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Abstract

We investigated eight families with a novel subtype of congenital generalized lipodystrophy (CGL4) of whom five members
had died from sudden cardiac death during their teenage years. ECG studies revealed features of long-QT syndrome,
bradycardia, as well as supraventricular and ventricular tachycardias. Further symptoms comprised myopathy with muscle
rippling, skeletal as well as smooth-muscle hypertrophy, leading to impaired gastrointestinal motility and hypertrophic
pyloric stenosis in some children. Additionally, we found impaired bone formation with osteopenia, osteoporosis, and
atlanto-axial instability. Homozygosity mapping located the gene within 2 Mbp on chromosome 17. Prioritization of 74
candidate genes with GeneDistiller for high expression in muscle and adipocytes suggested PTRF-CAVIN (Polymerase I and
transcript release factor/Cavin) as the most probable candidate leading to the detection of homozygous mutations
(c.160delG, c.362dupT). PTRF-CAVIN is essential for caveolae biogenesis. These cholesterol-rich plasmalemmal vesicles are
involved in signal-transduction and vesicular trafficking and reside primarily on adipocytes, myocytes, and osteoblasts.
Absence of PTRF-CAVIN did not influence abundance of its binding partner caveolin-1 and caveolin-3. In patient fibroblasts,
however, caveolin-1 failed to localize toward the cell surface and electron microscopy revealed reduction of caveolae to less
than 3%. Transfection of full-length PTRF-CAVIN reestablished the presence of caveolae. The loss of caveolae was confirmed
by Atomic Force Microscopy (AFM) in combination with fluorescent imaging. PTRF-CAVIN deficiency thus presents the
phenotypic spectrum caused by a quintessential lack of functional caveolae.
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Introduction

Congenital generalized lipodystrophies (CGL1-3, Berardinelli-Seip

syndrome, MIM 608594, 269700, 612526) are autosomal recessive

disorders characterized by almost complete absence of body fat

associated with dyslipidemia and insulin resistance [1,2]. The

discovery of different CGL-related gene defects confirmed its genetic

heterogeneity and shed new light on adipocyte function. Causative

mutations were found in an adipocyte differentiation factor (Seipin,

BSCL2) [3], in an enzyme of the triglyceride and glycerophospholipid

biosynthetic pathway (AGPAT2) [4], and in a lipid-binding protein

essential for the formation of caveolae on adipocytes (CAV1) [5,6].

Based on the clinical phenotype and genotyping results of

patients from consanguineous Omani families, Rajab et al.

delineated a novel, genetically distinct CGL-subtype (CGL4)

[7,8]. In contrast to the ‘‘classic’’ variants, symptoms were more

widespread comprising myopathy, smooth and skeletal muscle

hypertrophy, cardiac arrhythmias, osteopenia and distal metaph-

yseal deformation with joint stiffness. These peculiarities suggested

an associated problem both with myocyte growth/function and

bone formation. A recent report on two siblings with generalized

lipodystrophy, muscle weakness and cervical instability also

reminded us of this phenotype [9].

Here we report on the clinical and genetic evaluation of patients

and their family members with CGL4 from Oman (n = 10) and the

UK (n = 1) and describe the discovery of mutations in the gene

PTRF-CAVIN (Polymerase I and transcript release factor/Cavin)

which is an essential factor for the biogenesis of caveolae.
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Results

Case histories
Family I. The now 14-year-old boy (FI:201, Figure 1E) was

born to first degree cousins from Oman. His sister is healthy. After

birth he presented with paucity of subcutaneous fat, increased

amount of body hair, a protruding abdomen and a large tongue

(Figure 1A). Congenital hypothyroidism was excluded. At 6 weeks

a hypertrophic pyloric stenosis was treated by pyloromyotomy. He

had poor appetite and failure to thrive, with weight 3SD below the

mean. He had episodic hot flushes and cutis marmorata and suffered

from frequent staphylococcal skin infections and severe

pneumonias. At 10 years of age investigation of frequent

palpitations and syncopes revealed both ventricular and

supraventricular tachycardia and extrasystoles alternating with

sinus bradycardia and post-tachycardic pauses of up to 2.2 sec

(Figure 1C). A corrected QT-time (QTc with Bazett’s correction)

between 450–480 ms (Figure 1B) and T-wave abnormalities

(alternating in V2,V3 and notched in V4) indicate an

intermediate to high probability of long-QT syndrome [10].

Around the same time he had difficulties swallowing and a barium

study revealed esophageal dysmotility. Presently, at 14 years of

age, he often feels tired, weak, cannot walk for more than one

kilometer and complains of back pain and joint stiffness. His

mental development is normal, and he is a very good pupil. He has

mild splenomegaly, a liver size at the 95th percentile with normal

echogenicity on ultrasound but elevated transaminases (AST 120

U/l; N,23 and ALT 76 U/I; N,29). His bone phenotype

comprises osteopenia with enlarged epiphyses (Figure 1F), a bone

age retarded by 1.5 years, finger contractures with ulnar deviation

(Figure 1G), spinal rigidity and a prominent hyperlordosis. Skin

fold thickness was measured with a Holtain-T/W-Skinfold-Caliper

(Holtain, Crymych, UK) over the triceps (2.5 mm); biceps

(2.9 mm), subscapular region (3.6 mm), and iliac crest (2.8 mm)

yielding 6.1% whole body fat (,3rd percentile) [11]. Muscular

hypertrophy, especially of the thighs, is associated with limb girdle

weakness. ‘‘Mounding’’ (Figure 1D) and Percussion Induced

Rapid Contractions (PIRCs) can be elicited from all larger

muscles. These events are silent on EMG thus excluding

myotonia. Serum investigations revealed elevated creatine kinase

levels (1,898 IU/l; N,169), dyslipidemia with elevated serum

triglycerides (2.29 mmol/l; N 0.57–1.71), pre-b-lipoproteins

(VLDL 39%; N,30) and reduced HDL-cholesterol (0.47 mmol/l;

N.0.96), apolipoprotein A1 (0.72 g/l; N 1.00–1.50) and B (0.6 g/

l; N 0.7–1.2). Serum leptin levels were reduced (0.9 mg/l; N 2.4–

24.4, reference range for adult individuals with a BMI below the

25th percentile). Insulin resistance was increased with a HOMA-IR

index of 3.2 (N 0.97–2.27) without any signs of acanthosis nigricans.

Fasting glucose was 5.9 mmol/l and rose to 8.6 mmol/l (insulin

960 pmol/l) two hours after a standard glucose tolerance test with

1.75 g/kg BW [12].

Family II. The girl (Figure 2A) was born to healthy first

degree cousins (FII:201, Figure 2D) from the UK. She showed

neonatal hypotonia and elevated serum creatine kinase levels

(1,300 IU/l). Her appetite in early childhood was poor. At 2 years

of age her weight was between the 3rd–10th percentile with normal

height. Lack of subcutaneous fat (Figure 3F) and pronounced

muscle bulk led to the diagnosis of lipodystrophy. She complained

of stiff legs, neck flexor weakness, dizziness and involuntary muscle

movements, which were later diagnosed as rippling muscle disease.

Her cognitive functions were normal. At 7 years of age she

experienced periodic episodes of headache, abdominal pain,

constipation and vomiting. At 10 years of age she developed

proximal muscle weakness and had problems climbing stairs.

Muscle stiffness, exercise-induced myalgia, PIRCs and

spontaneous muscle rippling progressed over the next two years,

without any evidence of myotonia. Cardiac loop recording after

two syncopes revealed sinus arrhythmia, supraventricular and

ventricular tachycardias and ventricular extrasystoles. The

corrected QT-time was between 430–501 ms (Figure 2E). At 12

years of age, an acute ileus after appendectomy required a partial

bowel resection and histology of the colon wall revealed massive

smooth muscle hypertrophy. She suffered from frequent infections

(tonsillitis) from which she was slow to recover. Atlanto-axial

instability with subluxation was verified by X-ray (Figure 2B and

2C) as well as magnetic resonance imaging and a DEXA-scan

revealed severe osteoporosis (Z-score -5.7) and a total whole body

fat of 9.7%. At 12 years of age her symptoms were accompanied

by hepatomegaly with elevated transaminases (ALT 128 U/l, AST

105 U/l) and signs of fatty infiltration on ultrasound, elevated C-

peptide (2,569 pmol/l; N 190–990) and insulin levels (331 pmol/l)

at a fasting glucose of 5.8 mmol/l. Insulin resistance was

considerably increased with HOMA-IR indices ranging between

5.4 and 11.8 without evidence of acanthosis nigricans. A glucose

tolerance test showed a fasting glucose of 5.6 mmol/l and elevated

glucose (8.0 mmol/l) and insulin levels (1,241 pmol/l) two hours

after glucose administration. Dyslipidemia was present with elevated

triglycerides (3.7–8.5 mmol/l), an abnormal cholesterol profile

(HDL 0.4–0.7 mmol/l, LDL 2.1–2.3 mmol/l) and reduced

apolipoprotein A1 (0.53–0.81 g/l). Serum leptin levels (between

,0.1 to 0.2 mg/l) were below normal. At the age of 13 years the

patient collapsed while playing and died from sudden cardiac

death due to ventricular fibrillation, which was still seen in the

ambulance but impossible to cardiovert.

Further families from Oman. We additionally investigated

9 Omani patients (pedigrees on Figure 4A), their siblings and

parents that had been described previously [7]. All the patients

had features of muscular hypertrophy and congenital generalized

lipodystrophy without evidence of acanthosis nigricans. In 7 out of 9

patients muscle rippling or mounding was observed. With the

exception of one patient (FV:201) all had to undergo surgery for

Author Summary

Patients with generalized lipodystrophy have a marked
lack of body fat. Several gene defects have been described
that impede fat synthesis and maturation of fat cells. Here
we report on mutations in a novel gene, called PTRF-
CAVIN, causing congenital generalized lipodystrophy type
4 (CGL4) that is additionally associated with muscle
disease. Patients’ muscles are large but weak and show
an involuntary, rolling contraction pattern called ‘‘rip-
pling.’’ Further symptoms comprise life-threatening cardi-
ac arrhythmias and a disorder of bone formation. We
searched for shared segments in the genome of seven
patients and found the responsible gene, called PTRF-
CAVIN, on chromosome 17. This gene is crucial for
caveolae (latin for ‘‘small caves’’) formation. These small
indentations of the cell membrane are found on the
surface of muscle, bone, fat, and immune cells and
facilitate cell-to-cell communication and the absorption
of substances from the extracellular space. Patients lack
more than 97% of caveolae and artificial insertion of the
correct gene into patient skin cells led to the reappearance
of caveolae. As cardiac arrhythmia is a severe and
potentially life-threatening condition, patients with CGL4
should be closely monitored by ECG and, if necessary,
fitted with an implanted pacemaker and cardioverter
defibrillator (ICD) device.

PTRF-CAVIN Mutations in CGL4
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hypertrophic pyloric stenosis. Five patients (FII:201, FIV:306,

FVIII:202, 203, and 204) had abruptly died in their teens, most

probably due to sudden cardiac death. As all the children lived in

remote tribal areas of the Sultanate Oman, a more thorough

clinical and post-mortem investigation of these patients was

impossible. None of the heterozygous individuals (parents and

siblings) showed any signs of lipodystrophy, cardiac arrhythmia or

other features of the disease. A synopsis summarizing clinical and

laboratory features of our patients and the patients published by

Hayashi et al. [13] can be found on Table S1.

Homozygous PTRF-CAVIN mutations are pathogenic
Data analysis of the Affymetrix GeneChip SNP data with

HomozygosityMapper [14] delineated a single 2 Mbp region on

chromosome 17 between SNPs rs9903086 and rs17531431 that

was homozygous in all seven index patients (red arrowheads in

Figure 4A) and could be verified with microsatellite markers.

Prioritizing the 74 genes in this interval with GeneDistiller [15] for

an expression in primarily affected tissues (adipocytes, smooth and

heart muscle), which was above three times the median intensity,

produced PTRF-CAVIN as a single hit. This gene was an attractive

candidate because it had been shown to interact with caveolin-1

[16], whose mutations cause lipodystrophy [5] and with caveolin-

3, whose mutations cause rippling muscle disease [17]. Addition-

ally, a Ptrf-Cavin knockout-mouse exhibited low body fat,

dyslipidemia, glucose intolerance, and complete absence of

caveolae [18]. We thus sequenced the two coding exons, intron-

exon boundaries and the entire 59 and 39UTR of PTRF-CAVIN

(ENSG00000177469).

In both index patients we discovered homozygous mutations of

PTRF-CAVIN (Polymerase I and transcript release factor/Cavin)

that affected the open reading frame, led to a premature

termination codon and subsequent complete absence of the

protein from fibroblasts and muscle (Figure 4). Homozygosity for

the c.160delG mutation was verified in all patients with

lipodystrophy from further six Omani families. Homozygous

mutations showed complete penetrance in all families. The

presence of the mutations was verified by RFLP-analysis via

mutation dependent restriction sites (Figure 4C and 4F) Both

mutations were absent in 476 chromosomes of healthy individuals

from Oman (n = 142) and from Central Europe (n = 96), thus

excluding a common polymorphism.

Figure 1. Phenotype of patient FI:201 from Oman. (A) Patient at the age of 4 years with macroglossia, grossly reduced subcutaneous fat tissue
and a protruding abdominal wall. (B) ECG of the patient with a QTc (Bazett) of 480 ms. (C) Sections of 24h ECG Holter-monitoring show a complex
cardiac arrhythmia with intermittent sinus bradycardia, supraventricular (SVT) and ventricular tachycardia (VT). BPM, beats per minute (D) Percussion-
induced, local prolonged contractions (‘‘mounding’’) at the quadriceps muscle persisting for 2–3 seconds. (E) Pedigree of the consanguineous family
and genotypes of the family members. (F) X-ray radiograph of the knees at 9 months of age, showing broadening of the distal metaphyses
(arrowheads) and osteopenia. (G) X-ray radiograph of the left hand at the age of 13.5 years showing osteoporosis and osteopenia. The metacarpo-
phalangeal joint of the thumb shows arthritic changes and a partial dislocation with ulnar deviation (arrowhead).
doi:10.1371/journal.pgen.1000874.g001

PTRF-CAVIN Mutations in CGL4
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Absence of PTRF-CAVIN protein from patient cells and
tissue

To verify the absence of PTRF-CAVIN at the protein level we

performed a Western blot with protein-extracts from patient

fibroblasts (FI:201) and skeletal muscle (FII:201) and probed it

with anti-caveolin-1 and anti-PTRF antibodies. PTRF-CAVIN

protein was completely absent from fibroblasts and skeletal muscle,

whereas the caveolin-1 and caveolin-3 abundance was unchanged

(Figure 4D and 4G). Immunohistochemistry of patient muscle

showed absence of PTRF-CAVIN from the smooth muscle layer

of the intramuscular small vessels (Figure 5). As caveolae are

particularly abundant on adipocyte membranes [19], we searched

for fat cells in the muscle of patient FII:201 and found complete

absence of caveolin-1 immunoreactivity from the adipocyte cell

membranes (red arrowheads on Figure 5). As caveolin-1 is

essential for lipolysis, lipid droplet formation and lipoprotein

metabolism [20] and patients with CAV1 mutations suffer from

lipodystrophy [5] we thus show that a severe reduction of caveolae

per se may lead to a similar adipose tissue phenotype. In contrast,

subsarcolemmal caveolin-3 immunoreactivity was still present,

albeit at reduced levels and in a patchy distribution (Figure 5). The

patient muscle showed 25% regenerating fibers as verified by

reemergence of the neonatal myosin heavy chain isoform (neo-

MHC).

Severe reduction of caveolar numbers
We used caveolin-1 immunoreactivity as a marker for caveolae

on the fibroblast surfaces. Control fibroblasts showed a punctate

staining pattern at the cell periphery that dissolved in the absence

of PTRF-CAVIN (Figure 6A and 6B, Figure 7E and 7F) while the

perinuclear caveolin-1 staining within the Golgi-apparatus re-

mained unchanged. As caveolin-1 was present in patient

fibroblasts in normal quantities (Figure 4D) lack of PTRF-CAVIN

seems to disable recruitment of caveolin-1 into the caveolar

microdomains of the outer cell membrane. However, transfection

of a construct into patient fibroblasts, which contained the full-

length, wild-type PTRF-CAVIN gene cloned downstream of the

eukaryotic CMV-promoter, reconstituted the punctate staining

pattern at the cell periphery that corresponds to the caveolae

(Figure 6E–6G). Morphometric analysis by transmission electron

microscopy of the quantity of caveolae on the cell surface revealed

a severe reduction by .97% in the patient’s fibroblasts (Figure 7A

Figure 2. Phenotype of patient FII:201 from the UK. (A) Image of the 12-year-old patient with generalized lack of subcutaneous fat and
prominent muscle hypertrophy especially of the thigh (see also Figure S1), masticatory and paraspinal muscles. The patient presented with spinal
rigidity and lumbar hyperlordosis. The veins generally appeared thickened and prominent (phlebomegaly). Atlanto-axial instability of the patient
during flexion (B), and extension (C) of the cervical spine. In flexion, the gap between the anterior arc of the atlas (dotted triangle) and the odontoid
process of the axis (closed triangle) opens up 7 mm. The posterior arch of the axis appears dysplastic. During flexion the posterior margins of the
cervical vertebrae are misaligned (dotted line). There is marked loss of bone mineral density and increase of translucency of the cervical vertebrae due
to osteoporosis. (D) Pedigree of the consanguineous family and genotypes of the family members. (E) ECG of the patient with a QTc (Bazett) of
501 ms.
doi:10.1371/journal.pgen.1000874.g002

PTRF-CAVIN Mutations in CGL4
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and 7B). Complementary to this technique we employed medium

and high resolution Atomic Force Microscopy (AFM) to study the

cell surface of native and mildly fixated cells from patient and

control. This revealed a comparatively smooth cell surface in the

patient with only occasional indentations of 50–100 nm corre-

sponding to caveolae (Figure 7C and 7D). In the patient, overlay

between AFM and confocal images revealed the absence of the

punctate caveolin-1 staining at the cell surface especially within the

major indentations of the fibroblast cell membrane. Instead, the

caveolin-3 immunoreactivity was diffusely distributed within the

cytoplasm. As expected, PTRF-CAVIN immunoreactivity was

entirely absent from the cell surface of patient fibroblasts

(Figure 7H).

Discussion

Here we describe eleven patients with mutations in a gene that

encodes PTRF-CAVIN, which is essential for the biogenesis of

caveolae. Thus the multi-facetted symptoms of our patients

combine the features seen in individuals with mutations in

caveolin-1 (lipodystrophy) and in caveolin-3 (myopathy). While

drafting our report, we became aware of similar work by Hayashi

et al. [13]. Using a complementary candidate gene approach they

had identified PTRF-CAVIN mutations in five Japanese patients

with lipodystrophy and myopathy with muscular hypertrophy.

The cardiac and bone phenotype was not described in detail. All

their patients harbored the p.K233fs mutation, four in homozy-

gous state and a fifth patient as compound heterozygote together

with a p.E176fs mutation. Those mutant proteins failed to localize

to the cell membrane, however, re-emergence of caveolae after

transfection of patient cells with a full-length rescue plasmid was

not examined. In muscle, contrary to our results, they found a

secondary reduction of caveolin-3 on Western blot. Parallel to our

findings from patient fibroblasts, they also found a severe

reduction of caveolae on electron microscopic images of patient

muscle. This further strengthens the assumption that PTRF-

CAVIN deficiency presents the phenotypic spectrum caused by

generalized impairment of caveolae biogenesis.

In addition to the ‘‘classic’’ methods of transmission electron

microscopy we here demonstrate the feasibility of Atomic Force

Microscopy (AFM) in combination with immunofluorescent

imaging to visualize the pathological changes brought about by

an inherited defect of caveolae biogenesis. This method provides

high-resolution images from the cellular surface without the need

for dehydration and extensive fixation of the cells. It can even be

used for live-cell imaging and may be a potential tool for real-time

imaging of caveolar dynamics in the future [21].

Multiple caveolar dysfunctions may explain patient
symptoms beyond lipodystrophy

PTRF-CAVIN is expressed in many tissues but highest mRNA-

levels are found in adipocytes, muscle (smooth, heart, and skeletal),

osteoblasts, but not in neuronal tissue (BioGPS, http://biogps.gnf.

org/). Hence its expression pattern is congruent with the multi-

system disorder seen in our patients that spares the nervous system.

In addition to lipodystrophy, most patients showed signs of

smooth muscle hypertrophy in the gastrointestinal tract leading to

dysmotility, dysphagia, ileus and infantile hypertrophic pyloric

stenosis (IHPS). Presently the genetic basis of IHPS is unknown,

although several susceptibility loci have been discovered, with the

Nitrate Oxide Synthase type 1 (NOS1, syn. nNOS) locus amongst

them and a NOS1-knockout mouse showing a gastric outlet

obstruction [22]. As NOS1 co-localizes with caveolin-1 [23] and

caveolin-3 [24], we investigated the patient muscle with anti-

NOS1 antibodies, and found an increased sub-sarcolemmal

immunostaining (Figure 5). This finding is in accord with the

data of Hayashi et al. who also found an overexpression of NOS1

in two muscle samples of their patients [13] as well as with results

from myopathic mice with transgenic expression of mutant

p.P104L caveolin-3 [25]. These findings make it unlikely that

PTRF-CAVIN-deficiency acts via NOS1 depletion to cause IHPS.

Various cardiac ion channels, especially the nodal pacemaker

channel HCN4 (hyperpolarization-activated cyclic nucleotide-

gated potassium channel 4), the voltage-gated Na+-channel

(Nav1.5, SCN5A), which is important for excitability and

propagation of cardiac depolarization waves, and the L-type

Ca2+-channels (CACNA1C) necessary for excitation-contraction

coupling [26], are closely associated with caveolae and caveolin-3

(CAV3) immunoreactivity. Mutations of SCN5A, CACNA1C and

CAV3 are associated with ventricular tachycardia, long-QT

syndromes (LQT3,8,9), and sudden cardiac death while mutations

of HCN4 cause sick sinus syndrome type 2 [27]. Patients FI:201

and FII:201 showed features of both arrhythmias and additionally

of LQT-syndrome, which we assume may be due to the

simultaneous functional dissociation of all those ion channels that

Figure 3. Abnormal fat distribution in patients with PTRF-CAVIN
mutations. T1-weighted MR-images of patient FI:201 (B,D) and of
patient FII:201 (F). On the left, the corresponding images of normal
controls (A,C,E) are shown for comparison. T1-weighted images depict
fat with high signal intensity thus giving an overview of the fat
distribution. Subcutaneous fat is nearly completely lost over the
peripheries, thoracic and abdominal walls and on both temporal
regions. There is relative preservation of fat within the orbits. Paraspinal
and perirenal fat is also reduced in bulk but relatively preserved. Fat in
the bone marrow of the ribs and the humerus seems to be normal.
doi:10.1371/journal.pgen.1000874.g003

PTRF-CAVIN Mutations in CGL4
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are functionally dependent on caveolae. Clearly, more functional

and immune electron microscopic studies of cardiomyocytes are

needed to verify the effect of PTRF-CAVIN on receptor clustering

and function.

The muscle weakness of our patients resembled the pattern

seen in limb girdle muscular dystrophy type 1C (LGMD1C) and

rippling muscle disease (RMD), which are caused by dominant-

negative mutations in CAV3 [17]. ‘‘Rippling’’ denotes rolling

and sometimes painful muscle contractions which are not

caused by sarcolemmal depolarization and thus silent on EMG

[28]. One theory implicates the propagation of action potentials

inside the muscle fiber through a malformed longitudinal

tubular system [29]. Disruption of the T-tubular system in the

absence of PTRF-CAVIN seems to be likely, because alteration

of PTRF-CAVIN mRNA-levels considerably influenced tubular

morphology [30].

Regarding the increased susceptibility of both patients to

bacterial infections, it is noteworthy that caveolae have been

found on stimulated B-lymphocytes (plasma cells) and that murine

Cav1-/- B-lymphocytes showed reduced in vitro IgG3-secretion after

LPS-stimulation [31]. These findings support the assumption that

the structural integrity of caveolae is needed for a regular humoral

immune reaction.

Finally, caveolae are abundantly present on osteoblasts and are

involved in the regulation of alkaline phosphate transcription and

protein activity via the bone morphogenetic protein-2 (BMP-2)

signaling pathway [32], while caveolin-1 has a role in bone matrix

calcification [33]. Disruption of both functions through absence of

caveolae might be the cause for abnormal bone growth

(osteopenia), reduced matrix calcification (osteoporosis) and

reduced stability of the vertebrae and their ligaments (atlanto-

axial instability) in our patients.

In conclusion, the diverse clinical spectrum of PTRF-CAVIN

deficiency displays the consequences of a quintessential lack of

functional caveolae. We have shown that the spectrum mirrors

the expression pattern of the gene and the distribution of

caveolar functions according to current knowledge. The

presence of generalized lipodystrophy in combination with

Figure 4. Family pedigrees and molecular genetic characterization of the PTRF-CAVIN mutations. (A) Pedigrees of all investigated family
members. With the exception of Family II, who came from the United Kingdom, all other families originated from Oman. The red arrowheads indicate
the patients included for homozygosity mapping. The genotype of each individual is marked below the symbol. (B–D) Molecular findings in Family I
in whom we found a deletion of a guanine residue at nt160 (hatched box) leading to a shift in the open reading frame. (C) Verification of the
mutation by restriction enzyme analysis. The mutation creates a MwoI restriction site cutting the 137 bp band into 67+70 bp if the mutation is
present. (D) Western blot of cultured fibroblasts from patient FI:201. PTRF-CAVIN immunoreactivity is completely absent, whereas caveolin-1
immunoreactivity is normal. The bottom panel shows the b-tubulin staining as loading control. (E–G) Molecular findings of Family II, in whom we
discovered a duplication of a thymine residue at position 362 (hatched box) with subsequent frameshift. (F) Verification of the mutation by restriction
analysis. In the presence of the mutation AclI cleaves a 539 bp band into 415+124 bp. (G) Western blot of muscle tissue from patient FII:201. Again,
PTRF-CAVIN is completely absent from muscle, whereas there is no difference in caveolin-3 immunoreactivity. The bottom panel shows the myosin
band as the loading control.
doi:10.1371/journal.pgen.1000874.g004

PTRF-CAVIN Mutations in CGL4
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muscle rippling/mounding, intestinal obstruction and the

absence of acanthosis nigricans should let geneticists think of

PTRF-CAVIN deficiency.

Taken together, these features clearly delineate CGL4-patients

from individuals with BSCL2, AGPAT2, and CAV1 mutations [2].

Clinicians should be alerted to perform detailed cardiac

investigations to search for potentially serious arrhythmias and,

if positive, consider the application of an implanted cardioverter

defibrillator (ICD) device.

Methods

Ethics statement
All patients and guardians provided written informed consent

for genetic analysis according to the Declaration of Helsinki. The

study was approved by the IRB of the Charité.

Haplotype and DNA analysis
DNA was extracted from EDTA-blood, saliva or mucosal swabs

with the salt extraction method [34]. Hybridization and laser

scanning of GeneChip Human Mapping 250K SNP-arrays

(Affymetrix) were performed according to the specifications of the

manufacturer. SNP haplotpye data were analyzed for homozygous

regions with HomozygosityMapper [14]. The candidate locus on

chromosome 17 was further verified with polymorphic microsatel-

Figure 5. Immunohistochemistry of a muscle biopsy specimen
from patient FII:201. In the patient caveolin-3 expression in skeletal
muscle fibers was reduced and irregular; caveolin-1 staining of
intramuscular fat cells (red arrowheads) was completely absent. In the
control, strong PTRF-staining can be seen in the walls of the small
arterioles, representing the smooth muscle layer. It is virtually absent in
the patient, nota bene: The nuclear staining of the anti-PTRF-antibody is
unspecific. In the patient the intensity of the subsarcolemmal anti-NOS1
staining seems to be stronger and less patchy than in the control
muscle. Overall the muscle of the patient shows myopathic changes,
mild variation in fiber sizes without necrosis, inflammation or fibrosis
and increased regeneration. These regenerating fibers (ca. 25%) are
marked through positive staining for neo-MHC, an isofom of the myosin
heavy chain protein that is characteristically expressed in neonatal
muscle and in regenerating fibers.
doi:10.1371/journal.pgen.1000874.g005

Figure 6. Cell-biological consequences of PTRF-CAVIN deple-
tion. (A) Confocal microscopic image of the punctate distribution of
caveolin-1 which labels the caveolae on the surface of a fibroblast. (B)
Severe reduction of the punctate caveolin-1 distribution in the absence
of PTRF-CAVIN and its unstructured distribution within the cytoplasm.
(C) Normal punctate distribution of PTRF-CAVIN on the fibroblast
surface. (D) Absence of all PTRF-CAVIN immunoreactivity on a patient
fibroblast. (E–G) Each panel depicts two patient fibroblasts, one
untransfected (right) and one transfected with PTRF-FLAG construct
(left). In the untransfected cell caveolin-1 is only found in the Golgi-
apparatus. Reexpression of PTRF-CAVIN in the left cell redirects the
caveolin-1 staining to the caveolae in the cell periphery where the two
proteins co-localize (yellow dots in panel G).
doi:10.1371/journal.pgen.1000874.g006
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lite markers. Prioritization of candidate genes within the homozy-

gous region was done with GeneDistiller [15]. HomozygosityMapper and

GeneDistiller are freely available on the Internet at http://www.

homozygositymapper.org and http://www.genedistiller.org. The

coding region of PTRF-CAVIN with its 59 and 39UTR was PCR-

amplified with genomic primers spanning the two exons and ca.

50 bp of the intron-exon boundary on each side (Table S3).

Automatic sequencing was performed with the BigDye Terminator

protocol (Applied Biosystems, Darmstadt, Germany) according to

standard protocols and sequences were analyzed using MutationSur-

veyor v3.10 (Softgenetics, State College, PA, USA). The mutations

were further verified in the patients and excluded in normal controls

by restriction fragment length polymorphism (RFLP) analysis:

c.160delG, the primer pair 5-CCC CAC GCT CTA TAT TGT

CG-3 and 5-AGC TTG CTC ACC GTA TTG CT-3 amplifies a

320 bp fragment from genomic DNA. The restriction endonuclease

MwoI cleaves the wildtype allele into 137+83+42+41+9+4+5 bp

and the mutant allele into 67+70+83+42+41+9+4+5 bp frag-

ments. c.362dupT, the primer pair 5-GTC TCC CGC TCC

AGC TC-3 and 5-TGT GGG CTC ACC TGG TAG AT-3

amplifies a 540 bp fragment from genomic DNA. The restriction

endonuclease AclI does not cleave the wildtype allele whereas

the mutant allele is cleaved into 416+124 bp.

Western blot
Protein was extracted from patient cultured fibroblasts (patient

FI:201) and muscle (patient FII:201) after homogenization in

RIPA buffer with a proteinase inhibitor cocktail (Complete,

Roche-Diagnostics, Basel, Switzerland), separated through dena-

turating SDS-PAGE with the Laemmli system and blotted on

nitrocellulose membranes by the semidry method (Biometra,

Göttingen, Germany). The blots were probed with anti-caveolin-1,

anti-caveolin-3 and anti-PTRF as primary antibodies and

corresponding peroxidase-labeled secondary antibodies. The

myosin band on the Coomassie gel was used as loading control

for muscle and the anti-b-tubulin band for fibroblasts. Bands were

visualized by chemiluminescence. All antibodies used in this study

are described in Table S2.

Histological investigation of patient tissues and cells
Patient fibroblasts were grown to semi-confluence in DMEM in

the presence of 15% FCS and penicillin/streptomycin on

uncoated cover slips, washed with PBS and fixed in 4% PFA.

Control fibroblasts derived from diagnostic samples for numeric

chromosomal aberrations that had turned out to be normal. After

permeabilization with 0,1% (v/v) Triton X-100, immunostaining

was done with primary anti-caveolin-1 and anti-PTRF antibodies

and appropriate secondary antibodies (Table S2) according to

standard procedures [35]. Fluorescent microscopic images were

recorded with a Leica SPE laser confocal imaging system (Leica

Microsystems, Wetzlar, Germany).

For muscle histology tissue was flash frozen and 6 mm sections

were cut and mounted onto SuperFrost Plus slides. Immunolabel-

ing was carried out using a standard protocol. Briefly, sections

were equilibrated to room temperature and washed for 15 min in

PBS pH 7.3 containing 0.1% Triton X-100 for membrane

permeabilization. Sections were incubated overnight at 4uC in

optimally diluted primary antibodies. The diluent contained 40%

FCS and 0.1 M lysine. Following 2610 min washes in PBS/

Triton sections were incubated for 90 min at room temperature in

1:100 HRP rabbit anti-mouse immunoglobulin (Dako P260).

Sections were washed, visualized with DAB and counterstained

with Carazzi’s haematoxylin prior to dehydration and mounting.

Control muscles were supplied from patients with orthopedic

surgery.

Functional complementation of patient fibroblasts
The full open reading frame of the PTRF-CAVIN gene was

amplified from human fibroblast cDNA with a proof-reading

Figure 7. Ultrastructural analysis of caveolae on the fibroblast
surface. (A,B) Transmission electron micrographs (x 37.000) of ultrathin
sections from near the cell surface of a fibroblast monolayer. The cell
surface is labeled with ruthenium red. In the control individual (A)
numerous caveolae and indentations of the cell membrane were seen
close to the cell surface. (B) In the fibroblasts of patient FI:201 only
rarely coated invaginations could be found. (C,D) High resolution
Atomic Force Microscopic (AFM) scans of an area of 161 mm on the
surface of (C) control and (D) patient fibroblasts. The caveolae (white
arrowheads) have a size between 50–100 nm and are predominantly
located at the margins of major membrane folds. The patient fibroblasts
show a smooth surface with only occasional caveolae. (E–H) Overlay of
AFM-images with the respective fluorescent immunostainings from the
same surface plane. On the AFM-images one can localize the caveolae
by the punctate caveolin-1 staining within larger indentations of the
cell membrane which disappear in the absence of PTRF-CAVIN.
doi:10.1371/journal.pgen.1000874.g007
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polymerase (PhusionTaq; New England Biolabs, Frankfurt a. M.,

Germany) with tailed primers (forward 5-GGT GGT GGA TCC

GGT CTC CCG CTC CAG CTC-3, reverse 5-GGT GGT GTC

GAC GTC GCT GTC GCT CTT GTC CA-3) which contained

engineered BamHI and SalI restriction sites (underlined). This

PCR-fragment was purified by agarose electrophoresis and cloned

into the BamHI+SalI multiple cloning sites of the pCMV-Tag4a

vector (Stratagene, Amsterdam, NL) thus producing a C-

terminally FLAG-tagged fusion protein of PTRF. The correct

cloning was verified by automatic sequencing. For transfection of

adherent fibroblasts 5 mg plasmid were mixed with Lipofectamine

(Invitrogen, Leek, NL) and incubated for 24 h with cells growing

in the exponential phase on cover slips. Cells were then double-

stained with anti-caveolin-1 (mouse-mAB) and anti-FLAG (rabbit-

pAB) and images recorded as described. The proper expression of

the recombinant PTRF-FLAG protein via the construct was

verified through double labeling of the transfected mutant cells

with anti-PTRF (mouse-mAB)/anti-mouse-ALEXA555 and anti-

FLAG (rabbit-pAB)/anti-rabbit-ALEXA488 antibodies (Figure

S2)

Ultrastructural investigation by transmission electron
microscopy

The preparation of fibroblasts for transmission electron

microscopy was done as published before [16,36]. Briefly, cells

were grown on uncoated round glass cover slips in DMEM

(+15% FCS) in 2 cm diameter plastic dishes to near confluence.

After rinsing with PBS, cells were fixed in Na-cacodylate-

buffered 2.5% glutaraldehyde (pH 7.3) containing 1 mg/ml

ruthenium red (Sigma-Aldrich, Munich, Germany) for 12 h at

room temperature. Ruthenium red labels the cell surface only.

Other staining protocols with OsO4, uranylacetate or leadcitrate

were omitted. The cell monolayer was embedded in Epon resin in

situ and the cover slips were removed by flash freezing in liquid

nitrogen. 70 nm sections were cut parallel to the culture

substratum from the base of the cells with a microtome (Reichert

Ultracut, Vienna, Austria) using a diamond knife and placed on

Formvar-coated copper grids. Microscopic images were recorded

with a Zeiss E905 transmission electron microscope. For

quantification of the results, we counted the number of caveolae

along the length of a total of 50 mm cell membrane in random

samples. In control fibroblasts we found 923 and in the patient 27

caveolae per 50 mm cell membrane cumulating in a reduction of

.97% in the patient.

Ultrastructural investigation by Atomic Force Microscopy
(AFM)

Atomic Force Microscopy (AFM) visualizes the surface

membrane topography in living or only mildly fixated cells with

a resolution in the nanometer range [37]. As opposed to scanning

electron microscopy, dehydration of the samples is unnecessary,

which allows simultaneous labeling with fluorescent antibodies,

thus providing a powerful tool to see disease-specific changes on

cell surfaces. Fibroblasts were cultured on glass bottom dishes

(WillCo Wells BV, Amsterdam, Netherlands). After cells had

attached and flattened, they were fixed with 4% PFA for 20 min

at room temperature, followed by a 365 min wash in PBS. Cells

were labeled with anti-caveolin-1 and anti-PTRF antibodies and

subsequently with appropriate secondary fluorescent antibodies.

AFM measurements were carried out with NanoWizard II (JPK

Instruments, Berlin, Germany) combined with a Leica Optical

Microscope DMI6000B equipped with a DFC360FX CCD

camera (Leica Microsystems). The calibrated and deconvoluted

fluorescent image from the same plane was then imported into

the AFM software to secure the exact overlay between optical

image and 3D surface structure. AFM measurements of the cell

surface were performed in the tapping/intermittent contact

mode with Si3N4-cantilevers of a nominal spring constant of

0.35 N/m (type DNP, JPK Instruments). Selected squares of

10610 mm (medium resolution) and of 161 mm (high resolution)

were scanned at 0.5 Hz. AFM images were processed using the

NanoWizard II Image Processing Software v3.2 (JPK Instru-

ments). A 3D-topography was generated and presented as a 2D-

image.

Supporting Information

Figure S1 Close-up view of the quadriceps muscles of patient

FII:201. On the upper thighs the prominent reticular pattern of

hypertrophied venous vessels (phlebomegaly) can be clearly seen.

Enlargement of the distal diaphyses of the long bones becomes

obvious through the broadening of the knees and of the finger

joints, especially at the metacarpo-phalangeal joints.

Found at: doi:10.1371/journal.pgen.1000874.s001 (4.04 MB TIF)

Figure S2 Co-localization of the FLAG and PTRF-signals in

pCMV-Tag4a-PTRF-FLAG transfected cells. The upper panel

shows a confocal scan through the surface layer of a patient

fibroblast (FI:201) that had been transfected with the PTRF-

FLAG construct. The lower panel depicts a more detailed section

at a higher magnification. The yellow co-localization in the

overlay verifies the proper expression of the PTRF-CAVIN

protein in the same location as the FLAG-immunoreactivity is

found.

Found at: doi:10.1371/journal.pgen.1000874.s002 (2.72 MB TIF)

Table S1 Clinical information on the patients from this study

and from Hayashi et al. (2009) [13].

Found at: doi:10.1371/journal.pgen.1000874.s003 (2.38 MB TIF)

Table S2 Antibodies used for western blot and immunolabeling.

Found at: doi:10.1371/journal.pgen.1000874.s004 (0.38 MB TIF)

Table S3 PCR primers used for molecular analysis of the PTRF-

CAVIN gene.

Found at: doi:10.1371/journal.pgen.1000874.s005 (0.60 MB TIF)
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