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Upstream ORFs (uORFs) are translational control ele-
ments found predominantly in transcripts of key regu-
latory genes. No mammalian genetic model exists to
experimentally validate the physiological relevance of
uORF-regulated translation initiation. We report that
mice deficient for the CCAAT/enhancer-binding protein b
(C/EBPb) uORF initiation codon fail to initiate trans-
lation of the autoantagonistic LIP (liver inhibitory protein)
C/EBPb isoform. C/EBPbDuORF mice show hyperactiva-
tion of acute-phase response genes, persistent repression
of E2F-regulated genes, delayed and blunted S-phase entry
of hepatocytes after partial hepatectomy, and impaired
osteoclast differentiation. These data and the widespread
prevalence of uORFs in mammalian transcriptomes sug-
gest a comprehensive role of uORF-regulated translation
in (patho)physiology.

Supplemental material is available at http://www.genesdev.org.

Received May 11, 2009; revised version accepted October 30,
2009.

Translational cis-regulatory upstream ORFs (uORFs) are
found in the 59 mRNA regions of numerous eukaryotic
transcripts and are considered to regulate protein expres-
sion by controlling translation reinitiation at down-
stream initiation codons or by activating the nonsense-
mediated mRNA decay pathway (Morris and Geballe
2000). The frequency of conserved uORFs (Iacono et al.
2005; Calvo et al. 2009) and their predominant prevalence
in transcripts of key regulatory genes of growth, differen-
tiation, and proliferation (Kozak 1987) suggest an impor-

tant function of uORF-mediated translational control in
mammals. Nevertheless, an experimental genetic model
to examine the physiological relevance of uORF-regu-
lated translation has not been established.

The transcription factor CCAAT/enhancer-binding pro-
tein b (C/EBPb) exerts important functions in many
physiological processes, including metabolism, innate
immunity, liver development, and regeneration (Tanaka
et al. 1995; Greenbaum et al. 1998; Ramji and Foka 2002).
The C/EBPb gene lacks introns, yet three N-terminal
different isoforms (termed LAP* [liver-activating protein*],
LAP, and LIP [liver inhibitory protein]) are translated from
three consecutive in-frame AUG codons in a single tran-
script (Fig. 1A; Descombes and Schibler 1991). The trun-
cated isoform LIP is devoid of N-terminal trans-activating
domains but retains DNA-binding capacity and acts as
a competitive inhibitor of the LAP and LAP* isoforms.
Previous mutational analysis and tissue culture experi-
ments suggested that translation of the conserved out-of-
frame C/EBPb uORF restrains initiation of LAP and causes
resumption of ribosomal scanning and reinitiation at the
downstream LIP start site (Fig. 1B; Raught et al. 1996;
Lincoln et al. 1998; Calkhoven et al. 2000).

Results and Discussion

To determine the physiological importance of uORF-
mediated translational control, recombinant mice were
generated by introduction of an ATG-to-TTG point mu-
tation at the C/EBPb uORF translational initiation site
(Fig. 1B; Supplemental Fig. S2). The C/EBPbDuORF muta-
tion was designed to abrogate uORF initiation without
altering the amino acid sequence of C/EBPb. A C/EBPb
wild-type knock-in control strain (C/EBPbWT) was
generated and analyzed in parallel to exclude potential
artifacts caused by the gene targeting approach. Through-
out the experiments, no differences were detected be-
tween C/EBPbWT and parental wild-type mice. Offspring
of heterozygous C/EBPbDuORF matings showed the ex-
pected Mendelian ratio (Supplemental Table S1). Homozy-
gous C/EBPbDuORF mice showed normal weight gain and no
overt developmental defects or premature death (Supple-
mental Fig. S3). In contrast to C/EBPb knockout animals,
homozygous C/EBPbDuORF females were fertile, gave birth
to normal size litters (eight out of eight females tested), and
showed intact mammary gland development and function
(Robinson et al. 1998; Seagroves et al. 1998; Supplemental
Figs. S3A, S4).

Bacterial lipopolysaccharide (LPS) is a major inducer of
acute-phase response mediated by C/EBPb in the liver
(Poli 1998), and has been shown to enhance expression of
the truncated C/EBPb isoform LIP (Timchenko et al.
2005). In livers of C/EBPbWT mice, LIP was strongly in-
duced after LPS administration, whereas C/EBPbDuORF

mice failed to express high levels of LIP (Fig. 1C). Like-
wise, lung, spleen, and white adipose tissue of C/EBPbDuORF

mice displayed reduced expression of LIP after LPS
treatment as compared with C/EBPbWT tissues (Supple-
mental Fig. S5). Failure to induce LIP was also observed
in C/EBPbDuORF mouse embryo fibroblasts (MEFs) (Fig. 1D)
and was associated with superactivation of a C/EBP-
responsive luciferase reporter (Fig. 1E), suggesting a lack
of trans-repressive function of LIP. Hence, genetic ablation
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of the C/EBPb uORF in mice abolishes the inducible
expression of LIP and validates the functional importance
of the C/EBPb uORF as a translational cis-regulatory
element in the animal.

Recently, we showed that the long and truncated
C/EBPb isoforms opposingly regulate the differentiation of
bone-resorbing osteoclasts (Smink et al. 2009). C/EBPbLIP

mice that express LIP only and not the long C/EBPb

isoforms showed strongly enhanced osteoclast differenti-
ation. Ectopic expression of LAP inhibited osteoclast
differentiation (Smink et al. 2009), suggesting that an
increase of the LAP/LIP isoform ratio in C/EBPbDuORF

mice would also inhibit osteoclastogenesis. In tibiae of
C/EBPbDuORF mice, we observed a reduction in osteoclast
size and number (Fig. 2A), which was accompanied by an
increase in thickness of bone trabeculae and bone volume
(Supplemental Fig. S6). Bone marrow cell cultures from
C/EBPbDuORF mice formed fewer and smaller osteoclasts
as compared with C/EBPbWT and failed to express LIP
(Fig. 2B,C). C/EBPbDuORF osteoclasts showed increased
expression of the transcription factor MafB (Fig. 2D),
a previously identified target of LAP and a repressor of
osteoclastogenesis (Smink et al. 2009). MafB inhibits
a number of osteoclastic genes, including Nfatc1, Oscar,
Atp6v0d2, DC-STAMP, and TRACP (Kim et al. 2007,
2008; Smink et al. 2009). Transcript levels of these
osteoclast markers were found to be reduced in
C/EBPbDuORF osteoclasts (Fig. 2E), while expression of
the MafB-independent c-Fos gene (Kim et al. 2007) was
not affected. These data suggest that the abrogation of
C/EBPb uORF-mediated translational control, and the

Figure 1. Genetic ablation of cis-regulatory translational control by
the C/EBPb uORF. (A) Three protein isoforms (LAP* [38 kDa], LAP
[35 kDa], and LIP [20 kDa]) are translated from consecutive in-frame
initiation codons in the same transcript (Descombes and Schibler
1991). The C/EBPb mRNA contains a conserved cis-regulatory small
uORF (30 base pairs [bp], orange) terminating 4 bp upstream of the
LAP initiation site in a different reading frame. (bd) Binding; (pA)
poly(A) tail. (B) Translation of the uORF serves to strip ribosomes
from their initiating Met-tRNAi

Met (green to white) and prevents
initiation at the proximate LAP initiation codon. Upon reloading
of ribosomes with the ternary eIF2–GTP–Met-tRNAi

Met complex
(white to green), translation reinitiation from the downstream AUG
codon generates LIP. In C/EBPbDuORF mice, an A-to-U point mutation
was designed to abrogate ribosomal initiation at the uORF start codon
without changing the amino acid sequence of the C/EBPb isoforms.
Most ribosomes will thus initiate at the LAP AUG instead. (Display of
LAP* translation was omitted for simplicity. For details on alterna-
tive start site selection, see Supplemental Fig. S1.) (C) Upon i.p.
injection of LPS, LIP is strongly induced in C/EBPbWT (WT) but not in
C/EBPbDuORF livers (D). (h) Hours of LPS treatment; (a-tub.) a-tubulin;
(k.o.) lysate of C/EBPb knockout mouse. (D) In MEFs, LPS induces LIP
expression in C/EBPbWT but not in C/EBPbDuORF cells. (E) Represen-
tative luciferase reporter assay (n = 3) demonstrating increased
luciferase reporter activity (luc.) in C/EBPbDuORF (open triangles) as
compared with C/EBPbWT (black squares) MEFs at indicatedtimes after
LPS treatment. Error bars show SEM.

Figure 2. TheC/EBPbDuORFmutationimpairsosteoclastdifferentiation.
(A) Tibia sections showing tartrate-resistant acid phosphatase (TRACP)-
stained osteoclasts (redstaining, light-greencounterstain) in C/EBPbDuORF

as compared with C/EBPbWT mice. (Arrowheads) Multinucleated osteo-
clasts; bars, 50 mm. The bar graph displays average osteoclast sizes as
determined from six mice per genotype at 8 wk of age. (B) TRACP
staining (red) showing osteoclast differentiation of bone marrow-
derived precursors of C/EBPbDuORF and C/EBPbWT mice after 6 d in
culture with M-CSF and RANK-L (n = 6). (Arrowheads) Multinucle-
ated osteoclasts. The bar graph displays the differential quantifica-
tion of osteoclasts by the number of nuclei (n) per cell. (C)
Immunoblot analysis showing LIP expression in C/EBPbWT but
not in C/EBPbDuORF osteoclasts at day 2 of culture. (D) Immunoblot
analysis showing increased MafB protein in C/EBPbDuORF as com-
pared with C/EBPbWT osteoclasts. (E) Real-time PCR analysis
showing decreased expression of MafB-regulated osteoclast markers
in C/EBPbDuORF (open bars) as compared with C/EBPbWT (black bars)
osteoclasts. Normalized to Gapdh (glyceraldehyde-3-phosphate-
dehydrogenase) and presented relative to C/EBPbWT (set to 1, dashed
line). Error bars show SEM; (*) P < 0.05; (***) P < 0.001.
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resulting increase in the LAP/LIP ratio, constrains oste-
oclast differentiation by enhancing the expression of MafB.

Since C/EBPb is an important regulator of liver re-
generation, acute-phase response, and interleukin-6 (IL-6)
expression (Screpanti et al. 1995; Greenbaum et al. 1998;
Poli 1998), we implemented partial hepatectomy (PH)
to analyze the consequences of the C/EBPbDuORF mutation
in this physiological context. C/EBPbDuORF mice failed
to induce expression of the truncated LIP isoform through-
out the 72-h observation period after PH (Fig. 3A), while
LIP was strongly induced in a two-wave kinetic in regen-
erating livers of C/EBPbWT animals, suggesting consecu-
tive functions of LIP in the course of liver regeneration.
After PH, IL-6 serum levels of C/EBPbDuORF mice rose higher
as compared with control animals (Fig. 3B), reaching
a 4.7-fold difference after 3 h (1254 6 265 vs. 263 6 49
pg/mL, n = 6, P < 0.01) and a 3.3-fold difference at the
peak of wild-type expression 6 h after surgery (1578 6 132
vs. 472 6 93 pg/mL, n = 6, P < 0.01). IL-6 signaling
is known to rapidly confer activating phosphomodifica-
tions to both C/EBPb and STAT3 transcription factors
(Akira 1997), resulting in synergistic induction of type I
acute-phase response genes (Alonzi et al. 2001). Real-time
PCR analysis of known acute-phase response C/EBPb
target genes revealed consistently increased transcrip-
tion of serum amyloid A1 (Saa1), a-1 antitrypsin (Aat),
haptoglobin (Hp), and hemopexin (Hpx), ranging from
1.2-fold to 8.0-fold in hepatectomized C/EBPbDuORF as
compared with C/EBPbWT mice (Fig. 3C). Maxima of en-

hanced expression of Saa1, Aat, and Hp in C/EBPbDuORF

mice correlated with the peak of LAP expression at 6 h
after surgery (Fig. 3A). Together with the superactivation of
the C/EBP-responsive reporter construct in C/EBPbDuORF

MEFs, these data suggest that uORF-mediated induction of
LIP serves to restrict the trans-activation of early acute-
phase response genes.

In an in vitro proliferation assay, reduced expansion of
C/EBPbDuORF MEF cultures became evident at day 3 (Fig.
4A) and resulted in significantly lower cell numbers at

Figure 3. The C/EBPbDuORF mutation causes superinduction of
C/EBPb target genes. (A) Induction of LIP in C/EBPbWT livers upon
PH is abolished in C/EBPbDuORF animals. (B) ELISA showing
elevated average levels of serum IL-6 at 3 h and 6 h after PH in
C/EBPbDuORF (open triangles) as compared with C/EBPbWT (black
squares) animals (n = 6; [**] P < 0.01). (C) Real-time PCR analysis
demonstrating elevated mRNA contents of acute-phase response
genes in C/EBPbDuORF (open bars) as compared with C/EBPbWT

(black bars) livers at indicated times after PH (n = 6; [*] P < 0.05; [**]
P < 0.01). Error bars show SEM.

Figure 4. Cell proliferation defect in C/EBPbDuORF mice. (A) In vitro
proliferation assay demonstrating reduced expansion of C/EBPbDuORF

(open triangles) as compared with C/EBPbWT (black squares) MEF cul-
tures (n = 5 independent embryos per genotype; [**] P < 0.01). (B)
Quantification of BrdU-labeled hepatocyte nuclei (2-h pulse-labeling)
in liver sections showing a reduced proportion of hepatocytes in
S phase in C/EBPbDuORF (open bars) as compared with C/EBPbWT

(black bars) and C/EBPbLIP (gray bars) livers at 36 and 48 h after PH
(n = 8, [***] P < 0.001; n = 7, [*] P < 0.05 vs. wild type, respectively). (C)
BrdU immunofluorescence stainings of C/EBPbWT, C/EBPbDuORF, and
C/EBPbLIP liver sections 36 h after PH. Bars, 100 mm. (D) Real-time
PCR analysis showing reduced mRNA contents of CcnA1, CcnA2,
CcnB1, CcnE1, CcnE2, and Pcna in C/EBPbDuORF (open bars) as
compared with C/EBPbWT (black bars) andC/EBPbLIP (gray bars) livers
at indicated times after PH. (n = 6, [*] P < 0.05, [**] P < 0.01 vs. wild
type). (n.d.) Not determined. Error bars show SEM.
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day 5 of the experiment (9.2 6 0.2 vs. 11.9 6 0.5 3 105 per
well, n = 5, P < 0.01) as compared with C/EBPbWT MEFs.
To examine whether the C/EBPbDuORF mutation also
affected cell proliferation in mice, we compared liver
regeneration properties of C/EBPbDuORF, C/EBPbWT, and
C/EBPbLIP animals (C/EBPb expression control in Sup-
plemental Fig. S7). Hepatocytes in regenerating livers of
C/EBPbDuORF mice entered the cell cycle later and at lower
frequency as compared with C/EBPbWT animals (Fig.
4B,C). S-phase labeling of liver cells by 5-Bromo-2-deoxy-
uridine (BrdU) revealed a 9.3-fold reduction in the
proportion of BrdU-positive C/EBPbDuORF hepatocytes
at 36 h (1.2% 6 0.5% vs. 11.6% 6 2.8%, n = 8, P < 0.01)
and a 1.9-fold reduction at 48 h after surgery (28.9% 6
4.0% vs. 54.9% 6 3.8%, n = 7, P < 0.01). At the same
times, regenerating C/EBPbLIP livers contained similar
numbers of BrdU-positive hepatocytes as compared with
C/EBPbWT (36 h: 11.5% 6 0.4%, n = 5; 48 h: 56.9% 6
2.1%, n = 4). Virtually no BrdU incorporation was
observed in hepatocytes of sham-operated animals at 48
h after PH (n = 3) (data not shown). Transcript levels
of cyclin A1 (CcnA1), CcnA2, CcnB1, CcnE1, CcnE2, and
proliferating cell nuclear antigen (Pcna) were induced at
36 h after PH in C/EBPbWT and C/EBPbLIP livers, but
remained significantly lower in C/EBPbDuORF animals
(Fig. 4D). Twelve hours later, the expression of the cyclins
and Pcna were similar in the three genotypes (data
not shown), suggesting that re-entry of C/EBPbDuORF

hepatocytes into the cell cycle was impaired but not
abolished by the compromised induction of LIP. Similar
recovery of liver weight in C/EBPbWT and C/EBPbDuORF

mice, accompanied by an increased hepatocyte volume
in C/EBPbDuORF livers (Supplemental Fig. S8), sug-
gested that enhanced hepatocyte hypertrophy compen-
sated for the blunted S-phase entry to restore adequate
liver/body weight ratios.

To further characterize the altered dynamics of cell cycle
entry in regenerating C/EBPbDuORF livers, we performed
a genome-wide microarray expression analysis at 36 h after
PH. A total number of 546 underrepresented transcripts
(392 annotated genes) and 266 overrepresented transcripts
(161 annotated genes) were identified in regenerating
C/EBPbDuORF as compared with C/EBPbWT livers (Fig. 5A;
Supplemental Table S2). Comparison of all deregulated

transcripts to a database of cell cycle-associated genes
(http://www.geneontology.org) resulted in 191 matches,
of which 99% (189 matches) grouped to the underrepre-
sented fraction (Fig. 5A; Supplemental Table S3). The
microarray analysis results were validated for a selection
of transcripts on the mRNA (Fig. 4D) and/or the protein
level (Supplemental Fig. S9). The high proportion of
underrepresented cell cycle genes at 36 h after PH
verified the immunohistochemically detected reduction
in hepatocyte S-phase entry in C/EBPbDuORF mice on
a transcriptional level, and implied a regulatory function
of the C/EBPb LAP/LIP isoform ratio.

C/EBP transcription factors are known to affect the
expression of cell cycle regulatory genes controlled by
E2F transcription factors (Sebastian and Johnson 2006;
Nerlov 2007). Full-length C/EBPa (p42), but not the
N-terminally truncated isoform (p30), acts as a cell cycle
inhibitor by repressing E2F target genes (Slomiany et al.
2000; Porse et al. 2001; Iakova et al. 2003). For C/EBPb,
isoform-specific data on E2F coregulation is scarce and
suggested a corepressive function of LAP (Sebastian et al.
2005). A comparison of deregulated cell cycle genes in
regenerating C/EBPbDuORF liver to previously identified
E2F targets (Ishida et al. 2001; Ren et al. 2002; Bracken
et al. 2004) revealed that at least 42% of them were
known E2F target genes. Chromatin immunoprecipita-
tion (ChIP) analysis performed 36 h after PH showed that
both E2F3 and C/EBPb were associated with promoters of
underrepresented E2F target genes in regenerating liver
(E2F1, Rbl1 [retinoblastoma-like 1], CcnA2, CcnE1, Cdc2
[cell division cycle-associated 2], Cdc25, Mcm3 [mini-
chromosome maintenance-deficient 3], Mcm6, and Plk1
[Polo-like kinase 1]) (Fig. 5B). At the same time, C/EBPa
showed little or no association with these E2F target
gene promoters. Furthermore, transient down-regulation
of transcript and protein levels of C/EBPa after PH (Sup-
plemental Fig. S10) suggested a predominant role for
C/EBPb in the coregulation of many E2F target genes
in cycling hepatocytes. To examine the effect of indi-
vidual C/EBPb isoforms on E2F coregulation, we used an
E2F-responsive luciferase reporter construct that has
been employed previously to address the mechanism
of C/EBP-mediated E2F repression (Porse et al. 2001).
Luciferase activity induced by ectopic expression of

Figure 5. The C/EBPbDuORF mutation causes repression of E2F target genes. (A) Graphic representation of a genome-wide microarray expres-
sion analysis comparing transcript levels in C/EBPbWT and C/EBPbDuORF liver at 36 h after PH. (B) Representative ChIP assay on C/EBPbWT liver
chromatin showing the association of E2F3, C/EBPa, and C/EBPb to indicated gene promoters in regenerating liver at 36 h after PH (n = 2). (C)
Luciferase reporter assay demonstrating the repressive function of long (black bars), but not of truncated (open bars) C/EBPa and C/EBPb isoforms on
the pGL3TATAbasic-6xE2F reporter construct (n = 3). (luc) Luciferase activity; (p42 and p30) long and truncated C/EBPa isoforms. (D) Luciferase
reporter assay with constant, intermediately repressive C/EBPa p42 expression (luciferase activity set to 0.5) showing the corepressive function of
LAP* and LAP (black bars) and the derepressive function of LIP (open bars) on the same E2F-responsive reporter construct as used in C (n = 3). Error
bars show SEM.
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the transcription factors E2F1 and DP1 (dimerization
partner 1, conferring full activity to E2F1) was propor-
tionally repressed by increasing amounts of coexpressed
p42, LAP*, or LAP, but remained unaffected by coex-
pression of p30 or LIP (Fig. 5C). Importantly, the in-
hibition of E2F activity by p42 was effectively relieved
by coexpression of LIP, whereas increasing amounts of
LAP* or LAP further repressed reporter activity (Fig. 5D).

Liver regeneration defects observed in C/EBPb knockout
mice have been attributed to a lack of coactivating C/EBPb
function on E2F target genes (Greenbaum et al. 1998; Wang
et al. 2007). This interpretation contrasts data showing
E2F-repressive functions of LAP in vitro (Sebastian et al.
2005) and LAP-mediated retardation of hepatocyte cell
cycle entry after PH in mice (Luedde et al. 2004).
Our observations of impaired cell cycle entry in
C/EBPbDuORF livers and the rescue of this phenotype in
C/EBPbLIP mice suggest that long C/EBPb isoforms are
dispensable for accurate hepatocyte S-phase entry. The
data presented here imply a model in which uORF-
mediated induction of LIP is required to overcome re-
pression of E2F targets by long C/EBPa and C/EBPb
isoforms to facilitate rapid cell cycle entry during liver
regeneration.

The analysis of the C/EBPbDuORF mice proves the
physiological relevance of uORF-mediated translational
control in mammals. We note that low amounts of LIP
can be detected in C/EBPbDuORF mice, which might
originate from leaky ribosomal scanning over both the
LAP* and LAP start codons (Supplemental Fig. S1) or
from partial proteolytic cleavage (Baer and Johnson 2000).
Nevertheless, the lack of a functional C/EBPb uORF start
codon results in the inability to induce LIP expression
under inflammatory conditions, as well as during differ-
entiation and regeneration processes. Aberrant protein
expression caused by defective translational control is
increasingly recognized as a pathophysiological mecha-
nism in the etiology of human diseases (Scheper et al.
2007). Specifically, mutations affecting uORF-mediated
translational control have been connected to the devel-
opment of diseases such as hereditary thrombocythemia
(Wiestner et al. 1998), familial cutaneous melanoma (Liu
et al. 1999), or Marie Unna hereditary hypotrichosis (Wen
et al. 2009). The high prevalence of uORFs in human
transcripts (35%–49%) implies a comprehensive, yet
underestimated, cis-regulatory function in adjusting pro-
tein expression (Iacono et al. 2005; Calvo et al. 2009).
Future studies will have to address to what extent
aberrant uORF-mediated translational control accounts
for the development of disease, and how it can be targeted
by therapeutic intervention.

Materials and methods

Generation of C/EBPbDuORF and C/EBPbWT mice

Mutant (C/EBPbDuORF) and control (C/EBPbWT) mice were generated by

homologous recombination according to standard protocols (Supplemen-

tal Fig. S2). The neomycin cassette was removed by crossing C/EBPbDuORF

and C/EBPbWT mice to the Cre-deleter strain (Schwenk et al. 1995), and

the new strains were kept in a 129Ola 3 C57Bl/6 background. Female and

male mice showed the same phenotype and were analyzed as one group.

Mice were provided with standard mouse diet and water ad libitum on

a 12-h light–dark cycle. All procedures and animal experiments were

conducted in compliance with protocols approved by the Institutional

Animal Care and Use Committee.

Additional methods can be found in the Supplemental Material.
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