similarity of

GO annotation of interacting proteins, based on a com-
parison of the associated GO graphs. The size of the
intersection of the graphs divided by the size of their
union was used as a similarity measure. The

implementation of the variable selection method is elu-
cidated in Table 3, where GO annotation results are
presented for some modules selected by MCODE and
CFinder. In particular, we have combined the variable
selection approach with a scoring procedure based on
thresholding in order to assign confidence measures to
the modules (an overview of the applied scoring system
is provided apart).
Based on the last three average quantities listed as mf.

mean, bp.mean, cc.mean, we have made an even finer
selection by retaining only the modules with mf.mean,
bp.mean and cc.mean values ≧ 0.5, our thresh old (indi-
cated in bold font in Table 3). We call them High Confi-
dence modules. According to [47], two interacting
proteins must be close to each other in a permanent or
transient manner; proteins in the same complex should
be localized at the same cellular compartment, while the
non-interacting proteins should likely be just transient,
if not spuriously present (see also [48]). Thus, co-locali-
zation explains our rationale for keeping cc.mean ≧ 0.5.
Similarly, we apply the same numeric threshold for the
other two GO categories, in order to characterize the
functional association strength of each module.
Correspondingly, we have defined Medium Confidence

and Low Confidence modules according to two criteria.
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Figure 1 MaxMod Patterns. Comparative MaxMod performance for the set of interactions networks studied: in agreement with known studies,
values approximately ranging in 0.3 - 0.7 suggest modular structure. Software freely available through R -igraph package, fastgreedy.community
function- then plotted from Matlab.
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First, at least two over three GO thresholds (bp.mean
and cc.mean) had to be satisfied. Second, modules satis-
fying an expression correlation threshold, i.e. cor.mean ≧
0.5, retained a medium confidence level, while modules
with cor.mean < 0.5 were assigned a low confidence
level (further evidence for all modules excluded by this
selection is reported as supporting information.
In summary, due to the strong indications that co-

localization correlates at the transcriptional level with
co-expression, and in turn with biological processes and
molecular functions, protein module selection has been
performed through the entire set of GO categories.

Indeed, interacting protein pairs in a complex tend to
show mRNA co-expression [25] reinforcing protein
modularity maps [26]. Further evidence is also available
from experimentally derived data [11] and tissue-specific
interactome analysis [28].
We then evaluated multiple validation sources in both

qualitative and quantitative terms, and also performed’
scoring calibration’ (evidence is also available in Addi-
tional file 1, Additional file 2, Additional file 3 and
Additional file 4). Calibration consists of three main
steps aimed at refining the described scoring system,
and the corresponding confidence levels assigned to

Table 2 Variable selection method

variable description

n number of proteins included in module

n.ex number of proteins in module included in the Human Gene Expression Atlas dataset

ex.mean average expression scores in human tissues, measured for the Gene Atlas

cor.mean module pairwise Spearman correlation of tissue expression

mf.mean mean “co-annotation” for GO molecular function

bp.mean mean “co-annotation” for GO biological process

cc.mean mean “co-annotation” for GO cellular component

With regard to the Human Gene Expression Atlas dataset, the available link is at http://biogps.gnf.org

Table 3 GO-based annotation results of CFinder and MCODE modules

module ID n n.ex ex.mean cor.mean mf.mean bp.mean cc.mean

High Int-2 5 5 8.33 0.22 0.76 0.7 0.7

Int-3 5 1 8.54 NA 0.85 0.88 0.84

Int-4 9 7 9.56 0.43 0.7 0.81 0.92

Int-7 17 13 8.88 0.17 0.63 0.58 0.66

Lit-2 5 5 8.33 0.22 0.76 0.7 0.7

Lit-5 9 9 9.62 0.42 0.59 0.68 0.66

Lit-9 8 8 9.02 0.62 0.85 0.92 0.82

Lit-11 10 9 8.17 0.3 0.58 0.74 0.61

Ortho-8 15 11 8.9 0.15 0.68 0.57 0.67

Ortho-12 10 9 10.73 0.59 0.83 1 0.98

Medium Int-18 18 16 9.55 0.54 0.45 0.51 0.7

Ortho-18 17 15 9.65 0.58 0.49 0.6 0.72

Low Int-13 13 11 8.79 0.39 0.45 0.73 0.96

Lit-4 16 11 7.95 0.24 0.28 0.52 0.58

Lit-14 11 10 8.79 0.39 0.4 0.72 0.95

Ortho-7 8 7 9.48 0.41 0.48 0.56 0.61

MCODE module ID n n.ex ex.mean cor.mean mf.mean bp.mean cc.mean

High Int-5 9 7 9.56 0.43 0.7 0.81 0.92

Lit-4 7 7 8.99 0.13 0.89 0.79 0.71

Ortho-4 12 9 9.37 0.31 0.51 0.59 0.54

Ortho-5 9 7 12.92 0.77 0.65 0.78 0.71

Low Lit-11 9 8 8.34 0.24 0.4 0.59 0.69

Lit-13 22 20 8.81 0.32 0.33 0.5 0.63

Ortho-2 6 5 8.08 0.29 0.41 0.78 0.73

Ortho-10 11 9 8.38 0.38 0.39 0.52 0.67

GO-based annotation results of CFinder andMCODE modules: High (bold font for every GO category), Medium (cor.mean ≧ 0.5), and Low (cor.mean < 0.5)
confidence groups.
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modules. As a first step, we proceeded through GO
annotation by ranking modules according to computed
FDR-corrected p-values (full details are in the previously
addressed online files) in order to assess the pre-
assigned confidence levels (as from Table 3).
As a second step, we considered annotated complexes

to measure the overlap scores (of three types, see Addi-
tional file 3). We mapped every selected module over
both MIPS and Reactome domains to exploit more cov-
erage (CORUM - http://mips.helmholtz-muenchen.de/
genre/proj/corum[49] and also COFECO - http://piech.
kaist.ac.kr/cofeco[50] were used).
Finally, we looked at pathway enrichment through p-

values (see Additional file 4) and performed a qualitative
evaluation aimed to characterize each module according
to inherently cohesive (i.e. intra-modular, self-contained)
versus cross-talk (i.e. inter-modular, communicative)
dynamics. A very interesting aspect to investigate is
indeed a characterization for more than just sparsely
interacting cohesive modules, as the latter may be heav-
ily involved in cross-talks according to ‘connector
groups’ [51], i.e. involved in the same connecting func-
tional role by showing a variable degree of cohesiveness.
A final remark is with regard to the assignment of our

confidence scores and concerns the influence of thresh-
olding. In particular, our results are in part sensitive to
the selected fixed thresholds (among the ones which
were considered). Repeated testing (data not shown) has
suggested the best possible threshold choice from the
available data. Another consideration is about the whole
sequence of steps required to implement our multilayer
approach, which reflects the scoring system in terms of
validation sources. We have added pathway to other
GO-based inference and MIPS analysis in order to vali-
date our modules, and emphasize their permanent ver-
sus transient characterization. Last, by casting this
framework in a protein pathway context, we could com-
pare the detected modules with pre-assigned confidence
scores against other multiple validation approaches (see
the points discussed below about protein pathways).

Algorithm Performance Measures
Precision and recall [52] are two well-known measures
to test the performance of algorithms. In Eq. (2) context,
precision refers to the predicted interacting pairs that
match true positives, recall refers to interacting pairs
identified by the algorithm out of all the possible known
ones. We report both precision and recall formulas
(computed for both MCODE and CFinder within each
module), given tp as the true positives, fp as the false
positives, and fn as the false negatives, as follows:

Precision
tp

tp fp
Recall

tp
tp fn

=
+

=
+[ ] [ ]

(2)

Then, we report in Eq. (3) precision and recall com-
puted again for both the methods, but this time across
the modules in each dataset (we mark with a ‘prime’
both quantities). Thus, MM and PM represent the sig-
nificantly matched and the predicted modules, respec-
tively, while MC and KC represent the well matched
and the known MIPS complexes, respectively. Following
[53], it is important to note that MM (a module-based
measure) is not necessarily equal to MC (a complex-
based measure), because the same complex can be
reflected by multiple detected modules. We have
reported in detail evidence for the numerous well-stu-
died complexes detected by clustering methods.

Precision
MM
PM

Recall
MC
KC

′ = ′ = (3)

Results and Discussion
Given the list of methodological steps previously
described, we first report numerical outcomes and then
proceed with the assessment of our results based on
each performed validation.

Numerical Evidence
The retrieved modules indicate that CFinder has identi-
fied 2333 modules (named as “communities”), which are
mostly based on 3- and 4- cliques (k = 3 - 355; k = 4 -
200). MCODE has instead generated 389 modules
(named as “cores”, where a “2-core” is for a clique size
of 2, thus the least stringent choice in terms of connec-
tivity which is accounted for). Results for varying ranges
of k have also been reported for both methods, and the
algorithmic details and parameters explained in Materi-
als and Methods of the Appendix.
Although not exhaustive, this comparative evaluation

is useful to define the inherent resolution power of each
method, and elucidate the specific modularity associated
to each interactome class. The modules result depen-
dent on both methods and data, and can be compared
in terms of resolution and distributional aspects. In par-
ticular, MCODE and CFinder represent quite far
extremes in the resolution range allowed by the exam-
ined data, while both greedy and stochastic learning
approaches stand in between these extremes and thus
depict only intermediate modularity maps.
Consequently, we have corroborated the analysis by

investigating the resolution at which the modules are
detected by each method and each dataset (evidence
from two datasets has been reported in Figure 2, and
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Figure 2 Histograms of module sizes (Int-PI and Lit-PI) and Power Laws. Distributional aspects of module sizes for Int-PI and Lit-PI datasets,
and corresponding power laws (from Matlab scripts plfit.m, plplot.m in http://www.santafe.edu/~aaronc/powerlaws). Values for alpha
approximately between 2 and 3 are typically expected.
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from other datasets as supporting information). With
regard to the number of retrieved modules in each
interactome class, MaxMod converges to MCODE
(except for HTP), probably due to the underlying hier-
archical structure present in both schemes. The inherent
modularity can remain partially latent when the Max-
Mod method is applied to protein interactions. Thus, a
small number of final modules can be found, but mainly
due to the module merging effects rather than biological
structure. As a result, more sparsity implies lack of
detection power for small and intermediate module
sizes, whose overlaps are instead observed with CFinder.
We have then provided evidence for the distribution

of module sizes by the histograms obtained from the
frequency with which each module size appears. As a
result of its overlapping structure, CFinder covers the
interactome resolution spectrum of module sizes to the
highest degree, thus exploring more extensively the
inherent module heterogeneity. Through a RW-based
search, a distributional change can be observed, but we
still found that the resolution spectrum remained com-
prised between those of MCODE and CFinder. Further-
more, in Figure 2 we have combined the resolution
evidence for both the Int-PI and the Lit-PI datasets with
the corresponding power laws, given that from x drawn
from a certain probability distribution p(x), a power law
is observed when p(x) ∝ x-a with a the scaling para-
meter [54].

Multilayer Validation
Pathway Analysis
An important outcome of our multilayer approach is the
possibility of analyzing each protein module based on a
grid of confidence levels. One step is designed to use
the KEGG Pathway Database [55], which has been inter-
rogated by queries of proteins from each extracted mod-
ule and then annotated to a specific pathway (Table 4).
With CFinder, High Confidence modules have identi-

fied in most cases the same hsa03020 pathway, thus
behaving similarly across the different datasets. The
same occurs for the hsa03022 pathway in both
MCODE’s and CFinder’s Low Confidence modules.
Overall, a quite strong pathway characterization is

found for the different confidence levels, with some dif-
ferences: the effect is more method-dependent for the
High Confidence cases, thus the variation occurs across
the datasets, and to a larger extent compared to the
Low Confidence case.
Disaggregated datasets lead to an evaluation of both

intra-dependence and inter-dependence relationships
which can arise within and between the datasets, respec-
tively. Intra-dependence addresses specific structural fea-
tures and biases characterizing each dataset, i.e. types of
correlation of an endogenous nature. Inter-dependence

addresses overlaps or redundancies among different
datasets, which are of relevance in addition to their dis-
tinct information contents.
Similarly, even if in relation to another scale, binary

interactions have been considered either intra-complex,
i.e. occurring within protein complexes, or non intra-
complex, because not found to belong to one of them in
particular. The latter category naturally links to transient
interactions, while permanent interactions are typically
intra-complex dynamics. We have presented examples
of permanent and transient modules, after analyzing
protein complexes and how the retrieved modules could
map to them.
Functional Annotation by Gene Ontology
We have carried out GO annotation in order to identify
complexes that account for both biological process
(Table 5) and cellular component (Table 6), and
reported the complete annotation for both methods in
Figure 3 and Figure 4.
Our annotation emphasizes the inherent modularity in

the available datasets, as shown by mapping the
extracted modules to known complexes. The Int-PI
dataset overlaps sometimes with the Lit-PI and the
Ortho-PI datasets, but also extracts modules which are
uniquely detected (and not appearing in disaggregated
datasets).
Some examples are: Int-2, which overlaps with Lit-2

(Chromatin remodelling complex); Int-7, which overlaps
with Ortho-8 (RNA polymerase complex); Int-18, which
overlaps with Ortho-18 (Proteasome complex). In other
cases the Int-PI dataset extracts non-overlapping mod-
ules, such as Int-3 (Chromosome centromeric region), or
Int-4 (COPI vesicle coat).
By comparison of the disaggregated datasets with the

Int-PI dataset, we have identified some non-overlapping
modules, such as Lit-4 (H4/HA2 histone acetyltranferase
complex) or Lit-11 (Exosome). This is evident especially
in the High Confidence modules.
With the MCODE method we have selected only one

Int-PI module, Int-5 which overlaps with Ortho-4. In
disaggregated datasets, overlapping Lit-13 and Ortho-2
(Transcription factor TFIID complex) modules are
extracted.
Overall, the extraction of overlapping modules Int-13

and Lit-14 with CFinder, and Lit-13 and Ortho-2 with
MCODE) involved the Transcription factor TFIID com-
plex, while other cases (Int-4 with Cfinder, and Int-5
and Ortho-4 with MCODE) involved COPI vesicle coat.
However, separated complexes were retrieved as well.
MIPS Mapping
After KEGG and GO annotations, we have validated our
modules (Table 7) by mapping them to known com-
plexes in MIPS [49]. Such step delivers comparative
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algorithmic performance across different interactome
classes.
A first examination showed that CFinder could extract

modules that map to different sub-units of large com-
plexes. For instance, the RNA polymerase complex (Int-
7 High confidence) which is located in the nucleus, has

DNA-directed RNA polymerase activity, and is com-
posed of RNA polymerase I for the synthesis of rRNA
28S, 5.8S e 18S, then RNA polymerase II for the synth-
esis of mRNA, and RNA polymerase III for the synthesis
of tRNA, rRNA 5S, snRNA and scRNA. Last, the Pro-
teasome complex (Int-18 Medium confidence), with

Table 4 Pathways

CFinder module ID Protein IDs Pathways

High Int-2 - na

Int-3 - na

Int-4 - na

Int-7 POLR3G POLR3A POLR3 H POLR1A
ZNRD1 POLR1D

POLR2C POLR2E POLR2 H POLR2L
POLR1B POLR3GL POLR1C

hsa03020 RNA polymerase

Lit-2 - na

Lit-5 POLR2A POLR2C POLR2 D POLR2E
POLR2G POLR2 H POLR2L

hsa03020 RNA polymerase

Lit-9 LSM1 LSM2 LSM3 LSM4 LSM5 LSM6 LSM7
LSM1 LSM2 LSM3 LSM4 LSM5 LSM6 LSM7

hsa03018 RNA degradation
hsa03040 Spliceosome

Lit-11 SKIV2L2 EXOSC2 EXOSC4 EXOSC5
EXOSC6 EXOSC7 EXOSC8 EXOSC9

hsa03018 RNA degradation

Ortho-8 POLR3G POLR3A POLR3 H POLR1A
ZNRD1 POLR1 D POLR2E POLR2F

POLR2 H POLR2L POLR1B POLR3GL POLR1C

hsa03020 RNA polymerase

Ortho-12 PSMA1 PSMA2 PSMA4
PSMA6 PSMA7 PSMB1
PSMB2 PSMB3 PSMB5

hsa03050 Proteasome

Medium Int-18 PSMA1 PSMB2 PSMC2 PSMC3
PSMD11 PSMD12 PSMD13 PSMD6

hsa03050 Proteasome

Ortho-18 PSMA1 PSMB2 PSMC2 PSMC3
PSMD11 PSMD12 PSMD13 PSMD6

hsa03050 Proteasome

Low Int-13 TAF1 TAF2 TAF4 TAF5
TAF6 TAF7 TAF9 TAF10

TAF12 TAF13 TBP

hsa03022 Basal transcription factors

Lit-4 MYC RUVBL1 hsa04310 Wnt signaling pathway

Lit-14 TAF1 TAF2 TAF4
TAF5 TAF6 TAF7
TAF9 TAF10 TAF12

hsa03022 Basal transcription factors

Ortho-7 EXOSC2 EXOSC3 EXOSC4 EXOSC5 hsa03018 RNA degradation

MCODE module ID Protein IDs Pathways

High Int-5 - na

Lit-4 - na

Ortho-4 DDX6 LSM1 LSM2 hsa03018 RNA degradation

Ortho-5 RPL3 RPL12 RPL27A RPS2 hsa03010 Ribosome

Low Lit-11 -. na

Lit-13 TAF1 TAF2 TAF4 TAF5
TAF6 TAF7 TAF9 TAF10
TAF12 HDAC1 HDAC2

hsa03022 Basal transcription factors
hsa04110 Cell cycle

Ortho-2 TAF9B TAF5 TAF6 TAF12 hsa03022 Basal transcription factors

Ortho-10 PPP1CA PPP1CB hsa04720 Long-term potentiation
hsa03018 RNA degradation

hsa04810 Regulation of actin cytoskeleton
hsa04910 Insulin signaling pathway

hsa04510 Focal adhesion

Pathways results for CFinder and MCODE High, Medium and Low confidence modules (KEGG source [55], na: not annotated). See also: Figure 9-12.
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proteolitic activity, is composed of one central unit 20S
and two caps 19 S.
Instead, MCODE could extract modules that map to

specific complexes such as the Mediator complex Lit-11

Low confidence), a multiprotein complex that functions
as a transcriptional co-activator, or the Mrp complex
(Lit-4 High confidence), a ribonucleoprotein complex
that performs the first cleavage in rRNA transcript

Table 5 GO-based Biological Process annotation

CFinder module
ID

High Int-2 CHAF1A ASF1A ASF1B CHAF1B HIST1H3E nucleosome assembly ⋆ 5/5 1.23e-
10

Int-3 CENPB TIGD1 TIGD6 JRKL TIGD7 regulation of transcription 5/5 0.00040

Int-4 COPE COPA COPB COPZ1 COPG COPG1 COPG2 COPZ2 COPB2 intracellular protein transport 9/9 6.97e-
12

Int-7 NFKBIB POLR2E POLR3F POLR1D POLR1C POLR2L POLR1A POLR2H
POLR2C POLR3G POLR3A POLR1B

transcription ◆ 12/17 6.01e-
08

Lit-2 CHAF1A ASF1A ASF1B CHAF1B HIST1H3E nucleosome assembly ⋆ 5/5 1.23e-
10

Lit-5 POLR2A POLR2C POLR2D POLR2E POLR2G POLR2H POLR2L MED9 transcription ◆ 8/9 8.88e-
07

Lit-9 LSM6 LSM5 LSM4 LSM1 LSM3 LSM7 LSM2 SMN1 RNA splicing 8/8 7.48e-
17

Lit-11 EXOSC8 EXOSC6 KIAA1008 EXOSC7 EXOSC9 EXOSC4 EXOSC5 rRNA processing 7/10 4.73e-
17

Ortho-8 POLR3F POLR3G POLR3A POLR1A POLR1D POLR2E POLR2H POLR2L
POLR1B POLR1C

transcription ◆ 10/15 2.95e-
06

Ortho-12 PSMA8 PSMA2 PSMB1 PSMB2 PSMB3 ubiquitin-dependent ● protein
catabolic process

5/10 9.49e-
07

Medium Int-18 PSMC6 PSMC2 TRAF6 PSMC1 PSMC4 PSMD14 PSMB2 PSMD3 PSMC3 protein catabolic process ● 9/18 1.12e-
10

Ortho-18 PSMC6 PSMC2 PSMC1 PSMC4 PSMD14 PSMB2 PSMD3 PSMC3 protein catabolic process ● 8/17 2.87e-
09

Low Int-13 TBNTAF1 TAF2TAF7
TAF10 TAF11 TAF12 TAF13

regulation of transcription,
DNA-dependent

8/13 3.35e-
07

Lit-4 HTATIP SRCAP RUVBL2 EPC2 ING3 C20orf20 EPC1 YEATS4 RUVBL1 chromatin modification 9/16 6.61e-
16

Lit-14 TBN TAF1 TAF2 TAF4 TAF5 TAF6 TAF7 TAF9 TAF10 TAF11 TAF12 regulation of transcription,
DNA-dependent

7/11 3.34e-
06

Ortho-7 RPP30 EXOSC3 SBDS EXOSC4 EXOSC5 IMP4 ncRNA processing 6/8 2.53e-
12

MCODE module
ID

Protein IDs Biological Process cluster
freq.

p-value

High Int-5 COPZ2 COPB COPA
COPG1 COPG2 COPB2

intracellular protein transport 6/9 6.97e-
12

Lit-4 RPP14 RPP38 RPP30 RPP25 tRNA processing 4/7 5.17e-
10

Ortho-4 COPB COPZ1 COPG2 COPB2 intra-Golgi vesicle-mediated
transport

4/12 5.24e-
10

Ortho-5 No significant terms

Low Lit-11 CRSP6 CRSP8 THRAP6 CRSP2 transcription initiation from RNA
polymerase II promoter

4/9 1.92e-
08

Lit-13 TAF12 BRMS1L SIN3A TAF7 TAF1 HDAC2 TAF10 TAF11 TBN TAF2 RBBP4
RBBP7 SAP30

regulation of transcription,
DNA-dependent

13/22 7.12e-
12

Ortho-2 - NA - -

Ortho-10 FIP1L1 CPSF4 SSU72 CPSF1 PAPOLG mRNA processing 5/11 5.71e-
09

GO-based Biological Process annotation results for CFinder and MCODE High, Medium and Low confidence modules. Marked with a symbol (⋆, ▲, ●) are modules
with the same annotation; identical results across the two methods are in bold font. P-values are described in Additional files 2 and 10. Cluster frequency
indicates, for a given module, the number of genes annotated over the number of all included genes.
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processing, and is also involved in mitochondrial RNA
processing.

Precision versus Recall
While precision addresses exactness or accuracy, recall
addresses completeness. We computed these measures
twice, and for each predicted module, in order to

Table 6 GO-based Cellular Component annotation

CFinder module
ID

Protein IDs Biological Process cluster
freq.

p-value

High Int-2 CHAF1B CHAF1A ASF1A chromatin remodeling complex ⋆ 3/5 0.000001

Int-3 TIGD7 TIGD1 CENPB TIGD6 chromosome centromeric region 4/5 0

Int-4 COPA COPZ2 ARCN1 COPE
COPG COPZ1 COPG2 COPB2

COPI vesicle coat 8/9 1.98E-
025

Int-7 POLR2E POLR3F POLR1C POLR2L
POLR3 H POLR1A POLR3G POLR3A POLR2F POLR3C

RNA polymerase complex ◆ 10/17 6.95E-
025

Lit-2 CHAF1B CHAF1A ASF1A chromatin remodeling complex ⋆ 3/5 0.000001

Lit-5 POLR2L POLR2E POLR2 D POLR2A POLR2F RNA polymerase complex ◆ 5/9 0

Lit-9 LSM7 LSM1 LSM4 LSM6 LSM5 SMN1 LSM3 LSM2 ribonucleoprotein complex 8/8 0

Lit-11 EXOSC4 EXOSC2 EXOSC8 EXOSC7 EXOSC6 EXOSC5 EXOSC9 exosome (Rnase complex) 7/10 1.61E-
022

Ortho-8 POLR2E POLR3F POLR1C POLR2L
POLR3 H POLR1A POLR3G POLR3A POLR2F POLR3C POLR1A

POLR3G
POLR3A POLR2F POLR3C

RNA polymerase complex ◆ 10/15 1.42E-
025

Ortho-12 PSMA2 PSMA6 PSMA1 PSMB5 PSMB1
PSMB3 PSMA7 PSMB2 PSMA8 PSMA4

proteasome core complex ● 10/10 2.89E-
027

Medium Int-18 PSMD8 PSMC1 PSMD7 PSMD4 PSMD11 PSMD3 PSMC3 PSMC2
PSMC6 PSMD6 PSMA1

PSMD13 PSMC4 PSMD14 KIAA0368 PSMD12 PSMB2

proteasome complex ● 17/18 1.06e-41

Ortho-18 PSMD8 PSMC1 PSMD7 PSMD4
PSMD11 PSMD3 PSMC3 PSMC2

PSMC6 PSMD6 PSMA1
PSMD13 PSMC4 PSMD14 KIAA0368 PSMD12 PSMB2

proteasome complex ● 17/17 1.60e-42

Low Int-13 TAF13 TAF12 TAF9 TAF7 TAF5 TAF4
TAF1 TAF6 TAF10 TAF11 TAF2 TBP

transcription factor TFIID
complex

12/13 5.58e-36

Lit-4 C20orf20 ACTL6A HTATIP
RUVBL1 RUVBL2

H4/H2A histone
acetyltransferase complex

5/16 5.80e-15

Lit-14 TAF12 TAF9 TAF7 TAF5 TAF4 TAF1 TAF6 TAF10 TAF11 TAF2 transcription factor TFIID
complex

10/11 1.38e-29

Ortho-7 EXOSC4 EXOSC3 EXOSC2 EXOSC5 exosome (Rnase complex) 4/8 1.31e-11

MCODE module ID Protein IDs Biological Process cluster freq. p-value

High Int-5 COPA COPZ2 ARCN1 COPE
COPG COPB2 COPZ1 COPG2

COPI vesicle coat 8/9 1.98E-
025

Lit-4 POP4 POP1 POP5 RPP38 RPP30 nucleolar ribonuclease P-complex 5/7 6.91E-
017

Ortho-4 COPA COPZ2 ARCN1 COPG
COPZ1 COPG2 COPB2

COPI vesicle coat 7/12 3.49E-
020

Ortho-5 RPL3 RPLP0 RPL26L1 RPL12
RPL17 RPL10 RPS2 RPL27A

large ribosomal subunit 8/9 1.78e-11

Low Lit-11 CRSP6 MED9 THRAP6 MED8 CRSP2 S mediator complex 5/9 1.18e-13

Lit-13 TAF12 TAF9 TAF7 TAF5 TAF4
TAF1 TAF6 TAF10 TAF11 TAF2

transcription factor
TFIID complex

10/22 4.81e-25

Ortho-2 TAF12 TAF6 TAF9B TAF5 transcription factor
TFIID complex

4/6 4.01e-10

Ortho-10 FIP1L1 CPSF4 WDR33 CPSF2
CPSF1 PAPOLA PAPOLG CPSF3

nucleus 8/11 0.00206

GO-based Cellular Component annotation results for CFinder and MCODE High, Medium and Low confidence modules. Marked with a symbol (⋆, ▲, ●) are
modules with the same annotation; identical results across the two methods are in bold font. P-values are described in Additional files 2 and 10. Cluster
frequency indicates, for a given module, the number of genes annotated over the number of all included genes.
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emphasize modules showing sufficient density in terms of
proteins. Notably, this has been done for all the modules
selected according to confidence scoring within the speci-
fic interactome classes. The values reported in Table 7
have been calculated for the Lit-PI, the Int-PI and the
Ortho-PI datasets, according to CFinder and MCODE.
Therefore, we represented the protein complexes

showing a good match module-wise, which thus

involved the examination of each interactome class. In
particular, the complexes could be deemed well matched
when at least a 0.5 frequency matching threshold was
reached (i.e. at least fifty per cent of the proteins in the
known complex were matched by the proteins in the
predicted module).
Then, precision and recall were computed protein-

wise by each interactome class, but the tp were proteins

Figure 3 GO-annotation results - Cfinder. Representation of GO-annotation results concerning biological process and cellular component of
CFinder modules, along the GO trees. In green, yellow and red colors are High, Medium and Low Confidence modules, respectively. Blue/red
frame indicates permanent/transient complexes.
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Figure 4 GO-annotation results - MCODE. Representation of GO-annotation results concerning biological process and cellular component of
MCODE modules, along the GO trees. In green, yellow and red colors are High, Medium and Low Confidence modules, respectively. Blue/red
frame indicates permanent/transient complexes.
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in the predicted modules matching proteins in MIPS
complexes, the fp were proteins in the predicted module
not matching proteins in MIPS complexes, and the fn
were proteins in MIPS complexes with no reference in
the predicted module.
Permanent versus Transient Modules
Next, we have considered classification of the extracted
modules in both permanent and transient protein asso-
ciations, and have then established the protein pathway
context within which this dichotomy occurs for some of
the cases under study.
Literature on yeast protein complexes ([56,57]) has

shown relationship of protein-protein interactions with

mRNA expression levels, with consequent characteriza-
tion of permanent versus transient complexes. We have
referred to permanent and transient complexes by our
approach too: while the former are maintained through-
out the cell cycle and most conditions, the latter do not
consistently maintain their interactions, and are involved
in part of the cell cycle or in just some cellular states.
In our examples, it is through the impact of each

method at the three confidence levels and across the
various data types that we have assessed the co-expres-
sion scores to distinguish between complexes. We mea-
sured the correlation mean values for the mapped
modules, which were also annotated in KEGG.

Table 7 Precision and Recall

CFinder
modules

Confidence level MIPS
complex name

p-value Precision Recall

Lit-2 High Chromatin assembly complex (CAF-1 complex) 0.000001 0.4 0.4

Lit-5 High RNA polymerase II core complex 0 0.89 0.67

Lit-9 High LSM 1-7 complex 0 0.88 1

Lit-11 High Exosome 1.61e-022 0.7 0.7

Lit-14 Low TFIID subcomplex 1.38e-29 1 1

Lit-4 Low TIP60 HAT complex 5.80e-15 0.25 0.8

Ortho-8 High RNA polymerase II core complex 1.42e-025 0.24 0.34

Ortho-12 High 20S proteasome 2.89e-027 0.73 0.57

Ortho-18 Medium PA700 complex 1.60e-42 0.72 0.65

Ortho-7 Low Exosome 1.31e-11 0.5 0.4

Int-2 High Chromatin assembly complex o.000001 0.4 0.4

Int-3 High CEN complex 0 0.2 0.03

Int-4 High - - - -

Int-7 High RNA polymerase II core complex 6.95e-025 0.26 0.42

Int-18 Medium PA 700 complex 1.06e-41 0.6 0.6

Int-13 Low TFIID subcomplex 5.58e-36 0.38 1

Literature 0.83 0.86

Orthology 0.25 0.25

Integrated 0.4 0.69

MCODE
modules

Confidence level MIPS
complex name

p-value Precision Recall

Lit-4 High Rnase/Mrp complex 6.91e-017 0.86 0.6

Lit-11 Low MED18-MED20-MED29 mediator subcomplex 1.18e-13 0.11 0.34

Lit-13 Low TFIID subcomplex 4.81e-25 0.24 1

Ortho-4 High - - - -

Ortho-5 High 60S ribosomal subunit, cytoplasmic 1.78e-11 0.78 0.15

Ortho-2 Low TFIID subcomplex 4.01e-10 0.43 0.6

Ortho-10 Low Cleavage and polyadenylation factor (CPSF) 0.00206 0.46 1

Int-5 High - - - -

Int-3 - Nop56p-associated pre-rRNA complex 4.88e-17 0.38 0.05

Int-10 - Arp2/3 complex 1.18e-19 0.6 0.86

Int-14 - 39S ribosomal subunit, mitochondrial 8.92e-17 0.23 0.88

Literature 0.67 0.25

Orthology 0.5 0.23

Integrated 0.34 0.13

Precision and Recall values for each module selected from each dataset with various confidence levels. Modules without indicated confidence level have been
successively recovered. P-values described in Additional files 2 and 10.
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Similarly to the results obtained for yeast, the modules
matching the Proteasome and Ribosome complexes (with
high correlation scores) can be identified as permanent
complexes, and the modules matching the Transcription
factors complexes (with low correlation scores) as transi-
ent complexes.
Regarding the methods, CFinder is more redundant

than MCODE (it maps three RNA polymerase, three
Proteasome, and two Transcrption factors), but they
include permanent and transient modules. Correspond-
ingly, a combination of dynamic and static components
had been observed in the sixty protein modules found
to vary with the yeast cell cycle in [57].
In particular, for the RNA polymerase complex we

have observed two different expression scores: in one
case we found a high score in favor of a permanent
complex, while in two other cases the scores were low,
in favor of transient complexes.
A Look at Protein Pathways
Modules can be more or less cohesive, but their rele-
vance must be seen in relation to the degree at which
they communicate, particularly at the pathway scale. We
have compared our confidence scoring approach with
that of STRING [58], which investigates functional pro-
tein association networks. Thus, we have queried
STRING with the extracted modules to assess the qual-
ity of validation relatively to our approach.
In particular, the concept of evidence in STRING

implies the recourse to many different biological sources
to validate the interactions, similarly to what we have
done with disaggregation. Therefore, a few evidence
categories (neighborhood, experimental, text mining)
have been comparatively assessed in relation to our dis-
aggregated data.
Pathway information has been evaluated too, from the

database evidence in STRING and from our own inte-
grative analysis. We cast our confidence levels within
the STRING pathway framework based on as coring
procedure which assigns a predicted value to each possi-
ble link between enzymes in metabolic maps from the
KEGG db.
Comparisons for two datasets are reported in Figure 5

and Figure 6, where Int-PI and Lit-PI are analyzed by
multiple evidences. We have also introduced, for each
case, pathway information through database evidence.
The corresponding plots with reduced evidences have
also been reported (supporting information in the
Appendix). As a benchmark for comparison, we have
marked with bullets the proteins identified by our
approach in each STRING-based module. We emphasize
three main aspects of our outcomes:

1. Int-PI and Lit-PI datasets. We found that some
modules, such as Int-13 and Lit-14 from CFinder

and Lit-13 from MCODE, and all referring to Tran-
scription Factors, together with Int-2 and Lit-2 from
CFinder related to Chromatin remodelling, were in
agreement between the approaches. Some modules
were uniquely validated in the Lit dataset, such as
Lit-4 (histone acetyltransferase and nucleolar ribonu-
clease) from CFinder, Lit-9 (ribonucleoprotein) from
CFinder, Lit-11 (exosome and mediator), from CFin-
der and MCODE, respectively. We found from Int
two distinct modules, Int-18 (proteasome) from
CFinder, and Int-4 (COPI vesicle) from CFinder that
corresponds to Int-5 from MCODE. Last, we noticed
that the RNA Polymerase complex is richer in terms
of evidences in the Int-PI dataset.
2. Incorporating pathways. When the database evi-
dence is included, Transcription Factors in both the
Int-PI and the Lit-PI datasets resulted denser and
linked to RNA Polymerase. Also, we found that the
cross-links between some modules (Lit-2 and Lit-4
from CFinder, and Lit-13 from MCODE) related to
Chromatin Remodelling were reinforced. Last, the
analysis of the Int-PI dataset confirmed these
outcomes.
3. Matched annotation. Overall, we have found only
to a marginal extent the presence of isolated nodes
that remained non-annotated, while most modules
(with proteins indicated by bullet points) matched
very well with STRING evidences. By comparing our
confidence scoring scheme with STRING confidence
levels, we noticed that for the Int-PI dataset there is
a strong match, with just one case of mismatch for
Int-13 from CFinder. For the Lit-PI dataset we
found the same strong match, and just two cases of
mismatch for Lit-13 from MCODE, and Lit-14 from
CFinder.

Scoring Calibration
We verified (see Additional file 1) that modules ranking
at the top 5 positions confirmed after calibration their
pre-assigned confidence levels (overall, 18 rank places
are taken by High Confidence modules, 9 by Low Confi-
dence modules and only 3 by Medium Confidence mod-
ules, but the latter were marginally present and even
missing in MCODE). We could thus conclude that the
initial scoring system was quite robust, but could be
refined by calibration through multiple validations. With
regard to the interactome classes, we observed that the
top 5 ranks involved equally all the classes (10 each),
and with marginal prevalence for Int-PI in CFinder and
for Ortho-PI in MCODE.
We found that the best overlap scores were uniformly

distributed among modules according to their pre-
assigned confidence levels, while interactome classes had
an impact depending on the method. On average, for
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CFinder the Lit-PI modules scored 0.7 - 0.8 (computed
as min-max indexed values), while the other two classes
scored 0.3 - 0.5, and for MCODE the Int-PI scored
around 0.9 (but only one module was annotated) and
the other two classes scored 0.3 - 0.5, with Lit-PI closer
to the higher limit. Overall, we found evidence confirm-
ing the goodness of our initially assigned confidence
levels, and additionally observed method’s sensitivity
when averaging overlap scores over interactome classes.
In examining the FDR-corrected p-values in pathways,

we noticed that just a few cases could be quantified,
while we observed that the participation degree of each

module to intra-modular or inter-modular dynamics
was clearly induced by the methods. CFinder deter-
mined evidence of cross-talks in several cases and with
both dense and sparse modules, but regardless the inter-
actome class or the pre-assigned confidence levels.
MCODE instead showed only for the Lit-PI class evi-
dence of inter-modularity through dense modules, while
Ortho-PI appeared just cohesive.
The calibration approach applied to the initial scoring

system provided therefore additional evidence by look-
ing at GO p-values, but also at overlap scores and path-
way analysis, which were not previously included. In

Figure 5 Int-PI evidences. Text mining, High-throughput, Co-expression, Neighborhood and Database STRING evidences compared to Int-PI
based modules.
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particular, the analysis across the interactome classes
revealed dependence on methods of the overlap scores
(where the Lit-PI overperforms in CFinder), and of both
intra-modular and inter-modular dynamics (where the
Lit-PI overperforms in MCODE, this time). It is the
sparsity degreee of modular maps produced by the
methods which suggests how to interpret these findings.
MCODE allows for a coarse simplified analysis of cross-
talks compared to CFinder, and emphasizes the rele-
vance of interactome classes in particular. Instead, the
presence of high overlapping degree in CFinder appears

to mask the differential impact of classes. Thus, based
on the resolution spectrum allowed by the modularity
method and depending on the induced sparsity of the
map, the interactome classes may have a relevant or a
marginal role.
Confidence schemes (see [59-61]) usually address

the problem of selecting reliable interactions by inter-
secting multiple high-throughput data (omic) sets.
Weights can be assigned to the interactions, and they
represent confidence levels that rank the proteins by
their likelihood of belonging to a certain annotated

Figure 6 Lit-PI evidences. Text mining, Co-expression and Database STRING evidences compared to Lit-PI based modules.
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complex or functional module. Estimates of the
chance that a protein-target set association exists are
in general obtained as the fraction of sampled net-
works that include a path connecting the candidate
protein to the set.
In general, the confidence level thus reflects a belief

about the likelihood of a biological module. In particu-
lar, determining confidence for protein interactions
depends on assigning a reliability measure to the
observed measurements, or to predictions. Thus, confi-
dence scores are formulated according to the type of
experiment, or according to a combination of features
like functional similarity, expression correlation, co-
essentiality, over which the predictions have been
formed.
Our scoring approach is semi-quantitative, and cali-

brates confidence measures obtained by thresholding
through validations conducted across multiple biological
sources. As a result of filtering interactions and modules
by confidence levels, the heterogeneity of modularity
maps that depends on both methods and interactome
datasets may be reduced according to a better control of
the uncertainty levels. For instance, the suggested scor-
ing yields an empty MCODE Medium Confidence mod-
ule set, while the noisier HTP modules are missing.

Conclusions
We have applied popular graph mining methods, in par-
ticular CFinder and MCODE, to different classes of
human protein interactomes, and extensively evaluated
their induced modularity maps. Both MCODE and
CFinder are deterministic methods based on node con-
nectivity and cliquishness. We have then validated the
extracted modules by integrating the annotation of
known MIPS complexes, GO categories and pathways.
The proposed multilayer analysis has thus involved pro-
tein pathway explorations through modules with
assigned confidence measures.
We have achieved three main results. First, by verify-

ing that interactome disaggregation reveals useful infor-
mation on modularity, we emphasized the fact that in
some cases annotation can be performed with no refer-
ence to the integrated dataset, which is usually the start-
ing point of most analysis.
Second, our approach defines a scoring mechanism

from protein interactions to modules which might lead
to a novel network design because the scoring is usually
performed at the beginning, for instance at the experi-
mental phase, and not a posteriori (during in silico bio-
logical validation) as we suggest. Notably, this leads to a
network calibration strategy aimed to possibly shift an
un weighted network to a weighted one through biologi-
cal validation evidences that are incrementally evaluated
and combined.

Assigning confidence scores computationally and not
at the experimental stage allows the application of a
large variety of possible schemes. Here, we pursued a
simple data-driven approach corroborated by multiple
validations instead of a more complex model-oriented
approach. Our choice offers the advantage that it does
not assume a specified model for the data with its impli-
cit risks, but can be adapted to the quality of interaction
data derived from experiments, databases or computa-
tional predictions. This simple procedure turned out to
be an effective strategy that might help to improve the
reliability of PPIN.
Last, as we have implemented an approach for com-

bining protein interactions with gene expressions, we
have found modules which are more consistent than
those obtained by using only the topology of the net-
work itself, and then refined their validation with refer-
ence to permanent versus transient modules, together
with other proposals (e.g. overlap scores, pathway
enrichment). Future work is going to be devoted to
further calibration of the thresholding step in a data-
adaptive way, and to tune it to a better elucidation of
the interaction-expression interplay.
Regarding the initial questions, the main issue is about

the influence of data integration and/or disaggregation
on modules. From a quantitative standpoint, we demon-
strated that protein complex detection benefits from
interactome disaggregation. We have reported evidence
of well-defined modules which have been distinctly
detected within disaggregated datasets, and have com-
pared our approach with STRING through its variety of
evidences accounting for different information sources.
We presented examples where our class separation

was matched by comparable evidences leading thus to
similar validation performance under both the Int-PI
and Lit-PI datasets. Inference on the qualitative charac-
terization of the various different modules indicates
replication effects in CFinder, i.e. two disaggregated
datasets appear similarly informative, and nesting effects
in MCODE, i.e. similar biological evidence persists at
both the integrated and the disaggregated levels. This
outcome might depend only in part on the number of
modules that each method is producing; thus, their
structural features (redundancy versus sparsity) seem to
reasonably explain the different performances.
Another question referred to modularity dependence

on algorithms. Overall, we noted that MCODE pro-
duced less modules than CFinder in every dataset which
was considered. In particular, MCODE has generated
only a few modules (from 11 modules in HTP-PI to 141
modules in Ortho-PI), thus tending to perform sub-opti-
mally with regard to the global resolution at which the
interaction dynamics occur. Instead, the module over-
lapping evidence by CFinder has been more emphasized
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(from 61 modules in HTP-PI to 1096 modules in Int-
PI), despite substantial module specificity in the disag-
gregated interactomes. The related distributional aspects
have been also examined by inspection of the resolution
of module sizes and their associated power laws.
Then, we have explored module overlapping and

separation effects, and their data-driven or method-dri-
ven nature. Together with MCODE and CFinder, which
effectively represent coarse-to-fine coverage of modular-
ity maps, we have implemented a deterministic method
(MaxMod) and a stochastic algorithm (Walktrap) to
allow for variation of the resolution spectrum. The
results ranged from a minimum of 129 modules by
MaxMod and 151 modules by Walktrap for HTP-PI, to
a maximum of 211 modules by MaxMod for Ortho-PI
and 314 modules by Walktrap for Int-PI). Overall, the
insertion of both greedy and stochastic learning features
allowed a reduction of the resolution distance exhibited
by the previous methods, but performed (especially
MaxMod) more similarly to MCODE, thus still inducing
sparsity to a certain extent.
Overall, despite some kind of sparsity-redundancy

trade-off that is inherent to the module extraction
method, protein complexes can be distinctly character-
ized based on disaggregated interactomes. A closer look
at the interactomes is thus recommended, as protein
associations may find stronger or weaker justification in
relation to the specific sources used to measure them
and build the datasets. The proposed multilayer
approach offers insights on how the specific interactome
datasets may determine the performance of modularity
detection algorithms, and suggests strategies to refine
their biological validation.

List of abbreviations
We used the following abbreviations: PPIN: protein-pro-
tein interaction networks; MAXMOD: maximization of
modularity; LIT-PI: literature-based interactome;
ORTHO-PI: orthology-based interactome; HTP-PI:
high-throughput interactome; INT-PI: integrated inter-
actome; RW: random walk.

Appendix
Materials and methods
Residual Modules
Table 8 and Table 9 report results of GO-based annota-
tion for respectively CFinder and MCODE modules
whose values have not passed our confidence scoring
thresholds.

Table 8 GO-based annotation of residual CFinder
modules

n n.ex ex.
mean

cor.
mean

mf.
mean

bp.
mean

cc.
mean

Int-1 1496 1348 8.73 0.13 NA NA NA

Int-5 7 4 10.71 0.57 0.31 0.35 0.42

Int-6 8 5 8.39 0.39 0.34 0.32 0.54

Int-8 8 8 9.5 0.44 0.5 0.46 0.62

Int-9 8 6 8.68 0.49 0.27 0.46 0.81

Int-10 12 10 8.64 0.41 0.39 0.49 0.61

Int-11 9 9 9.08 0.41 0.42 0.26 0.64

Int-12 11 10 8.84 0.26 0.35 0.36 0.5

Int-14 14 9 8.76 0.4 0.37 0.2 0.67

Int-15 15 9 8.42 0.46 0.55 0.23 0.8

Int-16 14 8 8.42 0.46 0.43 0.21 0.76

Int-17 28 13 12.06 0.6 0.46 0.56 0.49

Int-19 21 9 10.03 0.28 0.4 0.48 0.47

Int-20 18 6 9.07 0.36 0.47 0.34 0.59

Int-21 22 10 9.5 0.12 0.39 0.48 0.47

Lit-1 1141 1081 8.6 0.12 NA NA NA

Lit-3 6 6 9.37 0.15 0.69 0.15 0.37

Lit-6 6 6 8.21 0.63 0.55 0.44 0.56

Lit-7 8 5 8.39 0.39 0.34 0.32 0.54

Lit-8 7 5 8.14 0.18 0.76 0.19 0.42

Lit-10 10 10 9.32 0.46 0.35 0.15 0.77

Lit-12 9 9 8.64 0.11 0.22 0.27 0.38

Lit-13 11 10 8.84 0.26 0.35 0.36 0.5

Ortho-1 7 2 8.6 0.5 0.41 0.19 0.57

Ortho-2 4 3 8.34 0.37 0.62 0.22 0.55

Ortho-3 4 3 8.58 -0.18 0.54 0.35 0.7

Ortho-4 4 4 8.65 0.69 0.44 0.45 0.48

Ortho-5 14 10 8.86 0.1 0.34 0.24 0.39

Ortho-6 7 4 10.71 0.57 0.31 0.35 0.42

Ortho-9 8 8 9.5 0.44 0.5 0.46 0.62

Ortho-10 8 6 8.68 0.49 0.27 0.46 0.81

Ortho-11 12 10 8.64 0.41 0.39 0.49 0.61

Ortho-13 58 29 10.81 0.42 0.38 0.47 0.47

Ortho-14 24 7 9.21 0.39 0.45 0.43 0.61

Ortho-15 14 9 8.76 0.4 0.37 0.2 0.67

Ortho-16 39 22 10.67 0.35 0.43 0.49 0.49

Ortho-17 15 9 8.42 0.46 0.55 0.23 0.8

Ortho-19 21 9 10.03 0.28 0.4 0.48 0.47

Ortho-20 18 6 9.07 0.36 0.47 0.34 0.59

Ortho-21 22 10 9.5 0.12 0.39 0.48 0.47

HTP-1 5 5 12.73 0.21 0.55 0.2 0.56

HTP-2 3 3 7.79 0.06 0.78 0.24 0.39

HTP-3 3 2 7.33 0.07 0.46 0.1 1

HTP-4 145 108 8.33 0.06 NA NA NA

HTP-5 3 2 7.97 0.05 0.44 0.05 0.29

HTP-6 163 120 8.99 0.15 NA NA NA
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MIPS Annotation
We observed that CFinder could extract modules which
match well with multiple MIPS complexes, and in some
cases also functionally related to other proteins (which
we found with STRING, a tool based on different type
of evidences with a corresponding score), or instead
with relatively poor match with MIPS. This is the case
of proteins belonging to the Int-18 Medium confidence
module, which map to the Proteasome complex. How-
ever, the protein TRAF6 (TNF receptor-associated factor
6) that maps to small MIPS complexes, do not belong to
the Proteasome. Instead, from STRING we have
observed (Figure 7, top-left plot) a functional relation of
TRAF6 with PSMC3 of the Proteasome complex.
An example refers to the Ortho 12 High confidence

module that has a match with the Proteasome com-
plex, but also with the PSMA8 protein which is not
present in MIPS. When we looked at STRING we
found that this protein too is functionally related (Fig-
ure 7, top-right plot). Furthermore, an example is pro-
vided by the Lit-9 High confidence module, which has
a match with the LSM1-7 complex (involved in mRNA
processing). The SMN1 protein (Survival motor neu-
ron) associated to the SMN complex (also involved in
mRNA processing), is linked in STRING with other
proteins of the LSM complex (Figure 7, bottom-left
plot). The last example consists in the Lit-11 High
confidence module that has a match with the Exosome
complex, but not through a protein, MPP6, which
instead is associated to the Exosome by STRING (Fig-
ure 7, bottom-right plot).
Precision and Recall
While precision indicates for a certain group of ele-
ments the number of true positives (i.e. correctly
labelled as belonging to the group) divided by the total
number of elements labelled as belonging to the group
(i.e. the sum of true positives and false positives, where
the latter are incorrectly labelled as belonging to the
group), recall is defined as the number of true positives
divided by the total number of elements that actually
belong to the group (i.e. the sum of true positives and
false negatives, where the latter are not labelled as
belonging to that group, but wrongly though).
Figure 8 shows “Precision vs Recall” patterns obtained

at both levels of our analysis. The top plot shows

method-driven Precision versus Recall patterns module-
wise and across datasets. The bottom plot shows
method-driven precision vs recall patterns protein-wise
and across the modules of two disaggregated datasets.
For each predicted module, after first looking at the

best annotation by GO cellular component according to
the computed p-values, we have considered the modules
that matched MIPS complexes relatively to the GO
annotation. For each matched complex we have

Table 9 GO-based annotation of residual MCODE
modules

n n.
ex

ex.
mean

cor.
mean

mf.
mean

bp.
mean

cc.
mean

Int-1 14 13 7.37 0.1 0.49 0.44 0.5

Int-2 9 7 7.83 -0.02 0.27 0.24 0.52

Int-3 13 9 8.66 0.33 0.47 0.41 0.66

Int-4 13 12 8.29 0.06 0.4 0.44 0.58

Int-6 75 68 8.46 0.2 0.24 0.18 0.4

Int-7 58 43 8.3 0.19 0.26 0.16 0.38

Int-8 47 39 9.1 0.23 0.25 0.17 0.44

Int-9 74 70 9.44 0.28 0.27 0.24 0.43

Int-10 10 6 10.28 0.77 0.65 0.43 0.77

Int-11 29 27 9.12 0.4 0.36 0.33 0.63

Int-12 32 28 8.72 0.35 0.31 0.41 0.61

Int-13 79 46 9.99 0.49 0.36 0.31 0.48

Int-14 29 12 9.77 0.23 0.37 0.44 0.43

Lit-1 5 5 7.87 0.02 0.53 0.06 0.46

Lit-2 7 7 8.47 -0.01 0.44 0.32 0.74

Lit-3 145 139 8.42 0.06 0.25 0.15 0.35

Lit-5 5 2 8.69 0.16 0.3 0.16 0.61

Lit-6 144 140 8.69 0.1 0.26 0.19 0.41

Lit-7 21 21 7.98 0.05 0.33 0.19 0.39

Lit-8 98 96 8.72 0.16 0.24 0.24 0.41

Lit-9 15 15 8.67 0.15 0.26 0.2 0.45

Lit-10 128 122 8.62 0.21 0.28 0.16 0.42

Lit-12 40 39 8.79 0.23 0.29 0.28 0.51

Ortho-1 6 3 11.12 0.67 0.32 0.37 0.39

Ortho-3 12 8 8.65 0.32 0.45 0.37 0.66

Ortho-6 13 6 8.38 0.24 0.28 0.2 0.53

Ortho-7 10 10 9.16 0.12 0.44 0.21 0.68

Ortho-8 23 20 10.08 0.51 0.35 0.33 0.56

Ortho-9 10 6 10.28 0.77 0.65 0.43 0.77

Ortho-11 44 31 10.58 0.53 0.35 0.43 0.48

Ortho-12 35 15 8.81 0.45 0.44 0.28 0.64

Ortho-13 35 15 8.81 0.45 0.44 0.28 0.64

Ortho-14 29 12 9.77 0.23 0.37 0.44 0.43

HTP-1 67 56 8.74 0.12 0.3 0.16 0.41

HTP-2 17 15 9.23 0.17 0.45 0.16 0.44

HTP-3 20 18 9.06 0.08 0.45 0.28 0.5

HTP-4 17 15 8.83 0.14 0.38 0.16 0.37

GO-based annotation results for MCODE modules. Values in bold font are
above the 0.5 threshold. The listed groups have not passed at least the two
required GO thresholds, and thus received a low score.

Table 8 GO-based annotation of residual CFinder mod-
ules (Continued)

HTP-7 44 36 8.96 0.16 0.34 0.17 0.44

HTP-8 7 5 8.38 -0.06 0.31 0.12 0.31

HTP-9 5 5 9.16 0.03 0.78 0.36 0.66

GO-based annotation results for CFinder modules. Values in bold font are
above the 0.5 threshold. The listed groups have passed less than three
thresholds, and thus received a low score.
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estimated the corresponding frequency (a complete list
of MIPS-matched complexes and related frequencies is
provided in the Additional file 5).
In order to estimate precision and recall of Eq. (2), we

took the MIPS-matched complex with the best fre-
quency (see the Additional file 6). Instead, in order to
estimate precision’ and recall’ (as from Eq. (3) formulas),
we kept only the frequencies ≥0.5. Therefore, P was cal-
culated as the ratio between thefrequencies ≥0.5 over
the number of all the detected MIPS complexes. For the
estimation of R, where MC was calculated as the mean
of the frequencies involved in the same module, the
ratio has involved the mean frequencies ≥0.5 over the
number of predicted modules.
Note that the Int-PI dataset referred to MCODE, and

reported in Figure 8 like the other datasets, has requested
a less stringent selection in order to be considered

(originally, only one module, Int-5, had been selected).
Instead, the three modules (Int-3, Int-10, Int-14) that
have been newly introduced were not in the initial selec-
tion. Thus, we relaxed the selection criterion by accept-
ing lower confidence to include more examples from
MCODE. However, the frequencies related to Int-3 and
Int 14 are low because these modules are mapped against
big complexes, which in turn emphasizes the differential
performance of MCODE in comparison to CFinder.
Data Sources
Through UniHI we have access to more than 253, 000
distinct interactions between over 22,300 unique human
proteins. UniHI is a comprehensive database of both
computational and experimental human protein interac-
tions aimed to integrate various possible protein maps
and publicly accessible at http://www.unihi.org. From
the sources available within UniHI, we have considered

Figure 7 STRING-based modules annotation. Top-left plot: output from STRING of the Int-18 Medium confidence CFinder module query.
Top-right plot: output from STRING of the Ortho-12 High confidence CFinder module query. Bottom-left plot: output from STRING of the
Lit-9 High confidence CFinder module query. ENSP00000348683 is the SMN1 protein. Bottom-right plot: output from STRING of the Lit-11
High confidence CFinder module query. ENSP00000222644 is the MPP6 protein.
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the following disaggregated datasets to specify our inter-
actome classes: HTP-PI, which is a rich yeast two hybrid
(Y2H) network; Ortho-PI, which consists of thousands
of interactions that are computationally predicted from
experimentally measured interactions in lower model
organisms such as yeast, fly and worm; Lit-PI, which
represents literature-curated binary interactions built
from BIND, DIP, BIOGRID, HPRD-Binary, and

INTACT db sources. Finally, we have considered a
fusion of all the data from the disaggregated interac-
tome, which we call the Int-PI.
We point out that the overlap between the Y2 H

human data set and literature-curated interactions is
limited to only 10% [11], which represents a weak inter-
section due to the superior accuracy achieved by the lat-
ter approach. However, recent work [62] has cast doubts

Figure 8 Precision vs Recall Patterns. Lines and symbols according to methods, datasets and confidence levels. Blue line: CFinder (Lit):
L5 = Lit-5 High; L2 = Lit-2 High; L11 = Lit-11 High; L14 = Lit-14 Low; L9 = Lit-9 High. Red line: MCODE (Lit): L11 = Lit-11 Low; L4 = Lit-4 High;
L13 = Lit-13 Low. Red dots: MCODE (Ortho): O5 = Ortho-5 High; O2 = Ortho-2 Low; O10 = Ortho-10 Low. Blue dots: CFinder (Ortho):
O8 = Ortho-8 High; O7 = Ortho-7 Low; O12 = Ortho-12 High; O18 = Ortho-18 Medium.

Marras et al. BMC Systems Biology 2010, 4:102
http://www.biomedcentral.com/1752-0509/4/102

Page 23 of 34



over curation’s accuracy, thus calling for re-curation
strategies.
Modules extraction techniques
Algorithms for graph mining and cluster detection in
networks are mainly based on network flow and mini-
mum cut theory ([63,64]), and also on spectral clustering
[65]. We have focused on two popular deterministic
methods, MCODE and CFinder, in comparison with
other algorithms allowing for different search strategies
(i.e. MaxMod and RW).
MCODE stands for Molecular Complex Detection,

and discovers densely connected regions that may be
associated with molecular complexes. It is based on a
node-weighting concept that utilizes the clustering coef-
ficient to measure the cliquishness of the neighborhood
of each node, and computes fully connected subgraphs
of a given minimal degree k, called k-cores.
Thus, for each given k each node in a k-core has con-

nectivity degree greater or equal to k; thus, k-cores
potentially embed (k + p)-cores, where p is a positive
integer. The MCODE algorithm scores and ranks each
resulting complex according to both its density and its
size.
CFinder detects overlapping dense groups of nodes in

un weighted undirected networks, or k-clique “commu-
nities”, based on the Clique Percolation Method, and by
the analysis of a so-called clique-clique overlap matrix.
A k-clique community is the union of smaller com-

plete fully connected subgraphs that share nodes: thus a
group of clusters composed by k nodes fully connected

to each other in the same cluster, but not necessarily
with many others in the community.
We note that k-cores and k-clique communities differ

in some sense: in the former case each node is con-
nected with at least k other nodes (here k refers to the
connectivity degree), while this is not true in the latter
case, where k is the number of elements in each clique
of the community.
Consequently, both MCODE and CFinder are essen-

tially meant to find highly connected subnetworks, but
while MCODE cores are fully connected (each node
connects with each other), each node in CFinder’ smo-
dules is not required to be connected to all other
nodes.
MCODE and CFinder present a few differences,

which may affect the biological relevance of findings.
The most striking aspect is that CFinder locates over-
lapping modules: a given node can be a member of
several different communities at the same time, and
communities can overlap with each other by sharing
nodes. This overlap occurs also with MCODE because
of its nested structure visible through the k sequence,
but good layer separation can control the induced
redundancy. Overlaps reflect an important property, as
the module cross-links can emphasize a particular
interface role for proteins with regard to multiple bio-
logical processes.
Method parameterization
Both MCODE and CFinder require the tuning of some
parameters which are described in the corresponding
(freely available) software packages. In MCODE, a score
is associated to each module by the ratio between the
number of interactions and that of proteins in the mod-
ule. In Additional file 7, the structure of cores found for
k = 2 and for each dataset are shown as an example.
The user-controlled parameters for implementing and
running the algorithm are set in our numerical experi-
ments as follows:

1. FLUFF = false, was chosen to emphasize the best
possible cluster separation degree aimed to identify

Table 11 Modularity values

MaxMod maximal
modularity

Walktrap maximal
modularity

Int-PI 0.4631 0.4176

Lit-PI 0.5074 0.4632

Ortho-PI 0.7181 0.6899

HTP-PI 0.6215 0.2600

Modularity values for MaxMod and Walktrap methods (details in Additional
file 11).

Table 10 CFinder communities

Int-PI Lit-PI Ortho-PI HTP-PI

k = 3 448 364 183 53

k = 4 328 248 71 8

k = 5 134 88 44 -

k = 6 69 40 27 -

k = 7 42 21 20 -

k = 8 24 10 10 -

k = 9 11 4 6 -

k = 10 7 2 4 -

k = 11 7 2 5 -

k = 12 5 - 5 -

k = 13 6 - 6 -

k = 14 7 - 7 -

k = 15 4 - 4 -

k = 16 3 - 3 -

k = 17 2 - 2 -

TOT 1096 779 397 61

CFinder communities across datasets for varying k.
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as many unique modules as possible, and to control
the possible redundancy induced by the nest-based
structure;
2. HAIRCUT = true, was chosen to remove all single
(orphan) nodes and allow for at least 2-core clusters;
3. Node Score = 0.2, was kept at default value not to
have too small modules as an outcome;

4. Max Depth = 100, was chosen to avoid the pre-
sence of very small modules.

The rationale behind our selection of clique sizes
and their modules considers one factor: we try to
avoid the redundancy inherent to the nested structure
(i.e. a protein can belong to different clique sizes k

Figure 9 Hsa 03020 RNA polymerase. Listed in parenthesis the original labels for RNA polymerase. Int-7, Lit-5, Ortho-8 are CFinder High
Confidence modules which map Hsa 03020 RNA polymerase.
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because associated in multiple ways, but every time
which is present in a certain ki results also present in
all k≤i by construction). Thus, while we keep track of
the sequence of k values, we consider all modules pro-
duced by the minimal k, say k = 2. Consequently, we
can establish each module’s assignment according to

specific connectivity degrees, and label it according to
coreness levels from which biological associations can
be investigated.
In CFinder, for each interactome class (INT, LIT,

ORTHO, HTP) a list of entries for various k (clique size
values for the communities) is reported in the

Figure 10 Hsa 03050 Proteasome. Listed in parenthesis the original labels for Proteasome. Ortho-12 is CFinder High Confidence module, while
Int-18 and Ortho-18 are CFinder Medium Confidence modules which map Hsa 03050 Proteasome.
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Additional file 8, and refers to the number of retrieved
communities, the ordinal number of selected commu-
nities, and the given ID.
As the original number of communities is quite high,

some reduction steps have been undertaken. A first for-
ward reduction step has involved the consideration of
only k ≥ 4 (thus skipping the giant components, while
still gaining useful information for sparse networks), and
in each case only a representative sub-set of five com-
munities (i.e. a sub-sample including mid-sized commu-
nities, instead of too small or big ones) of the output
file was retained (except for HTP, where they are origin-
ally just a few).
Then, the second reduction step has involved a back-

ward selection to limit redundancy as follows: starting
from the biggest k, we have chosen communities for
each k in an exclusive manner, i.e. only if they had not
been selected yet, thus avoiding duplicates and too big
clusters (say more than 200 elements). After the identifi-
cation of the communities at the high-size k-clique level,

more communities were selected and added incremen-
tally from the smaller k-cliques so to introduce proteins
not yet visited.
The rationale of the above strategy is that we sought a

rapid detection of communities for each value of k.
Thus, we sequentially added communities with decreas-
ing k-clique size, while keeping track of the previous
community structure, and therefore limited both the
redundancy and the overlapping effects. We looked at
shared communities between the new k-cliques and
those already considered. We allowed for all possible k
apart from k = 2 (pairs of nodes connected by single
links and 1-cliques are single nodes). Note in Table 10
that the symbol “-” indicates that the communities of
the corresponding k are almost totally overlapping with
the communities of k + 1, thus yielding the same groups
as before.
For MaxMod and Walktrap methods, parameterization

is less requiring. While for the former method we just
counted the number of modules each time a maximum

Figure 11 Hsa 03010 Ribosome. Listed in parenthesis the original labels for Ribosome. Ortho-5 is MCODE High Confidence module which
maps Hsa 03010 Ribosome.
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Figure 12 Hsa 03022 Basal Transcription Factor. Text mining, High-throughput, Co-expression and Neighborhood STRING evidences
compared to Int-PI based modules.

Figure 13 Reduced Int-PI evidences. Text mining, High-throughput, Co-expression and Neighborhood STRING evidences compared to Int-PI
based modules.
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for the modularity function was obtained, for the latter
method we kept the length of the RW to default values,
thus allowing for module merging to be as much infor-
mative as possible (i.e. neither too stringent nor too
conservative in considering the most relevant modules).
Recently, the approaches proposed in Newman [66,67]

suggest that a graph should be split in a hierarchy of
modules, for instance by successively removing links
with large betweenness (or variants of it), where this
property defines the number of shortest paths crossing a
link. However, due to the slow convergence, these

approaches have been found to be often unfeasible for
large networks, as in our cases.

Other Supporting Information
Table 10 is for the CFinder community structure, and
Table 11 reports on MaxMod and Walktrap conver-
gence results. The Additional file 7: Supplemental Table
S12 reports the core structure for k = 2 and each data-
set, while the CFinder structure appears in the Addi-
tional file 8. Last, a protein labelling file for all datasets
is provided in the Additional file 9: Supplemental Table

Figure 14 Reduced Lit-PI evidences. Text mining and Co-expression STRING evidences compared to Lit-PI based modules.
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S13. Figure 9, Figure 10, Figure 11 and Figure 12 refer
to module-specific pathways. Then, Figure 13 and Figure
14 and Ortho-based comparisons with STRING in Fig-
ure 15 complete the examples reported in the main text
relatively to confidence scoring methods. Figure 16 is
about the distribution of module sizes for residual data-
sets, while Figure 17 shows the corresponding power
laws. Figure 18 reports a sketch of our global confidence
scoring system explained indetail in the main text. The
Additional file 10 is for specifying the p-values

computed in the examples, and the Additional file 11
reports the communities produced by the Walktrap
algorithm.

Additional material

Additional file 1: GOpvalues. Semi-quantitative evaluation of GO-
annotated modules with p-values.

Additional file 2: tableGOp-valuecomplete. Complete list of GO-
annotated modules.

Additional file 3: overlapscores. Overlap scores computed for MCODE
and CFinder modules.

Figure 15 Ortho-PI evidences. Text mining, Co-expression and Database STRING evidences compared to Ortho-PI based modules.
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Figure 16 Histograms of module sizes (Ortho-PI and HTP-PI). The three algorithms show distributional differences, particularly with HTP data.
2-cores appear with limited module detection power. From Matlab implementations.
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Figure 17 Power Laws. Power laws vary quite substantially for the two datasets, and depending on the method. From Matlab implementations.
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Figure 18 Confidence Scoring System. Confidence score assignment to modules according to thresholding performed over variables
computed from the Human Gene Expression Atlas, and calibration by multiple validations.
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Additional file 4: tablePathways. Pathway annotation and evaluation
for MCODE and CFinder modules.

Additional file 5: TablesModulewisePvsR. P vs R scores computed for
MOCDE and CFinder modules.

Additional file 6: TablesProteinwisePvsR. P vs R scores computed for
MOCDE and CFinder modules (disaggregated by interactome class).

Additional file 7: MCODEresults. It contains four files: MCODE2coresHTP.
txt, MCODE2coresINT.txt, MCODE2coresLIT.txt, MCODE2coresORTHO.txt that
report core structure and parameters.

Additional file 8: CFinder-results. It contains the complete set of
communities retrieved by CFinder from the various interactome classes.

Additional file 9: Mapping. Protein labels for all datasets.

Additional file 10: annotation-description. Notes on the computed p-
values.

Additional file 11: walktrap-results. It contains the complete set of
communities retrieved by Walktrap from the various interactome classes.
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