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Abstract

Currently, nine polyglutamine (polyQ) expansion diseases are known. They include

spinocerebellar ataxias (SCA1, 2, 3, 6, 7, 17), spinal and bulbar muscular atro-

phy (SBMA), dentatorubral-pallidoluysian atrophy (DRPLA), and Huntington’s disease

(HD). At the root of these neurodegenerative diseases are trinucleotide repeat muta-

tions in coding regions of different genes, which lead to the production of proteins

with elongated polyQ tracts. While the causative proteins differ in structure and

molecular mass, the expanded polyQ domains drive pathogenesis in all these diseases.

PolyQ tracts mediate the association of proteins leading to the formation of protein

complexes involved in geneexpression regulation, RNAprocessing,membrane traffick-

ing, and signal transduction. In this review, we discuss commonalities and differences

among the nine polyQ proteins focusing on their structure and function as well as the

pathological features of the respective diseases. We present insights from AlphaFold-

predicted structural models and discuss the biological roles of polyQ-containing

proteins. Lastly,we explore reportedprotein–protein interaction networks to highlight

shared protein interactions and their potential relevance in disease development.
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1 INTRODUCTION

Polyglutamine (polyQ) diseases are a group of neurodegenerative dis-

eases predominately caused by cytosine–adenine–guanine (CAG) trin-

ucleotide repeat expansion mutations in distinct gene coding regions

[1]. They include six spinocerebellar ataxia (SCA) types (SCA1, SCA2,

SCA3, SCA6, SCA7, and SCA17) [2, 3], spinal and bulbarmuscular atro-

phy (SBMA) [4], dentatorubral-pallidoluysian atrophy (DRPLA) [5], and

Huntington’s disease (HD) [6]. In the first half of this review,wewill dis-

cuss genetic, clinical, and pathogenic aspects of all nine polyQ diseases.

In the second half, we will focus on protein–protein interaction (PPI)

networks associated with polyQ-containing disease proteins to eluci-

date commonalities and differences among disease processes, and to

predict disease-drivingmechanisms.

1.1 CAG repeat expansion mutations in
protein-coding regions of genes cause
neurodegeneration and disease

A common feature of polyQ diseases is that the CAG expansions in the

respective disease genes are located in coding regions. This leads to the

production of the polyQ-expanded proteins ataxin 1 (ATXN1), ataxin

2 (ATXN2), ataxin 3 (ATXN3), calcium voltage-gated channel subunit

alpha1 A (Cav2.1; CACNA1A), ataxin 7 (ATXN7), TATA-binding pro-

tein (TBP), androgen receptor (AR), atrophin 1 (ATN1), and huntingtin

(HTT), in both neuronal and non-neuronal cells (Table 1). However, the

nine genes differ in their normal CAG repeat lengths, as well as their

pathogenic lengths (Table 1). In most of the affected genes, a CAG

repeat length of up to 30 CAGs is tolerated without disease mani-

festation. Interestingly, however, the genes CACNA1A and ATXN7 can

only tolerate between 4 and 18 CAGs without the appearance of dis-

ease symptoms (Table 1), suggesting that even relatively short polyQ

tracts in disease proteins can induce neurotoxicity. An important com-

mon feature of all polyQdiseases is the strong correlation between the

length of CAG repeats and disease onset. The longer the CAG repeat

tract, the earlier the disease onset and the more rapid the manifesta-

tion of symptoms [7, 8]. In the case of HD, it was recently reported that

the number of uninterrupted CAGs indeed determines the timing of

disease onset [9].

1.2 PolyQ diseases are rare, inherited diseases

PolyQ diseases are epidemiologically rare, affecting less than 50 indi-

viduals per 100,000. They all have autosomal dominant inheritance,

apart from SBMA, which is X-linked [8]. SCAs can result from CAG

repeat expansions, as well as from other genetic mutations and non-

genetic causes. To this day, 40 different SCA subtypes have been

described [10]. Pathologically expandedpolyQ tracts account for 36%–

82%of all SCAcaseswith geneticmutations. Globally, SCA3 is themost

common SCA subtype, accounting for 21% of all cases [11]. DRPLA,

TABLE 1 Details of polyQ repeat expansion diseases, the affected proteins, protein symbols, and the range of non-pathogenic and pathogenic
repeat lengths.

Disease Affected protein Protein symbol

Normal repeat

length

Pathogenic repeat

length

Spinocerebellar ataxia 1 (SCA1) Ataxin 1 ATXN1 6–34 39–88

Spinocerebellar ataxia 2 (SCA2) Ataxin 2 ATXN2 14–31 32–77

Spinocerebellar ataxia 3 (SCA3) Ataxin 3 ATXN3 12–40 55–86

Spinocerebellar ataxia 6 (SCA6) Calcium voltage-gated

channel subunit

alpha1 A (Cav2.1)

CACNA1A 4–18 21–33

Spinocerebellar ataxia 7 (SCA7) Ataxin 7 ATXN7 7–18 37–200

Spinocerebellar ataxia 17 (SCA17) TATA-box binding

protein

TBP 25–43 45–63

Spinal and bulbar muscular atrophy

(SBMA)

Androgen receptor AR 6–36 38–70

Dentatorubral-pallidoluysian atrophy

(DRPLA)

Atrophin-1 ATN1 3–38 49–88

Huntington’s disease (HD) Huntingtin HTT 6–35 36–121

Adapted from [7] and with results from [300]. ATXN1, ataxin 1; ATXN2, ataxin 2; ATXN3, ataxin 3; CACNA1A, calcium voltage-gated channel subunit alpha1

A (Cav2.1);ATXN7, ataxin 7; TBP, TATA-binding protein; ATN1, atrophin-1; HTT, huntingtin.
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which is also classified as amember of the SCA family, ismost prevalent

in the Japanese population, with a relative prevalence of 20% com-

pared to European-descendant pedigrees of 0% [11, 12]. SBMA is a

very rare polyQ disease, affecting one to two individuals per 100,000,

with a higher prevalence in South Korea, Finland, and Canada [13–16].

In comparison, HD is the most common of all polyQ diseases. It has

a significantly higher prevalence (5.7 per 100,000) in Europe, North

America, and Australia than in Asia [17]. In certain countries, like the

United States, the prevalence is estimated to be 15.2 per 100,000

individuals [18].

1.3 PolyQ diseases vary in age of onset

The average age of onset for most polyQ diseases is around 30 years

of age [19–21]. However, cases of early or late onset have also been

reported. For example, DRPLA patients with disease onset at 15–19

years [22] and also at ∼60 years have been described. The average

age of onset of SBMA is in the mid-40s, but the disease may manifest

as early as 18 and as late as 64 [23]. In HD patients, onset typically

occurs between 30 and 50 years of age, but cases of juvenile HD

with an onset as early as 18 months of age have been reported, usu-

ally when the CAG repeat is drastically expanded [24]. In some rare

cases, individuals with long CAG repeats may still exhibit a late onset,

suggesting that other genetic and/or environmental factors can sig-

nificantly influence disease onset. Recent genome-wide association

studies (GWAS) have identified numerous geneticmodifiers that either

shorten or delay the onset of HD [25, 26]. One such modifier is MutS

homolog 3 (MSH3): a key gene involved in DNAmismatch repair. A sin-

gle nucleotide polymorphism (SNP) inMSH3 is associated with slower

disease progression in HD patients [25]. Knockout of MSH3 in HD

mouse models reduced somatic expansion of CAG repeats and mutant

HTT (mHTT) aggregation [27, 28], supporting its relevance as a genetic

modifier.

1.4 PolyQ diseases exhibit both shared and
unique clinical phenotypes

In addition to similar genetic inheritance patterns and mostly adult

onset, polyQ diseases also share impaired muscle function, as a result

of the degeneration of different regions of the central nervous system

[7]. Some diseases also show cognitive impairment, such as SCAs (1, 2,

3, 6, 7, and 17) [29], HD [30], and DRPLA [31], while speech difficul-

ties are often observed in SCAs [32], SBMA [33], and HD [34]. Various

features, however, are unique to the individual diseases. For exam-

ple, DRPLA patients display choreoathetosis—involuntary twitching,

corneal endothelial degeneration, and cervical dystonia [35–38]. These

symptoms have not been reported in other polyQ diseases. In SBMA,

clinical phenotypes which are the direct result of androgen insensi-

tivity include gynecomastia, testicular atrophy, reduced fertility, and

erectile dysfunction [39]. HD patients may exhibit an early decline in

cognitive functions such as memory, attention, episodic learning, and

emotional processing [40–42]. Moreover, psychiatric symptoms often

precede diagnosis by 10 years inHD; these include depression, anxiety,

and obsessive compulsiveness [43].

1.5 PolyQ diseases display tissue-specific
neurodegeneration

The most prominent neuro-pathological feature of SCAs caused by

polyQ-expanded proteins (Table 1) is atrophy of Purkinje cells in

the cerebellum [44, 45], accompanied by atrophy of the brain stem,

cerebral cortex, and spinal cord [2, 46, 47]. MRI studies showed high-

intensity lesions in the cerebral white matter, brainstem, and thalamus

of DRPLA patients, indicating atrophy of the spinal cord and cere-

bellum [22, 48]. Patients affected by SBMA suffer from limb and

bulbar muscle atrophy, as well as a loss of lower motor neurons in

the spinal cord and brainstem motor nuclei [49]. Moreover, a recent

neuroimaging study of SBMApatients has reported structural changes

in the cerebellum [50]. The characteristic neuropathological feature

of HD is a progressive loss of the GABA-ergic medium spiny neurons

within the striatum [51]. MRI and post-mortem studies of HD patient

brains also found neurodegeneration in the cerebral cortex, thalamus,

cerebellum and brain stem [52, 53]. These findings cumulatively sug-

gest that the cerebellum is particularly vulnerable to polyQ-driven

neurodegeneration.

1.6 PolyQ diseases display protein aggregation as
a common molecular signature

Protein aggregates are a pathological hallmark of polyQ diseases, sug-

gesting that the process of protein misfolding and aggregation plays

a role in disease [54]. Protein aggregation collectively refers to the

formation of various aberrant protein structures including oligomers,

protofibrils, fibrils, and inclusion bodies, found in patient cells [55, 56].

Such protein aggregates have been detected in intranuclear as well

as cytoplasmic regions of the cell [57]. Various studies have reported

strong links between aggregates and disease pathology [58–60], while

others propose that aggregated polyQ-expanded proteins represent a

protectivemechanism [61]. Furthermore, it has beenproposed that the

soluble polyQ-expanded protein, rather than its insoluble aggregated

species, acts as a driver of cytotoxicity [57, 62].

Several studies have observed polyQ-expanded protein aggregates

in SCA1, 2, 3, 6, 7, and 17 [63–68]. These aggregates can localize to the

cytoplasm but are more commonly observed within the nuclei of neu-

rons and are often referred to as nuclear inclusion bodies [69–72]. In

DRPLA patients, intranuclear inclusions have been detected predomi-

nantly in cerebellar dentate nuclei, but are also observed throughout

different brain regions [73, 74]. Likewise, nuclear inclusion bodies

have been reported in brains of SMBA patients [75]. In HD, highly

aggregation-pronemutant huntingtin N-terminal fragments (mHTTNT)

were shown to promote the formation of misfolded toxic oligomers

and/or small fibrils in the brains ofHDpatients [76, 77]. ThesemHTTNT
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structures are detectable before symptom onset and function as seeds

for the formation of largermHTTNT aggregates [77]. Recently, residue-

specific NMR investigations have revealed that the polyQ tract in

soluble N-terminal HTT fragments adopts an α-helical structure, which
becomes longer and more stable with increasing polyQ length [78].

These α-helical structures are suggested to drive the formation of

stable oligomeric structures, ultimately leading to the assembly of

amyloidogenic fibrils [79]. Different HTT aggregate conformations

induced cytotoxicity when introduced into cell models [80]. Closer

examination of polyQ aggregates highlights the sequestering of other

proteins, such as ubiquitin, chaperone proteins, proteasome proteins,

and transcription factors [81, 82], within the aggregates. For exam-

ple, the CRB-binding protein CREBBP (CBP), tumor protein p53 (p53),

and mSin3a transcription factors were found in polyQ-expanded HTT

aggregates [83–86]. The presence of CBPwas also observed in nuclear

inclusions of SBMA patient tissues [87]. Sequestering of the general

transcription factor IIB (TFIIB) into inclusions has also been reported

in models of SCA17 [88]. Interestingly, TBP, the polyQ protein behind

SCA17, has been found in nuclear inclusions of SCA3 and DRPLA dis-

ease brains [89, 90]. Additionally, inclusions from SCA3 and DRPLA

disease brains are enriched with the transcription factors Sp1 and

TAFII130 [90].

1.7 PolyQ disease proteins are structurally
distinct

SCA1, SCA2, SCA3, SCA7, SCA6, SCA17, SBMA, DRPLA, and HD

are caused by mutations in the genes ATXN1, ATXN2, ATXN3, ATXN7,

CACNA1A, TBP, AR, ATN1, and HTT, respectively [3–6, 91–95]. They

do not share sequence motifs, except for the polyQ-expanded region.

Structural information would be conducive to a better understand-

ing of how the expanded polyQ tracts produced from CAG/CAA

repeats affect PPIs. To date, there is no high-resolution structural data

available for the polyQ-containing disease proteins, except for HTT.

About 90% of the open reading frame of full-length HTT was struc-

turally resolved by cryo-electronmicroscopy (cryo-EM) [96]. However,

advances in machine learning are enabling researchers to make struc-

tural predictions for proteins which are difficult to crystallize. One

such advancement is the structure prediction tool AlphaFold [97].

Since its release in 2021, various improvements have been made to

make predictions faster and more accessible [98]. We searched the

AlphaFold Protein Structure Database for the polyQ proteins and

specifically examined the structural configuration of the polyQ region

for each protein. Presently, all polyQ proteins, except HTT, can be

found in the AlphaFold database (Figure 1A–I). The absence of HTT

might be attributed to its large size, which generally requires greater-

than-average computing power. Nonetheless, there are two Cryo-EM

structures of HTT published; however, both lack the polyQ region

[96, 99]. In this review, we used the PDB 6X9O structure with a 2.6

Å resolution for comparisons [99]. Overall, the predicted models are

structurally distinct. ATXN3, CACNA1A, TBP, and HTT were predicted

to have a high degree of three-dimensional organization as exhibited

by distinct structural domains (Figure 1C, E, F, and I). ATXN1, ATXN2,

ATXN7, ATN1, and to some extent AR, were predicted to have only a

few folded domains, while a large fraction of the amino acid sequence

was disordered (Figure 1A, B, D, and H).

1.8 The polyQ region in disease proteins is
predicted to fold into an α-helix

Previous experimental work has suggested that the polyQ region

is flexible, adopting multiple conformations including a random-coil

[100–102], beta-sheet [103, 104], or alpha (α)-helical structure [102,

105–107]. Recently, studies using nuclear magnetic resonance (NMR),

circular dichroism (CD), and x-ray crystallography have cemented the

notion that polyQ regions predominantly adopt α-helical structures
in both polyQ disease proteins [108–112] and non-disease proteins

[113].

Regarding the features of this α-helical structure, studies of the

N-terminal fragment of AR have highlighted that there is a notable

increase in helical propensity upon polyQ expansion [110, 111, 114].

Similar findings have been reported for long polyQ tracts of HTT exon1

[78]. The increase in helicity is dictated by unconventional side-chain-

to-main-chain hydrogen bonds, donated by glutamine side chains to

the main-chain carbonyl of neighboring residues in the polyQ region,

which stabilize the α-helix [111, 115]. Interestingly, the strength of

these intramolecular AR polyQ interactions is dependent on the ability

of the acceptor residue to shield the glutamine side chains from com-

peting interactions with water molecules, suggesting that the α-helical
structure of the polyQ region is not only residue-specific but also influ-

enced by the local cellular environment [111]. The α-helical structure,
in both the AR andHTT exon1, is not uniformly distributed throughout

the length of the polyQ region; rather it has been found to decrease in

helicity from N- to C-terminus [110, 111, 116, 117]. This may be due

to the regions flanking the polyQ stretch and their effects on the heli-

cal structure. Recent NMR and CD studies of the N-terminal fragment

of AR have demonstrated a notable increase in helical propensity upon

polyQ expansionwhich is initiated by anN-terminal leucinemotif [110,

114, 115].

The poly-Q flanking regions may also influence the helical propen-

sity of the polyQ domain. Leucine residues can be found enriched at

the N-terminus of proteins with longer polyQ tracts [115]. Leucine

residues are hydrophobic and they form strong hydrogen bonds with

the hydrophilic glutamines in the N-terminus of the polyQ tract and

thus strengthenN-terminal helicity [111, 118]. Conversely, regions rich

in prolines were reported to occur typically at the C-terminus of the

polyQ tract [115, 119]. Interestingly, a flanking proline-rich region has

been demonstrated to reduce the stability of the polyQ region and

delay aggregate formation [107, 120–123]. The conservation of both

N-terminal leucine and C-terminal proline residues is hypothesized to

be an evolutionarily conserved “capping” mechanism which sterically

protects the α-helical polyQ domain against a structural transition into

a beta-sheet secondary conformation, preventing subsequent fibril

assembly and aggregation [107, 115, 124, 125].
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F IGURE 1 Predicted AlphaFold structures of polyQ disease proteins. (A) Predicted AlphaFold protein model of full-length ATXN1 (Human;
AF-P54253), (B) ATXN2 (Human; AF-Q99700), (C) ATXN3 (Human; AF-P54252), (D) ATXN7 (Human; AF-O15265), (E) CACNA1A (Human;
AF-O00555), (F) TBP (Human; AF-P20226), (G) AR (Human; AF-P10275), and (H) ATN1 (Human; AF-P54259). (I) Predicted AlphaFold protein
model HTT (HTTQ21(1–414)) from amino acids residues 1 to 413, containing 21 polyglutamines. Predicted HTTQ21(1–414) AlphaFoldmodel is
shown superimposedwith cryo-EM determinedHTT-HAP40 protein structure shown in gray (protein data bank ID 6X9O, 2.60 Å resolution [99],
where the polyQ regionwas not determined in the cryo-EM structure. HTTQ21(1-414) model aligns to a high degree to cryoEM structure.
Residues framed by black rectangle represent the wildtype polyQ region. Scale bar represents pLDDT values derived from the AlphaFold
prediction and represents a per-residue confidencemeasure [97]: pLDDT> 90, high accuracy; 90> pLDDT> 70modelled well; 70> pLDDT> 50
low confidence; pLDDT< 50 poor accuracy. AR, androgen receptor; ATN1, atrophin 1; ATXN1, ataxin 1; ATXN2, ataxin 2; ATXN3, ataxin 3; ATXN7,
ataxin 7; CACNA1A, calcium voltage-gated channel subunit alpha1 A (Cav2.1); cryo-EM, cryo-electronmicroscopy; HTT, huntingtin; pLDDT,
per-residuemodel confidence score; polyQ, polyglutamine; TBP, TATA-binding protein.
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Tocompare thepredicted foldingof thepolyQregion for all proteins,

we performed an AlphaFold prediction with the first 413 residues of

HTT that contain a polyQ21 region and superimposed it onto the PDB

6X9O cryo-EM structure [99], which lacks the polyQ region. This pre-

diction generated a structure with high per-residue confidence, while

the polyQ region, as expected, showed lower confidence (Figure 1I).

Comparing all polyQ regions, we found that the polyQ tract was dis-

ordered only in the predicted CACNA1A protein (Figure 1E). In strong

contrast, α-helical structures were obtained for the different polyQ

tracts in all other predicted models, supporting the hypothesis that

polyQ-containing regions in proteins may have a high propensity to

form α-helical structures [78, 126–128].
These predicted models also revealed that polyQ regions are typi-

cally flankedbydisordered regions, suggesting their ability to associate

with polyQ tracts or other domains present in interacting protein

molecules. This flexibility may facilitate the formation of stable coiled-

coil structures and promote oligomer assembly. Indeed, previous

studies have proposed that polyQ domains induce protein association

through stableα-helical coiled-coil structures [113, 129]. Furthermore,

the presence of coiled-coil structures within polyQ proteins them-

selves suggests a close relationship between polyQ domains and coiled

coils [112, 113, 130]. The coiled-coil domains (CCDs) of the proxi-

mal sequences strongly affect the structures and properties of the

polyQ tracts, influencing and often increasing their aggregation poten-

tial [113]. In fact, the17-residueN-terminusdirectly flanking thepolyQ

sequence in HTT has been shown to greatly enhance polyQ aggrega-

tion via an oligomerization process driven by helical interactions [131].

This helical coiled-coil conformation is proposed to be an intermediate

in the aggregation process [113]. On the other hand, an alanine-rich

region preceding the polyQ tract in ATXN7, which normally forms a

stable α-helix itself and can initiate the formation of α-helical polyQ
tracts, is suggested to suppress the aggregation of ATXN7 polyQ tracts

[132]. Taken together, the AlphaFold predictions, combined with mul-

tiple studies into the structures adopted by polyQ tracts of different

proteins, show not only a high likelihood for polyQ regions to fold into

α-helices but also that this folding is often dictated by the amino acids

flanking the polyQ tracts. The flanking sequences can have either sup-

pressive or enhancing effects on the aggregation propensities of long

polyQ regions in disease proteins.

Interestingly, when structurally mapped to full proteins, the polyQ

domain consistently resides at the protein surface, supporting its

potential role in mediating PPIs [112]. Thus, the α-helical structure of
the polyQ domainmay be seen as an extension of the helical structures

flanking it, thereby extending the polyQproteins’ coiled-coil secondary

structure whichmay be key in triggering the formation of PPIs.

1.9 PolyQ expansions influence cellular
localization of polyQ disease proteins

An intriguing aspect of the polyQ disease proteins is that nearly all

localize to the nucleus. While ATXN1, TBP, and ATXN2 are primarily

localized to the nucleus [133–135], ATXN3 and ATXN7 are predom-

inantly found in the cytoplasm, but generally shuttle between the

cytoplasm and the nucleus [69]. However, polyQ-expansion of ATXN3

and ATXN7 leads to their retention in the nucleus [136, 137]. In the

case of ATXN3, nuclear localization marks a crucial shift in the mani-

festation of SCA3 symptoms [138]. Similarly, AR moves between the

cytoplasm and nucleus [139]. Upon polyQ expansion, it too becomes

sequestered in thenucleus, potentially due to interactions between the

polyQ domain and the nuclear pore complex [140]. Among the polyQ

disease proteins, HTT and ATN1 both exhibit a dual presence in the

cytoplasm and the nucleus [141, 142]. mHTT tends to accumulate in

both the nucleus and cytoplasm; with early stage HD showing pre-

dominantly cytoplasmic aggregates, while juvenile HD patients exhibit

nuclear aggregates [59, 143]. ATN1 is mainly retained in the nucleus

following polyQ expansion [142]. In contrast to all other polyQ dis-

ease proteins, CACNA1A, a transmembrane subunit of the P/Q type

calcium channel Cav2.1, is exclusively associated with cellular mem-

branes [144]. PolyQexpansions inCACNA1A result in rare cytoplasmic

and nuclear aggregate formation [145].

1.10 PolyQ disease proteins interact with
multiple other cellular proteins

Proteins in cells form complex macromolecular assemblies to carry

out their specific tasks in biological systems, such as regulation of

gene expression, protein degradation, or energy production. Thus,

knowledge about PPIs of polyQdisease proteins is important to under-

standing genotype-to-phenotype relationships and the development

of human diseases [146, 147]. To gain information about interaction

partners of polyQ disease proteins, four widely used PPI databases

were queried (BioGRID [148], IntAct [149], STRING [150], and HIP-

PIE [151]). Based on the database queried, different numbers of human

PPIs were obtained for each protein. For STRING, which allows the

display of amaximum of 500 interactors and requires specifying a con-

fidence score, we used the default of 0.4, that is, medium confidence.

Within all PPI databases, HTT and AR had the highest number of pro-

tein interactors, while ATN1 and ATXN7 had the lowest (Figure 2A).

ForHTT, bothBioGRIDandSTRINGshoweda lowernumberof interac-

tors (452 and 470, respectively), while HIPPIE and the IntAct database

contained the most PPI annotations (1099 and 1196, respectively).

However, when a specificHTTPPI database (OMNI) [152]was queried,

a total of 3392 PPIs were found to be annotated across all organisms,

with 260 recorded as human HTT interactors (Figure 2B). This sug-

gests that the vastmajority ofHTT interactors are derived fromstudies

using mouse, yeast, or other models. Based on the BioGRID database,

the AR protein has the second highest number of protein interac-

tors annotated, at 952 (Figure 2A). This is followed by ATXN1 with

630 interactors and ATXN3 with 515. For TBP and AR, the STRING

database shows 500 interactors, themaximumnumber of results it can

display. For ATXN2 (301), CACNA1A (219), ATXN7 (157), and ATN1

(179), STRING showed fewer interactors compared to the other polyQ
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F IGURE 2 Proteomic scales of polyQ disease proteins based on PPI databases. (A) PPI databases (BioGRID, HIPPIE, IntAct, STRING) were
queried for the total number of human protein interactors. For BioGRID, HIPPIE, and IntAct no confidence filtering was performed. For the online
site of STRING, a confidence score of 0.4 and amaximum of 500 interactors were selection criteria. STRING is limited to displaying 500 total
interactors. The bold dashed line denotes 500 interactors, the red dashed line 100 interactors. (B) The HTT PPI databaseOMNIwas queried to
obtain the total number of protein interactors for human and all organisms (e.g. mouse, yeast, human, etc.). Total HTT protein interactors from (A)
were included for comparison. HTT, huntingtin; PPI, protein–protein interaction; polyQ, polyglutamine.

diseaseproteins. This assessmentof total numberof human interactors

highlights the differences in how PPI databases annotate and curate

data. An important aspect influencing the number of interactors is how

extensively a protein of interest has been studied. For HTT, many net-

work mapping studies have been carried out in the last 30 years in

human, mouse, and yeast models, using classical and advanced pro-

teomic approaches, towhichweowe the large number of reportedHTT

interactors.

1.11 PolyQ disease proteins have diverse
biological functions

The number of reported protein interactors does not permit assertions

about the confidence of interactions, involvement in specific path-

ways, or functional enrichment. Since STRING provides interaction

confidence scoring, we queried the database to generate protein net-

work maps for polyQ disease proteins based on the following criteria:

human data, physical subnetwork, interaction confidence score of 0.7

or higher, and maximum size of 25 nodes. The resulting maps were

subjected to an enrichment analysis for GO biological process using

ShinyGO [153] to obtain an overview of the main functions for each

polyQ disease protein (Figure 3A–H).

An enrichment analysis for ATN1 was not possible due to the

limited number of PPIs within the network. Analysis of the ATXN1,

ATXN2, ATXN7, and TBP protein networks highlighted an enrichment

for PPIs involved in gene expression (Figure 3A, B, D, and F). Specifi-

cally, ATXN1PPIswereassociatedwithRNAprocessing (GO:0006396)

and negative regulation of transcription by RNA polymerase II

(GO:0000122), implying a role in suppressing transcription (Figure 3A).

Similarly, ATXN2 PPIs were linked to the assembly of stress granules

(GO:0034063) and P bodies (GO:0033962), which sequester mRNA

[154], suggesting involvement in the negative regulation of transcrip-

tion (Figure 3B). Conversely, TBP PPIs predominantly relate to RNA

polymerase II preinitiation complex assembly (GO:0051123), indicat-

ing a role in the initiation of transcription (Figure 3F). Similarly, ATXN7

PPIs were strongly associated with histone acetylation (GO:0043966

and GO:0016573), indicating a role in encouraging transcription by

altering chromatin accessibility (Figure 3D).

In contrast, enrichment analysis of the ATXN3, CACNA1A, and

AR networks emphasized their involvement in specific biological

processes (Figure 3C, E, and G). For instance, ATXN3 PPIs showed

a notable enrichment for aggrephagy proteins (GO:0035973) and

protein deubiquitination (GO:0016579), suggesting a significant

role in protein clearance mechanisms (Figure 3C). CACNA1A PPIs

were primarily associated with calcium ion transmembrane trans-

port (GO:0070588) (Figure 3E), while AR PPIs were linked to

steroid hormone-related processes (GO:0030518, GO:0071383,

and GO:0048545) (Figure 3G). Lastly, HTT PPIs were chiefly

enriched in vesicular localization and trafficking (GO:0051650,

GO:0051648, and GO:0099518), indicating the involvement of HTT

in regulating vesicular transport (Figure 3H). Additionally, HTT PPIs

showed enrichment of protein stability regulation (GO:0031647)

and metabolic pathways/processes that break down molecules

(GO:0009895, GO:0031329, and GO:0051248), such as autophagy

(GO:0010506).

Most of the polyQ disease protein networks, namely those of

ATXN1, ATXN2, ATXN7, and TBP, exhibited a significant involvement

in gene expression regulation, notably through histone modification

(GO:0016570), regulation of transcription from RNA polymerase II

promoters (GO:0000122, GO:0006367), or via regulation of transla-

tion (GO:0006412). Although not represented as an enriched process,

HTT has been found to modulate transcription [128, 155], and the AR

protein is a well-characterized ligand-dependent nuclear transcription
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F IGURE 3 PolyQ disease proteins exhibit diverse biological functions. GO biological processes enrichment analysis for (A) ATXN1, (B) ATXN2,
(C) ATXN3, (D) ATXN7, (E) CACNA1A, (F) TBP, (G) AR, and (H) HTT using ShinyGO 0.77 [153]. Protein networks used for enrichment analysis are
based on the STRINGPPI database using the following criteria to query for high-confidence proteins: human physical subnetwork with amaximum
25 interactors and a confidence score of 0.7. The analyzed PPI networks are shown in Figure 4. Lollipop graphs show fold enrichment in the x-axis;
size of circular node indicates number of total genes that constitute the GO biological process. Color represents false discovery rate (FDR) as
log10 (Blue= low, Green= high). AR, androgen receptor; ATXN1, ataxin 1; ATXN2, ataxin 2; ATXN3, ataxin 3; ATXN7, ataxin 7; CACNA1A, calcium
voltage-gated channel subunit alpha1 A (Cav2.1); HTT, huntingtin; polyQ, polyglutamine; PPI, protein–protein interaction; TBP, TATA-binding
protein.
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factor [156]. Moreover, ATXN3 was found to control transcription by

regulating chromatin structure [157] and the CACNA1A bicistronic

gene was found to encode for α1ACT, a transcription factor containing
the polyQ region that promotes cerebellar development [158]. This

finding highlights shared biological processes among the polyQdisease

proteins and aligns with existing literature which has described polyQ

proteins as pivotal regulators of transcription [159–161].

2 PROTEIN NETWORKS

2.1 ATXN1 binding to the transcriptional
repressor CIC drives pathogenesis in SCA1 models

ATXN1 is a protein implicated in two primary pathways related to

gene expression [162] and RNA metabolism [163]. Examining physical

human PPIs with a high confidence using STRING reveals a network of

ten ATXN1 interactors (Figure 4A). Among the interactors is the tran-

scriptional repressor capicua (CIC). CIC was shown to interact directly

with native ATXN1 to form a complex in vivo [162]. This ATXN1/CIC

complex is highly expressed in the nuclei of Purkinje cells, which are

the most vulnerable neurons affected in SCA1 [162]. PolyQ expan-

sion of ATXN1 alters CIC’s repressor activity through a toxic gain of

function, resulting in increased repression of CIC target genes [162,

164]. Intriguingly, a 50% reduction in CIC levels in ATXN1 154Q mice

alleviates behavioral symptoms and Purkinje cell loss [165]. Moreover,

preventing ATXN1/CIC binding with ATXN1 mutations showed a par-

tial rescue of cerebellar phenotypes, motor coordination, respiration,

and lifespan in SCA1mousemodels [164, 166]. These findings strongly

implicate the ATXN1/CIC complex in contributing to polyQ-mediated

proteotoxicity in SCA1.

2.2 ATXN2 is a stress granule protein implicated
in RNA processing

Assessing human PPIs with a high confidence using STRING reveals a

network of 14 ATXN2 interactors (Figure 4B). Among these interac-

tors is an endocytic adaptor called SH3 domain containing GRB2 like

2, endophilin A2 (SH3GL2). ATXN2 has been shown to be involved

in endocytic receptor cycling [167], where it associates with the

endocytic adaptors endophilin A1 and A3 (SH3GL2 and SH3 domain

containing GRB2 like 2, endophilin A3 [SH3GL3]). This leads to the

formation of an endocytosis complex that negatively regulates the

endocytic internalization of the epidermal growth factor receptor

at the plasma membrane [168]. Another interactor is the GTPase-

activating protein-binding protein 1 (G3BP1) (Figure 4B). G3BP1 plays

a significant role in the formation of stress granules [169], as well as in

mRNA stabilization [170], and degradation [171].

A noteworthy ATXN2 interactor is the poly(A)-binding protein 1

(PABPC1) (Figure 4B), theC-terminal region ofwhich consists of fiveα-
helices [172]. Studies show that PABPC1 regulatesmRNA degradation

andmaturationby interactingwith thepoly(A) tail ofmRNAs [173]. The

interacting proteins ATXN2 and PABPC1were found to be localized to

stress granules [174]. The interaction between these two proteins was

also reported to be mediated by a C-terminal intrinsically disordered

region in ATXN2. Furthermore, it was shown that the ATXN2-PABPC1

interaction promotes lengthening of poly(A) tails in targetmRNAs, sup-

porting a functional role of ATXN2 in transcriptional regulation [175].

Interestingly, polyQ-expanded ATXN2 has been found to sequester

PABPC1 into inclusion bodies with protein aggregates [176], suggest-

ing that a loss function of the ATXN2-PABPC1 protein complex plays

a role in disease development. Lastly, it is also interesting to note that

the ATXN2 protein network (Figure 4B) includes interactions between

ATXN2andproteins that regulate alternative splicing such as cytotoxic

granule associated RNA binding protein (TIA1) [177], RNA binding

fox-1 homolog 1 (RBFOX1) [178], and the RNA helicase DDX6 [179]

further affirming the involvement of ATXN2 in maintaining the overall

homeostasis of RNA in the cell.

2.3 ATXN3’s polyQ domain and deubiquitinating
activity are essential for BECN1 binding and
promotion of autophagy

ATXN3 contains a conserved Josephin domain that facilitates the

deubiquitination of proteins with polyubiquitin chains. Interestingly,

polyQ-expansions in ATXN3 reduce its deubiquitinase activity [180].

Among the STRING protein network of high-confidence ATXN3 inter-

actors are several proteins involved in protein-ubiquitination such as

parkin [181], ubiquitin [182], and ubiquilin-1 [183]. Moreover, ATXN3

interacts with RAD23 homolog A, nucleotide excision repair protein

(RAD23A) and RAD23 homolog B, nucleotide excision repair protein

(RAD23B), which are subunits of the ubiquitin-proteasome system

[184–186] (Figure 4C).

Another high-confidence interactor of ATXN3 is beclin 1 (BECN1),

a key inducer of autophagy [187] (Figure 4C). It was found that BECN1

interacts with the polyQ tract of ATXN3 [180]. This polyQ-mediated

interaction facilitates the deubiquitination of BECN1, protecting it

from proteasomal degradation and allowing autophagosome biogene-

sis to proceed [180]. The expression of polyQ-expandedATXN3 results

in increased binding to BECN1 but reduces BECN1 deubiquitination,

which leads to impaired starvation-induced autophagy [180]. More-

over, it was shown that wildtype andmutant ATXN3 compete for bind-

ing with BECN1, with the mutant ATXN3 negatively interfering with

the wildtype ATXN3-BECN1 interaction [188]. Interestingly, BECN1

contains a CCD and forms an anti-parallel coiled-coil homodimer

in the absence of interactions with other CCD-containing or α-helical
proteins [189]. Given that polyQ domains are known to adopt α-helical
structureswith a propensity for coiled-coil interactions [113], it is plau-

sible that the expanded polyQ domain of mutant ATXN3 might exhibit

stronger coiled-coil-mediated interactions with BECN1 compared to

wild-type ATXN3. Conversely, overexpression of BECN1was shown to

lead to the clearance ofmutant ATXN3 [190], the prevention ofmutant
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F IGURE 4 STRING high-confidence protein networks of polyQ disease proteins. Protein networks for (A) ATXN1, (B) ATXN2, (C) ATXN3, (D)
ATXN7, (E) TBP, (F) CACNA1A, (G) ATN1, (H) AR, and (I) HTT. Nodes denote proteins and the edges represent interactions within the nodes.
Protein networks based on the STRING PPI database were queried for high-confidence proteins using the following criteria: human physical
subnetwork with amaximum of 25 interactors and a confidence score of 0.7. AR, androgen receptor; ATN1, atrophin 1; ATXN1, ataxin 1; ATXN2,
ataxin 2; ATXN3, ataxin 3; ATXN7, ataxin 7; CACNA1A, calcium voltage-gated channel subunit alpha1 A (Cav2.1); HTT, huntingtin; polyQ,
polyglutamine; PPI, protein–protein interaction; TBP, TATA-binding protein.
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ATXN3-induced neurodegeneration, and the reduction of ATXN3

aggregate formation [191]. Thus, expanded polyQ tracts in ATXN3

likely perturb autophagy in neuronal cells, potentially contributing to

pathogenesis.

2.4 ATXN7 is a key component of the STAGA
transcriptional coactivator complex

The ATXN7 protein network is composed of highly connected proteins

involved in transcription regulation (Figure 4D). Core structural com-

ponents of the SPT3-TAFII31-GCN5L acetylase (STAGA) complex are

represented in the ATXN7 protein network (TATA-box binding pro-

tein associated factor 9 [TAF9], transformation/transcription domain

associated protein [TRRAP], TATA-box binding protein associated fac-

tor 12 [TAF12], and TATA-box binding protein associated factor 5L

[TAF5L]) (Figure4D). TheSTAGAcomplex is responsible forbothacety-

lating and deubiquitinating histones, thereby controlling transcription,

with ATXN7 as one of its vital components [192–195]. ATXN7 plays

an important role in the assembly and stability of the STAGA complex

and functions as a transcriptional coactivator [196]. Studies have found

that ATXN7 interacts with TAF9, TRRAP, TAF12, and TAF5L through

its C-terminus [196]. Expansion of the polyQ domain in ATXN7 dis-

rupts the assembly of a fully functional complex, reducing its ability to

acetylate histone H3. This suggests that polyQ-expanded ATXN7 per-

turbs the general control non-depressible 5 (GCN5)-mediated histone

acetyltransferase activity of the complex, leading to transcriptional

dysfunction in neurons of SCA7 patients [196].

2.5 Expansion of TBP’s polyQ domain disrupts
transcriptional activity

Examining theTBPPPInetwork, one can see thatTBP interacts directly

with multiple general transcription factors (GTFs) and TBP-associated

factors (TAFs) (Figure 4E). Moreover, this protein network is highly

interconnected, suggesting that all TBP-associated proteins are func-

tionally linked. In fact, TBP togetherwith 13TAFs (TAF1-13) constitute

the TFIID, a large multiprotein assembly that plays a crucial role in

recruiting other subunits of the transcription factor complex to assem-

ble the core pre-initiation complex required for transcription initiation

[197, 198]. One noteworthy interaction partner is the transcription ini-

tiation factor IIB (GTF2B) protein [199], for which TBP serves as the

DNA-binding subunit. Studies have shown thatTBPbindsGTF2Bvia its

C-terminal domain inorder to formpre-initiation complexes [200, 201].

Intriguingly, nuclear inclusions with polyQ-expanded TBP were found

to contain GTF2B; and co-immunoprecipitation experiments revealed

enhanced binding of polyQ-expanded TBP with GTF2B compared to

non-pathogenic controls [88]. This suggests that abnormal TBP/GTF2B

interactions affect promoter occupancy and exert downstream effects

on the transcription of damage control proteins, such as heat shock

proteins [88].

2.6 CACNA1A plays a role in calcium regulation
and its bicistronic gene product functions as a
transcription factor

The CACNA1A gene encodes an alpha1a subunit of the P/Q type

voltage-sensitive calcium channel (VSCC) known as Ca(V)2.1 [202].

VSCCs are transmembrane channels that regulate the entry of cal-

cium ions into cells, playing essential roles in calcium-dependent

processes such as muscle contraction, hormone or neurotransmitter

release, gene expression, and cell death [203]. It was determined that

CACNA1A is responsible for pore formation, facilitating the transport

of calcium in and out of Purkinje cells [204].

Unsurprisingly, the majority of the high-confidence PPIs are

involved in calcium signaling pathways (Figure 4F). These include

calcium voltage-gated channel subunit alpha1 B (CACNA1B), C

(CACNA1C), and CACNA1E, which regulate calcium binding and the

pore-forming function of CACNA1A [203]. Additionally, CACNA1A

interacts with calmodulin, a protein encoded by three separate genes:

calmodulin 1 (CALM1), calmodulin 2 (CALM2), and calmodulin 3

(CALM3) [205], which play a crucial role in the calcium signal trans-

duction pathway and canmodulate the activity of theCa(V)2.1 channel

[206].

To date, studies have mostly focused on the general perturbation

of the P/Q-type calcium channel caused by the polyQ expansion in

the CACNA1Aprotein [207–209]. Further investigations exploring the

polyQ dependency of CACNA1A interactions are warranted. A partic-

ular focus can be placed on the interactors of the bicistronic CACNA1A

gene product that expresses a transcription factor called α1ACT. This
CACNA1A-associated protein was shown to coordinate a gene expres-

sion program involved in Purkinje cell development [158]. The α1ACT
transcription factor also contains a polyQ domain andwhen expanded,

can cause SCA6 pathology [158, 210]. Thus, besides investigating the

polyQ-expanded CACNA1A protein and its interactions, unveiling the

α1ACT interactome may yield mechanistic insights into the disease

process and facilitate the development of therapeutic approaches.

2.7 ATN1 has links to transcription factors and
insulin signaling pathways

The specific subcellular activities of ATN1 currently remain largely

unknown. However, there is some evidence pointing toward a role

of this polyQ-containing protein as a transcriptional co-repressor

[211–213] and as a facilitator of early striatum development [214].

When assessing the physical human PPIs network of ATN1, only two

high-confidence validated PPIs were identified (Figure 4G): nuclear

receptor subfamily 2 group E member 1 (NR2E1) and brain-specific

angiogenesis inhibitor 1-associated protein 2 (BAIAP2). Notably, these

two proteins are not associated with one another but only share ATN1

as a common interactor (Figure 4G).

NR2E1 is a DNA-binding protein [215] that belongs to the orphan

nuclear receptor family, a group of ligand-dependent transcription
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factors [216, 217]. NR2E1 mediates transcriptional repression

through histone modification via interactions with lysine-specific

histone demethylase 1 (LSD1) [218]. Research has shown that the

ligand binding domain (LBD) of NR2E1 is required for interaction with

the C terminus of ATN1 [213]. Deletion of the last 45 amino acids of

the LBD domain abolished the transcriptional repression activities

of NR2E1. This shows that ATN1 binding to NR2E1 is important for

NR2E1-mediated transcriptional repression. However, the impact of

pathogenic ATN1 polyQ expansions on its interaction with NR2E1

remains to be studied.

The second interactor, BAIAP2 (also known as insulin receptor

substrate protein 53 – IRSp53), is an adaptor protein that connects

membrane-bound G-proteins to effector proteins in the cytoplasm

[219] (Figure 4G). It is ubiquitously expressed in excitatory synapses

and has been theorized to be important for synapse development

and plasticity [219]. Moreover, insulin receptor substrates generally

form pre-assembled complexes and play a role in signal transduction

pathways and actin organization [220]. Via its SH3 domain, BAIAP2

binds to a proline-rich region in ATN1 that is close to the ATN1

polyQ region [221]. Galactose-responsive transcription factor GAL4

(GAL4)-yeast two-hybrid experiments demonstrated that when ATN1

harbored an expanded polyQ tract it can still interact with BAIAP2 but

with significantly reduced beta-galactosidase activities [221]. These

results suggest that the polyQ expansion might reduce the stability

of the interaction between BAIAP2 and ATN1, ultimately resulting in

impairment of the insulin growth factor 1 signaling pathway.

2.8 AR is a ligand-dependent transcription factor
requiring heat-shock protein binding for its function

The AR protein network generated using STRING (Figure 4H) resulted

in 25 high-confidence interactors that can be categorized into three

distinct groups of differing functions. The first group includes post-

translational modifiers, such as mouse double minute 2 homolog

(MDM2); the second includes nuclear receptor coregulators, nuclear

receptor corepressor 1 (NCOR1), 2 (NCOR2), NCOA1, NCOA2, and

NCOA4. The third group comprises molecular chaperones, including

multiple heat shock proteins (Figure 4H). Two notable interactors,

SRC and the lysine-specific histone demethylase 1A (KDM1A), have

been found to exhibit enhanced activity upon polyQ expansion in AR

[222, 223]. Some of the heat shock proteins represented in the net-

work are the heat-inducible molecular chaperone heat shock protein

90 (HSP90), along with its isoforms heat shock protein 90 family class

A member 1 (HSP90AA1) and heat shock protein 90 family class B

member 1 (HSP90AB1) (Figure 4H). Members of the HSP90 protein

family facilitate the refolding of misfolded proteins, prevent aggrega-

tion, and significantly contribute to the overall maintenance of cellular

proteostasis [224]. Upon binding to a hormone ligand, AR undergoes

a conformational change driven by HSP90, adopting a DNA-binding-

competent conformation [225]. The AR is then translocated to the

nucleus in anHSP90-dependentmanner [225]. Therefore,HSP90plays

an indispensable role in ensuring the proper functioning of AR. Stud-

ies with SBMA mouse models identified an increased occurrence of

polyQ-expanded AR in complex with HSP90 and its co-chaperone p23,

compared to wild-type AR [226]. Structural studies have revealed a

model of HSP90-p23 which binds to the glucocorticoid steroid hor-

mone receptor (GR) via a 13-residue α-helical tail [227]. This tail was
previously believed to be an unstructured region at the C-terminus of

p23. Notably, the residues involved in this p23:GR interface are con-

served across different steroid hormone receptors, including AR in

vertebrates, and are essential for HSP90 binding [227]. Therefore, it is

plausible that the increased occurrence of HSP90 in complex with AR

may be influenced by an enhanced interaction between the α-helical
tail of p23 and the α-helical structure of the polyQ region of AR, pos-

sibly through coiled-coil interactions. Interestingly, treatment with the

HSP90 inhibitor 17-AAG resulted in a preferential degradation of both

monomeric and aggregated mutant AR by the proteasome, amelio-

rating SBMA motor phenotypes [226]. Modulation of polyQ-induced

AR toxicity through HSP90 inhibitors may therefore be a potential

therapeutic avenue for treating SBMA [228].

2.9 HTT plays a role in vesicular trafficking and
transcriptional regulation

HTT is a highly conserved and ubiquitously expressed protein with

diverse subcellular functions [229, 230]. Evidence implicates HTT in

axonal transport [231], vesicular trafficking [232], cell division [233],

endocytosis [234], autophagy [235], and transcriptional regulation

[236]. Thismultifaceted function ofHTT is also reflected in its STRING-

generated high-confidence PPI network (Figure 4I). Firstly, multiple

interactors of HTT are proteins involved in vesicular trafficking and

cytoskeletal organization, such as 40-kDa huntingtin-associated pro-

tein HAP40 (F8A1), SH3GL2, and SET domain-containing 2 (SETD2)

[168, 237, 238]. Interestingly, although these proteins have similar

functions, they do not actually associate with one another (Figure 4I).

F8A1, commonly referred to as HAP40, is a protein whose function is

not yet fully understood. Studies in cell models have shown that HTT

and HAP40 form a complex and that their expression levels within

the cell are coupled. Also, structural studies on the complex revealed

that they form a stable heterodimer [99]. This complex can function

as a RAB5A, member RAS oncogene family (Rab5) effector, regulat-

ing cytoskeleton-dependent endosome formation and dynamics [237].

These results suggest that the HTT/HAP40 complex is implicated in

regulating cytoskeleton-dependent endosome dynamics.

Another interaction partner of HTT is the methyltransferase

SETD2 protein. It is a lysine methyltransferase responsible for

posttranslational modifications on histone H3 [239] but was recently

found to also regulate microtubule dynamics via trimethylation

of alpha-tubulin [240]. SETD2 was also shown to methylate actin

through its interaction with HTT and the huntingtin interacting pro-

tein 1 related protein (HIP1R) [238], which is also a high-confidence

HTT interactor (Figure 4I). Disruption of the interactions between

SETD2-HTT-HIP1R resulted in inhibition of actin filament methyla-

tion, culminating in defective actin polymerization and impaired cell
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migration [238]. Interestingly, the HTT PPI network shows no direct

interaction between SETD2 and HIP1R (Figure 4I). This most likely

means that the formation of this complex is highly dependent on HTT

being the link between SETD2 andHIP1R.

The HTT protein network also contains multiple interaction part-

ners whose main functions are transcriptional regulation, such as p53,

CREBBP (also known as CBP), lysine acetyltransferase 2B (KAT2B),

transcription elongation regulator 1 (TCERG1), and SP1 (Figure 4I).

Some of these interactors have also been shown to interact with one

another (Figure 4I). HTT and p53 directly interact via the N-terminus

of HTT and the C-terminus of p53, regardless of the polyQ length in

HTT [86]. However, upon polyQ expansion, the transcription factor

activity of p53 is greatly diminished [86]. It is important to note

that p53 transcription is coactivated by CBP, a polyQ-containing

transcription factor. CBP interacts with residues 1–73 in p53 [241].

Interestingly, this region in p53 is structurally similar to the expanded

HTT exon1, suggesting that CBP and HTT potentially compete for p53

binding in cells. In cell-based assays, recruitment of CBP into inclu-

sion bodies with pathogenic HTTex1 aggregates has been reported

[85]. Furthermore, there is a noticeable decrease in transcription of

p53-regulated promoters when pathogenic HTTex1 aggregates are

formed in cells; and transcription factors, such as CBP or p53, are

recruited into inclusion bodies [86]. Moreover, studies have shown

that mHTT can also directly interact with multiple histone acetyl-

transferases, including KAT2B, and associates with p53 repressing its

transcriptional activity [242], as evidenced by their tight association

within the HTT PPI network (Figure 4I). All in all, mHTT, p53, and

CBP have been shown to co-aggregate and polyQ expansions in

N-terminal HTT fragments have been shown to cause a significant

repression of p53 transcriptional activity. These molecular changes

may eventually lead to cellular toxicity and neuronal dysfunction inHD

patients [83].

By functionally analyzing the HTT gene promoter, researchers have

beenable to identify the transcriptional regulator Sp1,whichalso inter-

acts with the HTT protein [243, 244]. Strikingly, Sp1 is also a validated

high-confidence interactor of CBP and p53 (Figure 4I), supporting the

link between HTT and proteins that regulate gene transcription. Sp1 is

responsible for regulating the transcription of multiple housekeeping

genes and is required for normal embryonic development [245]. Thus,

HTT with expanded polyQ tracts, through its direct interactions with

Sp1 (Figure 4I), may disrupt the transcriptional activity of Sp1 [246].

However, later studies with HD transgenic mice did not confirm this

hypothesis [247]. These conflicting results indicate that there is still a

gap in the molecular understanding of the HTT-Sp1 interaction and its

relevance for HD development.

Lastly, transcriptional elongation regulator 1 (TCERG1) was iden-

tified as a direct interaction partner of HTT (Figure 4I). This protein

is highly conserved and regulates the expression of multiple genes

by coupling transcriptional elongation with splicing [248]. Other

investigations showed that TCERG1 overexpression can indeed rescue

mutant HTT neurotoxicity and delay striatal cell death [249]. Inter-

estingly the TCERG1 gene contains a short tandem repeat tract of 38

hexanucleotides (CAGGCC). Recent studies revealed that there is a

significant correlation between the age of onset of HD and the sum

of the repeat lengths from both alleles in the TCERG1 gene [250]. It

is important to note that TCERG1 was identified in a GWAS to be a

geneticmodifier ofHD [9, 250].More specifically, the longer the repeat

hexamer of TCERG1 is, the earlier the age of disease onset. However,

more research is required to better understand how TCERG1 influ-

ences the onset of HD and how its interaction with mHTT affects

pathogenesis.

2.10 HTT is highly connected to other polyQ
disease protein networks

Our GO term enrichment analysis suggested that protein interac-

tion networks with a central polyQ disease protein share common

protein interactors (Figure 3). Therefore, we examined direct and indi-

rect links between individual polyQ disease proteins, such as HTT,

ATXN1, ATXN3, or TBP, by merging and analyzing the high-confidence

STRING-based protein networks. The CACNA1A and ATN1 protein

networks stood out because they lacked any common interactors with

the other seven networks (Figure 5A). This may be explained by the

fact that both polyQ proteins have very specific subcellular functions

in comparison to the others. Furthermore, their partner proteins do

not connect (Figure 4). It may also well be that the interaction net-

works of CACNA1A and ATN1 are still too small to find overlapping

PPIs. For ATN1, only two high-confidence interaction partners have

been described to date (Figure 5A), indicating that it is the most

understudied protein among the polyQ disease proteins in terms of

its interactions. A literature review for additional ATN1 interactors

yielded only glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as

a potential common interactorwithHTT, albeit this interaction remains

to be validated [251].

A common interactor, inositol 1,4,5-trisphosphate receptor type

1 (ITPR1), was detected for HTT, ATXN2, and ATXN3. ITPR1 is a

member of the inositol trisphosphate receptor (IP3)-receptor family

that forms a calcium channel in the endoplasmic reticulum [252].

This protein is highly expressed in Purkinje cells and experimental

evidence has confirmed that deletions in the ITPR1 gene can cause

SCA (SCA15) [253]. Perturbations in IP3 have also been reported

in other neurodegenerative diseases, such as familial Alzheimer’s

disease, autosomal dominant sensory ataxia, and SCA29 [254]. The IP3

receptor was shown to function as a nodal point for cellular signaling

pathways, such as secretion, gene expression, and cell growth [255].

Regarding its interactions with ATXN2 and ATXN3, ITPR1 appears

to show a preference for the expanded polyQ proteins over the wild

type [256, 257]. Moreover, polyQ-expanded HTT specifically binds to

and activates the ITPR1 calcium channel [258, 259]. The interaction

patterns of ITPR1 highlight a common interactor among the different

polyQ disease proteins, suggesting that perturbed calcium signaling

in neurons may play a role in the development of neurodegenerative

diseases, such as SCA2, SCA3, and HD.

Additionally, the merged networks revealed HTT as central protein

interaction hub that holds direct and indirect connections to six other
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F IGURE 5 Merged protein networks of polyglutamine (polyQ) disease proteins. (A)Merged protein networks from Figure 4A–I. Individual
protein networks are illustrated with a different node color. Nodes with red color represent a shared interaction between polyQ protein networks.

polyQ disease proteins (ATXN1, ATXN2, ATXN3, ATXN7, TBP, andAR).

The majority of proteins linking HTT to other polyQ proteins are pro-

teins with a functional role in gene transcription activation/repression,

such as CREBBP (Figure 5A). CREBBP functions as a histone

acetyltransferase with transcriptional co-activator activity and

promotes transcription of various target genes [260]. It was found

to associate with the promoter regions of over 16,000 genes [261].

Additionally, CREBBP can bind to TBP and GTF2B (a TBP interactor)

[260], as well as HTT [86]. Moreover, CREBBP binding to CREB1, a

common HTT and AR interactor, has been described [262]. Another

histone acetyltransferase protein that connects HTT to ATXN7 and

TBP isKAT2B. In fact, KAT2B is a subunit of a histone acetyltransferase
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module of the human Ada-two-A-containing (ATAC) complex, a coac-

tivator complex composed of SAGA complex associated factor 29

(SGF29), transcriptional adaptor 3 (TADA3), and transcriptional adap-

tor 2A (TADA2A) [263]. This histone acetyltransferase module is also

present in the STAGA complex, another coactivator complex, of which

TAF9, TAF10, and TAF12 are key components [263]. The interactions

of KAT2B not only link ATXN7 directly to TBP but also indirectly to

HTT. Lastly, another interactor linking HTT to the TBP and ATXN7

is TAF4, a subunit of the basal transcription factor IID. This protein

was shown to bind to HTT [246, 264], exhibits high connectivity to

TBP interactors and shares partner proteins with ATXN7. Overall,

our network analysis highlights the involvement of polyQ-containing

disease proteins in transcription regulation and underscores the

importance of HTT as a potential hub protein among the other polyQ

disease proteins. A case in point is the report of a transcription-coupled

DNA repair complex, which contains the proteins HTT, ATXN3, CBP,

DNA ligase 3 (LIG3), RNA polymerase II subunit A (POLR2A), and

other basic transcription factors, for the repair of DNA lesions during

transcription elongation [264].

3 CONCLUDING REMARKS

3.1 PolyQ domains in disease proteins likely are
flexible, α-helical structures

The public release of AlphaFold is enabling researchers to make struc-

tural predictions for proteins and their interaction partners [265,

266]. Most importantly, it can provide high-accuracy predictions of

specific folded domains in largely unfolded proteins. The AlphaFold

predictions presented in this review indicate significant structural dif-

ferences among the different polyQ disease proteins (Figure 1A–I);

while, notably, the polyQ tract in eight of nine proteins was predicted

to adopt a rigid α-helical fold. This suggests that an α-helical fold is

the predominant secondary structure in nearly all polyQ-containing

disease proteins. Analytical chemistry studies support the notion that

polyQ domains in soluble proteins adopt a stable α-helical confor-
mation [111, 117, 267]. Experimental evidence that polyQ domains

in proteins are largely unstructured regions has also been presented

[268–271]. Intriguingly, AlphaFold predicted that the α-helical polyQ
domains in most of the polyQ proteins (except for CACNA1A) are

stand-alone structures flanked by disordered regions. This facilitates

high flexibility in the three-dimensional space and suggests that α-
helical polyQ domains in disease proteins are unlikely to be part of

other folded domains. It seems reasonable to speculate that polyQ

tracts have a high propensity to associate with other proteins due to

their unstructured flanking regions. This may explain why many more

PPIs have beendetectedwithN-terminalHTT fragments that contain a

polyQ domain thanwith foldedC-terminal HTT fragments lacking such

a flexible region [272, 273]. Thus, polyQ expansions in disease proteins

mayeither stabilize or perturb interactionswithother proteins, leading

to neuronal dysfunction and disease.

3.2 The molecular function of α-helical polyQ
domains is still unclear

The AlphaFold predictions suggest that polyQ domains are flexible

protein domains with stable α-helical polyQ tracts in soluble proteins.

This indicates that they might have specific molecular functions that

are perturbed when polyQ tracts get abnormally expanded in disease.

To this day, specific molecular functions have not been assigned to

polyQdomains inproteins.However, early inquiries into the functionof

glutamine-rich domains suggested that they serve as structural motifs

for transcription activation [274]. Another study found that glutamine-

rich stretches are present predominantly in transcriptional regulatory

proteins [275] (e.g., POU class 3 homeobox 2 [POU3F2], CBP, E1A

binding protein P400 [EP400], mediator complex subunit 15 [MED15],

MN1 proto-oncogene, transcriptional regulator [MN1], NOCA2, and

NOCA3), and that the length of glutamine-rich stretches correlates

with theability to stimulate transcription [275].Moreover, itwasdeter-

mined that the highest levels of transcriptional activity can be reached

with constructs having between 6 and 34 glutamine residues; while

longer stretches exhibited reduced transcriptional activation [275]. In

brief, polyQ domains may serve as transcription activation domains

and abnormal polyQ expansions in these domains might impair their

specific molecular function.

3.3 PolyQ domains may facilitate the association
of proteins through formation of coiled-coil
structures

In line with the proposed role of polyQ domain-containing proteins in

transcription, we found an enrichment of polyQ disease protein inter-

actors predominantly in nuclear processes involved in gene expression

regulation, histonemodification, andmRNA processing (Figure 3). This

raises the question of how the α-helical structure of a polyQ domain

relates to the shared nuclear localization and transcriptional activity of

polyQ disease proteins.

It was shown previously that α-helical domains have a high propen-

sity to self-assemble, either within the same protein or between

different proteins, to form super-secondary coiled-coil structures

[276]. These stable coiled-coil interactions play a crucial role in many

subcellar processes as well as in transcriptional regulation [277].

Coiled-coil structures have been found to control subcellular protein

localization by interacting with and masking subcellular compartment

targeting sequences, such as nuclear localization sequences (NLS)

[278]. Furthermore, due to their long flexible nature, many coiled-coil

proteins have been found to span multiple subcellular compartments

and traverse large distances within the cell [277, 279]. Therefore,

mutations in α-helical regions, such as polyQ expansions, may disrupt

or enable coiled-coil interactions resulting in altered subcellular

compartment targeting or function.

Coiled-coil forming motifs are frequently found within DNA and

RNA binding proteins [280, 281]. Commonly located adjacent to DNA
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and RNA binding domains, coiled-coil forming motifs regulate protein

oligomerization and subsequent gene expression [281, 282]. Inter-

estingly, recent findings have highlighted coiled-coil forming motifs

as being present in 36% of all RNA-binding proteins (RBPs); which

are essential regulators of RNA splicing, localization, and transla-

tion [281]. PolyQ proteins have been found to associate with RBPs

and RBP-containing non-membrane bound compartments known as

ribonuclear protein (RNP) granules [283–287]. Therefore, coiled-coil-

forming interactions between polyQ proteins and DNA and RNA

binding proteins may facilitate gene expression.

Overall, the striking similarities in polyQ disease protein localiza-

tion and function may be due, in part, to their shared α-helical polyQ
domain. It is plausible that polyQ proteins might engage in PPIs by

forming coiled-coil interactions via the helical polyQ domains [129].

Notably, proteins with an affinity for expanded polyQ tracts, such as

BECN1 and HSP90, contain α-helical structures which are essential

for mediating PPIs [189, 227]. This suggests that coiled-coil interac-

tions are a potential binding modality to join polyQ tract-containing

proteins in cells. Although additional research is necessary to fully elu-

cidate the role of coiled-coil interactions in polyQ diseases, emerging

evidence suggests that these interactions may initiate the aggregation

of polyQ-containing proteins in disease [104, 105].

3.4 On therapeutic perspectives

As of now, there are no cures or approved disease-modifying drugs

for polyQ diseases. However, different therapeutic avenues are cur-

rently being explored for most, if not all, of the polyQ diseases. There

have been promising results from clinical trials with Riluzole, a drug

approved for the treatment ofALS—aneurodegenerative diseasewith-

out polyQprotein at its origin—that showed improvementof cerebellar

symptoms in SCA patients [288, 289]. Treatment of SBMA patients

with leuprorelin acetate, a manufactured analogue of gonadotropin-

releasing hormone, significantly improved swallowing function in a

phase 2 clinical trial [290]. Tetrabenazine, an FDA-approved vesicular

monoamine transporter (VMAT) inhibitor, and the related Valbenazine

are used to reduce chorea in HD patients [291, 292].

Other treatment strategies have focused on anti-sense oligonu-

cleotides (ASOs). Pre-clinical studies have yielded promising results

using ASOs to downregulate transcripts encoding polyQ proteins in

SCA1, SCA2, SCA3, and SCA7mousemodels [293–296]. For HD, there

are several ASOs in clinical trials; the ASO Tominersen targets both

normal and mutant HTT RNA, while the ASO WVE-003 is specific

for mutant HTT [297]. The ASO VO659 (ClinicalTrials.gov Identifier:

NCT05822908) can target long CAG repeats and has the potential for

targeting different polyQ disease proteins (e.g., ATXN1 and ATXN3).

The clinical trial failures for Tominersen (GENERATION HD1) and the

other ASOs (WVE-120101 andWVE-120102) highlight the challenges

of ASOs as a treatment option for patients [298].

This review highlights polyQ disease proteins and their networks,

putative toxic gain-of-function mechanisms of polyQ-expanded pro-

teins, formation of protein aggregates, and perturbations in gene

regulation. One area of research that has not been explored enough

for potential treatments is targeting PPIs of polyQ disease proteins.

This gap might stem from the lack of high-confidence interactors that

are extensively characterized in terms of binding sites, binding affinity

strengths, polyQ dependency, and relevance for modifying pathology.

From our assessment of PPI data, some promising candidates would

meet the above criteria. One notable example is the interaction

between ATXN1 andCIC. The ATXN1/CIC complex is highly expressed

in the most vulnerable neurons affected in disease [162]; and polyQ

expansionofATXN1altersCIC’s repressor activity, resulting in ahigher

level of repression ofCIC target genes [162, 164].Moreover,mutations

at the interface of the ATXN1-CIC complex were shown to prevent

SCA1pathogenesis [164]. Further studies, aiming to target theATXN1-

CIC interface through small molecules, peptide mimetics, or protein

degradation technologies might pave the way for a new therapeutic

approach for SCA1. Given the importance of the normal protein, the

ideal approachwouldbe to specifically target themutantprotein. In the

case of theAR, the oral protein degraderARV-110 is in clinical trials for

prostate cancer [299]. This degrader, however, lacks mutant AR speci-

ficity and is unlikely to be suitable for the treatment of SBMA. Instead,

the development of HSP90 or SRC kinase inhibitors (both AR interac-

tors) might help to restore motor function in SBMA patients, as it has

been demonstrated previously for SBMA mouse models [222, 226].

Targeting extended polyQ tracts in disease proteins and modulating

their abnormal association with partner proteins might be a universal

therapeutic strategy for all polyQ diseases described in this review.
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