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A B S T R A C T

Porting a scientific data analysis workflow (DAW) to a cluster infrastructure, a new software stack, or even only
a new dataset with some notably different properties is often challenging. Despite the structured definition
of the steps (tasks) and their interdependencies during a complex data analysis in the DAW specification,
relevant assumptions may remain unspecified and implicit. Such hidden assumptions often lead to crashing
tasks without a reasonable error message, poor performance in general, non-terminating executions, or silent
wrong results of the DAW, to name only a few possible consequences. Searching for the causes of such errors
and drawbacks in a distributed compute cluster managed by a complex infrastructure stack, where DAWs for
large datasets typically are executed, can be tedious and time-consuming.

We propose validity constraints (VCs) as a new concept for DAW languages to alleviate this situation. A VC
is a constraint specifying logical conditions that must be fulfilled at certain times for DAW executions to be
valid. When defined together with a DAW, VCs help to improve the portability, adaptability, and reusability
of DAWs by making implicit assumptions explicit. Once specified, VCs can be controlled automatically by
the DAW infrastructure, and violations can lead to meaningful error messages and graceful behavior (e.g.,
termination or invocation of repair mechanisms). We provide a broad list of possible VCs, classify them along
multiple dimensions, and compare them to similar concepts one can find in related fields. We also provide a
proof-of-concept implementation for the workflow system Nextflow.
1. Introduction

Data analysis workflows (DAWs, or scientific workflows) are struc-
tured descriptions for scientific datasets’ scientific analysis [1,2]. DAWs’
usage becomes increasingly popular in all scientific domains as datasets
grow in size, analyses grow in complexity, and demands grow in terms
of speed of development, the throughput of analyses, reusability by
others, and reproducibility of results [3–5]. A DAW essentially is a
program consisting of individual tasks (programs themselves) with their
specific inputs and outputs and a specification of the dependencies
between tasks. Executing a DAW means scheduling its tasks on the avail-
able computational infrastructure in an order compatible with the data
dependencies under some optimization constraints, such as minimal
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time-to-finish [6–8]. When DAWs are applied for the analysis of large
datasets and are executed on clusters of distributed compute nodes,
managing their execution also involves resource management, coor-
dination of distributed computations, and file handling [9]. Such dis-
tributed executions typically rely on the availability of an infrastructure
stack consisting of several components such as (distributed) file sys-
tems, resource managers, container managers, and runtime monitoring
tools [10].

The interfaces and functionality of these components are not stan-
dardized and vary substantially between different systems [10]. There-
fore, DAW developers often optimize their code to the used infrastruc-
ture (e.g., to the number and memory sizes of available compute nodes)
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and to the particular datasets they wish to analyze (e.g., by hard-coding
the number of data partitions for concurrent execution). Furthermore,
many tasks of typical DAWs have been written by third parties, pro-
viding their specific functionality in a highly optimized manner, while
others provide merely ‘glue’ code for data transformation and filtering
between original tasks [11,12]. As a result, real-life DAWs are rather
brittle artifacts. They are tightly bound to the infrastructure used during
development, suffer from intricacies of the programs they embrace, and
only work flawless for a narrow range of inputs. Changes in any of
these aspects that violate hard-coded, undocumented design choices
quickly lead to unforeseen situations such as: unnecessarily slow DAW
executions, underutilized resources, sudden runtime errors, straggler
processes, meaningless log entries, non-terminating executions, over-
flows of buffers (memory, disk, log-space), etc. or, in the worst case,
undetected faulty results [13]. The execution often stops with an arbi-
trary, undocumented, low-level error (‘file not found’, ‘core dumped’,
‘timeout’); even meaningful error messages are often difficult to trace
back to the broken task as execution happens on multiple nodes and
logs are distributed and created at different levels, ranging from OS to
resource managers, workflow engine, and task implementations. While
some of these problems also occur in other software-related situations,
they are aggravated in DAWs due to their heavy reliance on external
programs, generally very high resource requirements, long run times,
and the complexity of coordinating distributed executions. Accordingly,
reusing a DAW on another infrastructure or for input data with differing
properties often requires time-consuming adaptations [14,15].

In this work, we propose validity constraints (VCs) as a new prim-
itive for DAW languages that help to improve this situation. A VC is
a constraint that specifies a logical condition for a particular state or
component of a DAW execution. When a VC evaluates to false (i.e., if
the VC is ‘broken’), the DAW engine can issue a defined error message
at a defined place. VCs may, for instance, control properties of the input
and intermediate data files (e.g., minimal or maximal file sizes), of the
runtime environment (e.g., minimal available memory or threads), or
of the individual task executions (e.g., maximal execution time). We
propose to specify VCs within the DAW specification, i.e., as first-class
bjects of the DAW program itself. Note that similar ideas have proven
xtremely useful in other fields (e.g., integrity constraints in databases
r contracts in software engineering), but an adaptation to the specific
ield of workflows is lacking.

In the following, we motivate the idea of VCs for workflows based
on a few exemplary user stories from different scientific domains
(Section 2) and then first introduce a model for DAWs (Section 3)
and then use this model to formally define general validity constraints
(Section 4). We present a broad list of different concrete types of
VCs (Section 5) and classify these along multiple dimensions, namely
the time points when they need checking, the objects they affect, the
actions they may trigger, and the infrastructure component that should
handle them (Section 5.1). We relate VCs to similar concepts in other
fields (Section 6.1), current workflow systems (Section 6.2) and discuss
more general works of the scientific workflow community (Section 6.3).
Furthermore, we sketch a prototypical implementation of explicit VCs
in the state-of-the-art workflow engine Nextflow (Section 7).

Throughout this work, we focus on simple DAWs performing batch
processing and leave an extension to data analysis over streams (e.g.,
[16]) or to DAWs including cycles or conditionals for future work.

2. User stories

We collected a small set of typical problems users from different
application domains ran into when using and porting DAWs to an-
other platform. Often, they stumbled over and had to solve validity
83

constraints that were implicit and not explicit. a
2.1. Bioinformatics

In bioinformatics research, we often modify or rewrite workflows,
which requires developing short workflows performing RNAseq data
treatment. We have to check the overall results for their quality and
reasonability, but we are also interested in the effects our modifications
may cause on different infrastructures performance-wise.

Workflow development—Empty and faulty files. During the development
phase, errors can occur, and faulty files may be written. Such a situation
does not necessarily interrupt the workflow directly because output
files may exist. Workflow engines typically do not assess a task’s success
by using the content of the output files. Identifying the wrongly behav-
ing task in a distributed execution environment can become tedious and
time-consuming for the user. For example, we once wanted to sort a file
in the middle of a workflow but made a syntax error, which caused an
empty output file. In this case, it would have been wonderful if we had
a language with validity constraints that would help develop workflows
and throw an error when an output file is empty, under a certain size,
or does not contain specific characters. For such checks, the addition
of monitoring tasks is necessary.

Porting workflows to new infrastructures. We recently studied the impact
of applying map-reduce on specific bioinformatics tools. While porting
a workflow on a heterogeneous distributed infrastructure, we observed
a severely reduced workflow runtime. It turned out that only a few
nodes could run tasks that should all run in parallel. We found the
memory of most of the nodes too small to run these tasks. As a result,
we changed the biological model to one with smaller input references
and recomputed several experiments. Fortunately, that was possible
in this case. But it may not be an option for biologists studying a
specific specie, for example. If their reference genome file is too big
for the memory of the nodes of a cluster, they would need to set
up their workflow on another infrastructure. As such experiments can
take a long time (up to 40 h for treating only one sample), a way to
know beforehand that the workflow cannot run (with the full degree
of parallelism) on this infrastructure can save a lot of time and shared
resources. Instead of executing a workflow by checking tasks’ resource
demands only late, when the execution reaches them, a basic overall
resource check to stop the workflow from the beginning (before it
arrives at the task that breaks the workflow) would be preferable.

‘‘It would be wonderful if I had a language with validity constraints that
would help me develop workflows or port them to a new infrastructure. I
would have needed constraints that throw an error when an output file is
empty, is under a certain size or does not contain specific characters such
as those contained in a specific header. Additionally, some constraints
that would stop the workflow from the beginning, before it arrives at the
task that requires too much resources, would be very helpful’’.

– Ninon De Mecquenem

The derived user requirements for validity constraints are: file must
xist (R1); file is not empty or has a minimum size 𝑥 (R2); file has
o contain (only) certain characters (R3); global pre-check for resource
emands (R4).

.2. Materials science

The novel materials database laboratory (NOMAD) is a database
hat hosts hundreds of millions of material science simulation results,
pecifically density functional theory (DFT) simulations [17]. These
esults can be expensive to generate, sometimes taking several hundred
PU hours to compute [18]. As such, the community realized it is
ital to share the results to avoid recomputation and to allow for
he creation of large datasets for machine learning and data analysis

pplications [19,20].
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Fig. 1. Overview of the NOMAD upload workflow. Users upload data from a specific
DFT simulation code that is then parsed and normalized to make results from different
DFT codes comparable.

Users can upload data (input/output files) from different density
functional theory simulation programs (e.g., VASP, exciting FHI-
aims) via the terminal or their browser [21–23]. The workflow to
process uploaded data has a clear need for validity constraints. Each
simulation program has an associated parser to parse the simulation
input/output files that the user uploads [24,25]. A common pain point
is that these simulation programs get updated frequently, and the
format of the output files change or new data fields are added. The
NOMAD developers implemented VCs in the upload DAW to check for the
xistence of specific file names, extension types, and some properties
f the input/output files that the parser expects [21]. For the DFT
ode exciting for example, we expect files named INFO.out and
nput.xml files and particular key–value pairs, such as the ‘total
nergy’ key and its associated floating point value. This means our DAW
irst runs a validity constraint at the setup of the upload process to
heck that the required files exist. If these simulation files do not exist
he DAW returns an error message to the user that the upload failed
ince no parsable files were found. The upload process also triggers a
esource availability validity constraint that checks whether the user
as used up the amount of storage space allocated to every user of
OMAD.

If, however, the uploaded files satisfy the conditions above, the DAW
hen runs a resource validity constraint check. The parsing process
an take considerable resources depending on the simulation settings
nd the DAW only executes the parsing once the container orchestra-
ion system, in this case Kubernetes, can allocate sufficient computing
esources on the server. After parsing raw values from the uploaded
iles, a routine called the ‘normalizer’ is applied, which converts parsed
alues and simulation settings to standard units and standardized
erms. For instance, two simulation programs might use different words
or the same input parameter and NOMAD needs to standardize this
e.g., two different names for the same DFT functional). The normalizer
lso implements validity constraints on these parsed values to ensure
hey are reasonable. For instance, the normalizer checks that a parsed
ategorical property belongs to a list of expected values or that a
loating point value is within a reasonable range (e.g., the band gap
f the material must be non-negative). A visualization for the DAW for
OMAD can be seen in Fig. 1.

When we have too many atoms in a unit cell of an input geometry,
e observe another weakness of the DAW regarding the crystal structure

lassification, which is performed in the normalizer step. Large input
iles with many atoms in the unit cell are common in studies that inves-
igate the effect of impurities on the electronic structure of crystalline
aterials [26]. Such a situation causes the crystal structure classifier

o take a very large amount of computational resources. Currently,
e use a timeout validity constraint that stops the classification if

he classification takes too long. What might help, however, is to
mplement a validity constraint that decides whether to skip the crystal
tructure classification for unit cells where the number of atoms exceeds
certain threshold. This could avoid wasting resources on trying to

lassify systems that are very likely to trigger the timeout validity
84
onstraint during classification. Such a threshold could be determined
sing a logistic regression model trained on previous uploads and
orkflow executions. Alternatively, the threshold could be dependent
n the resources available for computation. In this case, we envisage
Cs that are chained together. Meaning, first we check if resources are
omewhat limited and if so, we call a VC that checks if the number of
toms in the unit cell is too large. If this is true, it avoids the crystal
tructure classification all together.

A further valuable addition to the NOMAD upload DAW would be
check for a metamorphic relation between input settings of the

imulation and output results of the simulation to predict data qual-
ty [24]. Simulations uploaded to NOMAD usually come from different
pplications. They could be, for instance, super-high-precision ground
tate calculations (e.g., using very large basis set sizes) or simulations to
ind heat and transport properties using cheap calculations (small basis
et size), resulting in data of varying precision [27]. Current research
as been on using machine learning models to add prediction intervals
hat act as error bars to the data results parsed by NOMAD [28].
uch annotations would help users better understand how precise and,
herefore, how qualified results from NOMAD are for a particular use-
ase. For example, a formation energy calculated with high-precision
ettings would have small prediction intervals. It shows the NOMAD
nd user (e.g., an experimentalist) that this result does not need a
ecalculation.

Many VCs are already integrated into the NOMAD DAW but we would
ike to add more as discussed above. A language for clearly presenting
he VCs of the DAW would be useful, especially in a graphical form in
visual format. We believe this would help end-users and developers

etter understand the DAW especially when the upload process fails due
o one of these constraints.

Overall, we observe the demand for the following VCs from this
ser story: file must exist (R1); file with certain file extension must
xist (R5); file content should fulfill certain properties (e.g., contain
articular key–value pairs) (R6); disk quota check (R7); check of
esource demands in advance (R8); reasonability checks on output data
e.g., value in certain range, positive, non-negative, negative, or from
ist of given values) (R9); tasks finish within a given timeout (R10); let
orkflows decide how to proceed based on the result of VCs (e.g., VC-
ependent tasks and chained VCs) (R11); data quality checks with
etamorphic relations (R12).

.3. Earth observation

In the field of Earth Observation (EO), we typically work with
arge volumes of satellite images, often over large areas (from federal
tates to continents, sometimes even global) and across long time
eries (up to 40 years). Our workflows often consist of a preprocess-
ng step to convert the ‘raw’ data into a more analysis-ready form.
his preparation typically includes the detection of clouds and their
hadows, eliminating atmospheric and other radiometric distortions,
nd often rearranging the data into so-called data cubes for improved
ata management and efficiency. This processing step usually runs on
ach individual satellite image separately, allowing image-based paral-
elism. Subsequently, workflows generally use map/reduce operations
n spatial partitions of the data cube, or even sub-partitions that need
pecific parts of the images. Typically, all available data for some
ime period is reduced (averaged in the simplest case) to generate
ap-free predictive features. The feature vectors at the locations of
eference data are extracted, a machine learning model trained with
ome response variable (e.g., land cover labels or tree height values),
nd the model applied to the feature images to generate a wall-to-wall
rediction of the respective response variable (i.e., generating a map).
validation procedure typically follows.
Different IT resources, such as CPUs, RAM, and I/O bandwidth,

ypically constrain various components of this generic workflow.
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Depending on the particular workflow, the analyzed data, user parame-
terization, as well as characteristics of the hardware, the limiting factor
might be different each time. For example, a workflow that efficiently
runs with Landsat data might fail when switching to Sentinel-2 data
(more RAM needed) even when executed with the same parameteriza-
tion on the same system. Another example would be a workflow that
efficiently reads data but would quickly become input-limited when
switching from an SSD- to an HDD-based platform, or another RAID
configuration. In a noteworthy instance, we encountered an extreme
worst-case scenario in which processes would sporadically become
defunct while unzipping files from tape storage. As a result, our job
would come to a complete halt after a certain period. Resolving this
issue required a specific modification of our workflow, including the
addition of a hard-coded timeout. Moreover, we had to first copy data
from tape to warm storage before executing the workflow again.

Consequently, a one-fits-all default parameterization is usually not
feasible, and many user parameters may exist that can tweak the be-
havior of the workflow. For example, the FORCE software [29] includes
parameters to fine-tune partition sizes, reduce the number of parallel
processes, or to increase the multithreading to multiprocessing ratio
when RAM becomes an issue. However, achieving optimal parameter-
ization needs a deep understanding of the workflow, the underlying
data, and their effects on system resources. Additionally, a solid un-
derstanding of the platform is essential for effective parameterization.
Therefore, the presence of validity constraints capable of identifying
common patterns of excessive resource usage, such as idle CPUs or
high network latency in I/O-limited scenarios, or memory swapping
leading to generic ‘killed’ messages in RAM-limited situations, would
significantly aid in transferring workflows from one system to another.
Additionally, it would facilitate a smoother onboarding process for new
users, reducing the learning curve required.

From this user story, we mainly derive monitoring validity con-
straints: warn on low CPU usage (R13); warn on high network latency
R14); warn on memory swapping (R15).

. Fundamentals

In this section, we formally define a DAW and its execution steps,
ketch an abstract infrastructure for executing DAWs in a distributed
ystem, and introduce scheduling as the process of executing a DAW
n an infrastructure. Based on these models, we then define two types
f general validity constraints (static and dynamic) as new first-class
rimitives for DAW specification languages, and use them to derive the
oncept of valid and correct DAW execution.

Our DAW semantic is simple by intention; its purpose is to lay
he grounds for the following sections, which will precisely define
he connection between elements of a DAW and VCs and the impact
hat VCs may have on DAW execution. Conceptually, our semantics
s similar to Petri-Nets [30] and dataflow languages [31]. Elaborated
emantics of real workflow systems have been described elsewhere
e.g., [32,33]); [34] gives a nice overview of different formal models
n distributed computation.

.1. A formal model of DAWs

We define a logical DAW (see below for the distinction to physical
AWs) as follows.

efinition 3.1 (Logical DAW). A logical DAW 𝑊 is a directed acyclic
raph

= (𝑇 ,𝐷,𝐿, 𝜑, 𝑡𝑠, 𝑡𝑒) (1)

here 𝑇 is the set of tasks, 𝐷 = {(𝑡′, 𝑡) ∈ 𝑇 2} is the set of dependencies
etween pairs of tasks, 𝐿 is a set of labels, 𝜑 ∶ 𝐷 → 𝐿 is a function
ssigning labels to dependencies, 𝑡𝑠 ∈ 𝑇 ∶ ∄(𝑡′, 𝑡𝑠) ∈ 𝐷 is the start task,

′
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nd 𝑡𝑒 ∈ 𝑇 ∶ ∄(𝑡𝑒, 𝑡 ) ∈ 𝐷 is the end task. Intuitively, tasks are the i
rograms to be executed for performing individual analysis steps, while
ependencies model the data flow between tasks. The dependencies’
abel is an abstract representation of the specific data that is exchanged
etween two tasks. The start task 𝑡𝑠 does not depend on any other
ask and initiates the first steps of the analysis by sending the DAW’s
nput data to its dependent tasks. Similarly, the end task 𝑡𝑒 has no
ependent tasks, and the labels of its incoming dependencies represent
he results of the DAW. Note that having single start and end tasks
oes not restrict the model significantly as such tasks can easily be
ntroduced as auxiliary, empty additional tasks in front of a group of
nitial tasks or behind a group of finishing tasks to join them to a
ingle end task. Fig. 2 (upper part) shows a graphical representation
f an example DAW consisting of six tasks plus start and end tasks; arcs
epresent dependencies.

DAWs are executed by running their tasks in an order in which at all
imes all dependencies are satisfied. To formally define this semantics,
e introduce the notation of the state of a DAW and, later, that of valid

tates.

efinition 3.2 (State of a DAW). The state 𝑆𝑊 of a DAW 𝑊 is a function
hat assigns each task in the set 𝑇 to one of three possible states:
𝑊 ∶ 𝑇 → {𝖤, 𝖥,𝖮,𝖱} (2)

ere, 𝖤 means ‘executing’, 𝖥 means ‘finished’, 𝖮 means ‘open’, 𝖱 means
ready’.

efinition 3.3 (Valid States). The state 𝑆𝑊 of a DAW 𝑊 is valid, iff the
ollowing conditions hold:

(a) 𝑆(𝑡𝑠) = 𝖥,
(b) ∀(𝑡′, 𝑡) ∈ 𝐷 ∀𝑡 ∈ 𝑇 with (𝑡′, 𝑡) ∈ 𝐷: if 𝑆(𝑡) = 𝖱, then 𝑆(𝑡′) = 𝖥,
(c) ∀(𝑡′, 𝑡) ∈ 𝐷 ∀𝑡 ∈ 𝑇 : If ∀𝑡′ with (𝑡′, 𝑡) ∈ 𝐷: 𝑆(𝑡′) = 𝖥, then

𝑆(𝑡) ∈ {𝖱,𝖤, 𝖥}, and
(d) for all other 𝑡 ∈ 𝑇 ∶ 𝑆(𝑡) = 𝖮.

he initial state 𝑆0 of a DAW 𝑊 is the state in which (1) the start task is
inished: 𝑆0(𝑡𝑠) = 𝖥, (2) all tasks 𝑡′ depending on 𝑡𝑠 are ready: 𝑆0(𝑡′) = 𝖱,
nd (3) all other tasks have state ‘open’.

Intuitively, these rules guarantee that: (a) the start task is always
n the ‘finished’ state 𝖥; (b) a task 𝑡 is ‘ready’ (𝖱) only when all its
redecessors (∀𝑡 ∈ 𝑇 with (𝑡′, 𝑡) ∈ 𝐷) are ‘finished’ (𝖥); (c) any task 𝑡
ith all its predecessors 𝑡′ ‘finished’ (𝖥) has state ‘ready’ (𝖱), ‘executing’
𝖤), or ‘finished’ (

.2. DAW infrastructure and execution semantics

Based on a DAW’s state, we next define the semantics of a DAW
xecution.

efinition 3.4 (Execution of a DAW). An execution 𝐸 of DAW 𝑊 is a
equence of states 𝐸 = ⟨𝑆0,… , 𝑆𝑛⟩ such that (a) 𝑆0 is the DAW’s initial

state, (b) all 𝑆𝑖, 𝑖 ∈ {0,… , 𝑛}, are valid, and (c) for all steps 𝑆𝑖, 𝑆𝑗 with
𝑗 = 𝑖 + 1, it holds that

• If 𝑆𝑖(𝑡) = 𝖥, then 𝑆𝑗 (𝑡) = 𝖥

• If 𝑆𝑖(𝑡) = 𝖱, then 𝑆𝑗 (𝑡) ∈ {𝖱,𝖤}
• If 𝑆𝑖(𝑡) = 𝖤, then 𝑆𝑗 (𝑡) ∈ {𝖤, 𝖥}
• If 𝑆𝑖(𝑡) = 𝖮, then 𝑆𝑗 (𝑡) ∈ {𝖮,𝖱}
• There exists at least one 𝑡 ∈ 𝑇 where 𝑆𝑖(𝑡) ≠ 𝑆𝑗 (𝑡).

e say that an execution 𝐸 of a DAW 𝑊 has executed 𝑊 when 𝑆𝑛(𝑡𝑒) =
.

Intuitively, the execution of a DAW progresses by iteratively execut-

ng tasks that are ready to run. During execution, they are in 𝖤; after
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Fig. 3. A simple DAW infrastructure architecture.

xecution, their state switches to 𝖥; tasks in state 𝖮 must first proceed to
state 𝖱 before they can be executed. We make no assumptions regarding
the order in which tasks that are ready to run at the same state are
executed, nor do we assume only one task executes per execution
step. But we do require at least one task to change its state between
successive DAW states. Note that this change may be purely logical, by
witching some task’s state from 𝖮 to 𝖱.

Logical DAWs are abstract objects. However, in real life, a DAW
execution requires the start of programs representing workflow tasks
on particular nodes of the available cluster and the management of the
inputs and outputs of these programs. Fig. 3 depicts a light architecture
of the components involved in such a DAW execution. It encompasses
the DAW specification in a proper DAW language and its compiler
comp.), the DAW engine steering the DAW execution (EE), a scheduler
erforming the task-to-node assignments (S), a resource manager and
onitoring system controlling the resource assignment and task exe-

ution at the global and local level (RM, M), the individual nodes for
xecuting tasks, and a distributed file system for data exchange between
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m

asks (DFS).1 Clearly, many other architectures are possible, but for the
ake of this work, such an idealized architecture suffices and allows
ater determining the responsible component to control a particular
ype of VC. With such an architecture in mind, we can now define a
hysical DAW.

efinition 3.5 (Physical DAW). Given a logical DAW 𝑊 and a set 𝐶 of
compute nodes interconnected by a network, the physical DAW 𝑊 ′ =
(𝑊 ,𝑀) augments 𝑊 with a function 𝑀 ∶ 𝑇 → 𝐶 that maps every task
o a compute node.

𝐶 is an abstract representation of a compute cluster, whereas 𝑀
s an assignment (schedule) that maps tasks to nodes; in practice, this
ssignment is determined by the scheduler when a task’s state changes
rom 𝖱 to 𝖤. The definition of a DAW execution 𝐸 can be naturally
xtended from logical DAWs to physical DAWs.

Fig. 2 shows an example of the transition of a logical DAW to
physical DAW. In the physical DAW, each logical task is assigned

o a node for execution, and each dependency is implemented as
ommunication between nodes.

. A formal definition of VCs for DAWs

Having introduced logical and physical DAWs and their execution
emantics, we can now define validity constraints (VCs) as logical
ormulas over the components of a DAW infrastructure and of a DAW ex-
cution, i.e., tasks, dependencies, executions, and schedules. Different
Cs will address various properties of these components (see Section 5).

efinition 4.1 (Properties). Let 𝑊 = (𝑇 ,𝐷,𝐿, 𝜑, 𝑡𝑠, 𝑡𝑒) be a DAW and 𝐶
be a cluster, i.e., a set of compute nodes. We model arbitrary properties
of elements of 𝑇 , 𝐷, and 𝐶 as property functions:

𝑃𝑇 is a function that assigns properties to tasks from 𝑇 ,

1 Of course, other means of data exchange, such as in-memory channels, or
ounting of remote file systems are possible as well.
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𝑃𝐷 is a function that assigns properties to labels of dependencies from
𝐷, and

𝑃𝐶 is a function that assigns properties to nodes from 𝐶.

We make no assumptions on the specific nature of such properties,
uch as data type or number of parameters they take. In Section 5, we
ill give a diverse list of concrete (static or dynamic) properties that
e consider particularly useful for DAW management.

.1. Validity constraints

We discern two types of validity constraints: Static VCs address
tatic properties, i.e., properties which always have the same value
or a given property of a task/node/label, while dynamic VCs address

dynamic properties, i.e., properties whose value may change during a
DAW execution.

Definition 4.2 (Static VC). Let 𝑊 = (𝑇 ,𝐷,𝐿, 𝜑, 𝑡𝑠, 𝑡𝑒) be a DAW and 𝐶
be a cluster. Let 𝑃𝑇 , 𝑃𝐷, and 𝑃𝐶 be their respective property functions.

static validity constraint 𝑣 is a Boolean formula whose atoms have
ny of the following forms (with  being an arbitrary constant and
∈ {=, <, >,≤,≥} and 𝜌 being a given particular property to compare

ith):

∙ 𝑃𝑇 (𝑡).𝜌 ⊡  for any task 𝑡 from 𝑇 ,
∙ 𝑃𝐷(𝜑(𝑑)).𝜌 ⊡  for the label 𝜑(𝑑) of any

dependency 𝑑 from 𝐷, and
∙ 𝑃𝐶 (𝑐).𝜌 ⊡  for any node 𝑐 from 𝐶,

We call VCs of these three forms static because they are independent
of a DAW’s execution. Intuitively, this implies that they must evaluate
to the same value all the time before, during, and after a workflow’s
execution. An example of a static VC would be the minimum size of
main memory that must be available on a node on which a given task
is about to be scheduled, or the availability of at least one node with
a given minimum memory size within the cluster. The definition also
captures conjunctions or disjunctions of atomic constraints; the order
in which the individual atoms are checked in an implementation is not
determined and leaves room for optimizations [35].

The second class of VCs are dynamic VCs, which constrain properties
of tasks, dependencies, or nodes that may change during a DAW’s
execution. For instance, executing a particular task in the middle of a
DAW may require the existence (or ‘minimal size’ or ‘a certain format’)
of a file that is created by previous steps in the very same DAW
execution. Introducing such dynamic VCs requires first defining the
scope of a step within an execution.

Definition 4.3 (Scope of Execution Steps). Let 𝑊 = (𝑇 ,𝐷,𝐿, 𝜑, 𝑡𝑠, 𝑡𝑒)
be a DAW, 𝐸 an execution of 𝑊 , and 𝑀 a schedule for 𝑊 over a
cluster 𝐶. Let 𝑃𝑇 , 𝑃𝐷, and 𝑃𝐶 be their respective property functions.
Furthermore, for a step 𝑠 from 𝐸, let 𝑋(𝑠) ⊂ 𝑇 be the set of tasks
of 𝑊 that are executed in this step, i.e., whose state changes from 𝖱

to 𝖤 or from 𝖤 to 𝖥; let 𝑌 𝑖(𝑠) ⊂ 𝐷 be the set of dependencies from
which tasks in 𝑋(𝑠) depend (incoming edges of all tasks executed in
this step, each representing an input for a task); let 𝑌 𝑜(𝑠) ⊂ 𝐷 be
the set of dependencies outgoing from tasks in 𝑋(𝑠) (outgoing edges,
each representing an output of a task); and let 𝐶(𝑠, 𝑡) ∈ 𝐶 be the node
on which 𝑀 schedules task 𝑡 ∈ 𝑋(𝑠) for execution. We call the tuple
𝑠𝑐𝑜𝑝𝑒(𝑠) = (𝑋(𝑠), 𝑌 𝑖(𝑠), 𝑌 𝑜(𝑠), 𝐶(𝑠, 𝑡)) the scope of step 𝑠.

Definition 4.4 (Dynamic VC). A dynamic validity constraint 𝑉 over
the scope 𝑠𝑐𝑜𝑝𝑒(𝑠) = (𝑋(𝑠), 𝑌 𝑖(𝑠), 𝑌 𝑜(𝑠), 𝐶(𝑠, 𝑡)) of a step 𝑠 of a valid
execution of a DAW 𝑊 is a Boolean formula whose atoms have of any
of the following forms (with  being an arbitrary constant, 𝜌 being a
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given particular property to compare with, and ⊡ ∈ {=, <, >,≤,≥}):
∙ 𝑃𝑇 (𝑠).𝜌 ⊡  for a property of any task 𝑡 ∈ 𝑋(𝑠),
∙ 𝑃𝐶 (𝑠, 𝑡).𝜌 ⊡  for a property of node 𝑐 = 𝐶(𝑠, 𝑡),
∙ 𝑃 𝑖

𝐷(𝑠).𝜌 ⊡  for a property of a label 𝜑(𝑑) with
𝑑 ∈ 𝑌 𝑖(𝑠), and

∙ 𝑃 𝑜
𝐷(𝑠).𝜌 ⊡  for a property of a label 𝜑(𝑑) with

𝑑 ∈ 𝑌 𝑜(𝑠).

4.2. Correct DAWs and correct DAW executions

We defined VCs as logical constraints on the components (static) or
steps (dynamic) of a DAW that evaluate to either true or false. However,
we so far did not describe what consequences the evaluation of a such a
constraint should have. Intuitively, VCs are intended as sensors, where
an evaluation to ‘true’ implies that no issue was detected, while an
evaluation to ‘false’ points to a concrete problem. To formally define
this intuition, we next introduce the notion of correct DAW setups,
where a DAW setup is a combination of a concrete DAW and a concrete
cluster on which it should be executed, and correct DAW executions.
Recall that we discerned static VCs, whose evaluation always returns
the same result for a given combination of DAW and cluster, from
dynamic VCs, which are defined over executions of DAWs.

Definition 4.5 (Correct DAW Setup). Let 𝑊 = (𝑇 ,𝐷,𝐿, 𝜑, 𝑡𝑠, 𝑡𝑒) be a
DAW, 𝐶 a cluster, i.e., a set of interconnected compute nodes, and 𝑉
a set of static VCs over 𝑃𝑇 , 𝑃𝐷, and 𝑃𝐶 . We say that the tuple (𝑊 ,𝐶) is
correct with respect to 𝑉 when all constraints in 𝑉 evaluate to true.

We will omit 𝐶 when it is clear from the context and simply say
that 𝑊 is correct for 𝑉 .

Definition 4.6 (Correct DAW Execution). Let 𝑊 = (𝑇 ,𝐷,𝐿, 𝜑, 𝑡𝑠, 𝑡𝑒) be a
DAW, 𝐸 an execution of 𝑊 , 𝑀 a schedule for 𝑊 over a cluster 𝐶, 𝑉 𝑠

be a set of static VCs over 𝑊 and 𝐶, and 𝑉 𝑑 be a set of dynamic VCs
over 𝑊 , 𝐸 and 𝐶. We say that 𝐸 is correct if and only if:

• (𝑊 ,𝐶) is a correct setup for 𝑉 𝑠, and
• All 𝑣 ∈ 𝑉 𝑑 evaluate to true in all steps 𝑠 ∈ 𝐸.

Accordingly, an execution is not correct whenever either one of the
static constraints is hurt or one of the dynamic VCs in at least one step
of the execution. We call a step 𝑠 ∈ 𝐸 for which all 𝑣 ∈ 𝑉 𝑑 hold a correct
step; all other steps are called erroneous. Naturally, the first erroneous
step is of particular importance, as usually (but not necessarily) DAW
execution will stop at this point.

Note that within a step of the execution, a given task’s state may
change from 𝖮 to 𝖱, from 𝖱 to 𝖤, or from 𝖤 to 𝖥 (or may not change
at all). This means that a dynamic constraint may affect (1) the start
of a task (from 𝖱 to 𝖤), which corresponds to the definition of task
pre-conditions; (2) the termination of a task (from 𝖤 to 𝖥), which
corresponds to the definition of task post-conditions; or (3) a property
of a task while it is executed (within state 𝖤), which corresponds to the
definition of task runtime-conditions. This distinction has consequences
for a practical implementation, because the latter case (3) must be
achieved through continuous monitoring of state executions, while the
former two cases (1) and (2) can be controlled during state changes,
which correspond to defined points in the communication between the
scheduler and the execution engine.

Our notion of VCs clearly has limitations in terms of expressiveness,
and we can envision several extensions. For instance, we only intro-
duced VCs that affect single steps, single tasks, single dependencies,
and single nodes. Thus, we have no notion for expressing constraints
that, for instance, ensure (1) that two consecutive tasks in a workflow
are scheduled on the same node (because we know of side effects not
modeled in the DAW), or (2) that the total size of all intermediate
files may not exceed a certain threshold (because there is a quota on
available disk space). Both are realistic cases: (1) is a typical require-
ment emerging when tasks have to be integrated in a DAW that do not
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adhere to the fundamental assumption in scientific workflow systems
that tasks only communicate through their input/output relationships.
Such a demand is often solved by wrapping both tasks into one script,
which, however, blurs dependencies and removes degrees-of-freedom
for the scheduler. (2) is a common case in clusters shared between
different groups to ensure a fair share of resources. In current systems,
such quotas are controlled by the file system which would block write
requests beyond this limit, which in turn very likely would cause the
workflow engine to crash or the involved tasks to be aborted after their
execution timeout, which may complicate finding the root cause.

Extending our model of VCs to cover such cases would be worth-
while yet non-trivial. Regarding (1), our model of VCs would need to
e extended by constructs that express conditions on pairs of tasks; a
urther generalization would allow selecting arbitrary subsets of tasks,
ossibly by some property (such as all tasks requiring a GPU), which,
n turn, would need a model for annotating tasks and nodes. A more
estrictive extension would allow only constraints on pairs of successive
asks, which would suffice for the example given. Similarly, a VC for
xample (2) would need to add constraints on groups of files. Allowing
uch extended forms of VCs would also impact their implementation.
n their present form, VCs can be checked at clearly defined positions
uring a workflow execution; in contrast, a VC like (1) with arbitrary
roups of tasks would require checking whenever a task of the group is
tarted or finished, and a VC like (2) would require checking whenever

an output file is generated or written to. We leave such extensions for
future work.

5. Concrete validity constraints for DAWs

After having defined DAWs, their components, VCs, and the formal
elationships between DAWs and VCs in an abstract manner, we shall

now introduce a broad collection of different concrete VCs. We do not
aim for completeness but for a representative set that illustrates the
spectrum of functionalities that can be covered when using VCs as
irst-class primitives for DAW languages. Naturally, one can envision
urther constraints up to arbitrary user-defined VCs, provided a proper
pecification language for them is defined. Note that none of the VCs we
iscuss is completely new; instead, many of them can be found either
mplicitly or explicitly in other research fields, such as integrity con-
traints in databases or pre-/post conditions in programming languages;
e shall discuss these related lines of research in Section 6.

We shall present VCs in three steps. We shall first list them
rouped by the component of a DAW system they address, namely
etup, task, file, or user-defined accompanied by an intuitive expla-
ation and a classification into ‘static’ or ‘dynamic’. In Section 5.1,
e distinguish several properties of VCs to enable a more fine-grained
istinction. These properties will allow to systematically characterize
Cs in Section 5.2.

Based on related ideas in other fields, own experience in DAW de-
elopment, and the user stories in Section 2, we consider the following
Cs as particularly important. We group them according to the part of
DAW/infrastructure they primarily affect. Note that not all of them

ave the same level of abstractions; in some cases, we rather describe
type of VC than a concrete VC. For instance, we introduce a general

C for file properties instead of one distinct VC for every such property.

etup-related VCs
This set of VCs are related to the particular combination of a DAW

nd the cluster it should be executed on. Two of them are intended to
e controlled before the DAW execution starts and are thus static. The
hird is inherently dynamic.

tatic resource availability: The nodes within a cluster must fulfill
certain requirements in terms of available resources, such as
minimal main memory, minimal number of allocated CPU hours,
88

or availability of a GPU of a certain type. This VC could be
defined with two different semantics: In at-least one node, at least
one node of the cluster must fulfill the constraints; in all nodes,
all nodes must do so. This VC addresses requirements R4, R7,
and R8 of Section 2.

ile must exist: File must exist and must be accessible. Thus may,
for instance, affect certain reference or metadata files, but can
also be used to ensure availability of input files of the DAW.
This VC could also be defined either in at-least one node or all
nodes semantics; however, the latter is more common. This VC
addresses requirement R1.

infrastructure health: A node responds to requests from the DAW en-
gine prior or during a DAW execution. Such constraints are often
implemented with the help of a heartbeat-style infrastructure.

Task-related VCs
Task-related VCs describe properties of a concrete task of a DAW.

Many of them can be defined either statically or dynamically.

executable must exist: During execution, any concrete task must be
scheduled on some node in the cluster. The program execut-
ing this task must be available on this node. Can be defined
statically, which requires that all nodes in the cluster maintain
executables of all tasks in the DAW, or dynamically, which
allows for temporary installation (and subsequent deletion) of
executables of tasks as part of their scheduling.

dynamic resource availability: Before starting a task on a given
node, certain requirements in terms of available resources must
be fulfilled, such as minimal main memory, minimal number of
allocated CPU hours, or availability of a GPU of a certain type.
During task execution certain thresholds of resource usage have
to be met. This VC addresses requirements R7, R8, and R13–15.

configuration parameters: Parameters for execution of a task within
a DAW must be valid, e.g., have a value within a certain range
or of a certain format. Is typically defined dynamically as many
arguments of tasks are created only at runtime, such as the
names of input/output files.

license valid: Some tasks might require a valid license to start. Can
be defined statically (test for general availability of a valid
license for all tasks in a DAW) or dynamically (test for concrete
availability of a valid license as part of task scheduling). The
latter is important then the number of possible concurrently
running tasks is constrained by a volume contract.

metamorphic relations: The relation of input and output of a task
can be characterized by a reversible function. After execut-
ing a task, the concrete pair of input/output must have this
relationship. This VC addresses requirement R12.

tasks end within limits: The runtime of a particular task can be con-
strained by a VC on its maximal runtime. Such a constraint can
help to identify stragglers. This VC addresses requirement R10.

task ends correctly: The execution of a particular task must end with
a predefined state or output message.

File-related VCs
File-related VCs control the management of files within the infras-

tructure. Using our definitions from Section 3, this also encompasses
dependencies and hence data exchange between tasks.

file must exist: File must exist and must be accessible before starting

a task on a node. This VC addresses requirement R1.
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file properties: A file must fulfill certain criteria, such as file size,
format, checksum over content, or creation time. Can be defined
statically (properties of metadata files) or dynamically (proper-
ties of files generated during DAW execution). This VC addresses
requirements R2, R3, R5, R6, and R9.

folder exists: Certain folders must exist and must be readable
before/after execution of a DAW/task.

User-defined VCs
In practical applications, DAW developers often find very specific

ases of validity constraints, which cannot be captured in a pre-defined
atalog as the one just presented. For such cases, systems should also
oresee user-defined validity constraints, which implement arbitrary
ustom code. These must be executed before or after a workflow is
un or a task is started, depending on the specific definition. Naturally,
ser-defined VCs cannot be categorized well as their custom code can
erform arbitrary computation and access arbitrary data (within the
xecution environment of the controlled object). Therefore, we will not
urther describe user-defined VCs in the following sections. Note that
ur prototypical implementation presented in 7 also allows and uses
ser-defined VCs. Such VCs may help addressing elaborate variants of
equirements R3, R5, R6, R9, R11, as well as R13–15.

.1. Properties of VCs

We so-far classified VCs only broadly into two classes based on
he point in time when they can be checked in principle. However,
here are many more dimensions by which VCs can be characterized.
or instance, violations of VCs can have different levels of severity;
hile some must result in an immediate stop of the DAW execution,

uch as in the case when a task in the DAW requires an amount of
ain memory that none of the nodes of a cluster can provide, others
ight be interpreted rather as a warning, such as an improbable yet
ot impossible file size. Some VCs must be checked before a task
tarts, such as the available resources on the node it is scheduled on,
ome after a task ends, such as its result status, and a third class of
Cs requires continuous control during task execution, for instance to
nsure termination within a runtime limit.

Table 1 provides six different properties (or dimensions) by which
Cs can be characterized. These dimensions are mostly independent of
ach other and all have their own importance. For example, knowing
hether a constraint is ‘hard’ or ‘soft’ is equivalent to knowing whether

t expresses a mandatory requirement or not. The ‘affected object’
nforms how to track the constraint and what might be affected if it
s violated.

Such a more fine-grained classification for VCs enables differentiat-
ng techniques and therefore enables a common shared understanding
nd objective discussion about VCs. Newly found VCs can be contrasted
nd grouped with other validity constraints using a given classification.
lassifications can also help identifying new VCs, by looking for a VC
hat fulfills a certain combination of properties.

.2. Formal characterization of VCs

In this section, we introduce a classification for Validity Constraints
or DAWs. First, we will explain why a classification is helpful in this
ontext. Then, we present the properties alias dimensions we deem
elevant to classify VCs and then classify the introduced VCs in Section 5
ccordingly.

Using the properties and dimensions of Table 1, we classify the
elected VCs from Section 5 in Table 2 and observe the following
eneral trends and traits for the selected VCs. Most VCs are either
ard constraints or can be both hard and soft constraints. This char-
cteristic is most likely because there is less value in a VC that never
ndicates an error. There are two big groups regarding the time a
89
Table 1
Dimensions by which VCs can be characterized.

Dimension Description and possible values

Severity Describes whether a VC must be fulfilled or not;
non-mandatory VCs implement plausibility checks.
Possible values: hard implies immediate stop of DAW
execution; soft: issues a warning, for instance in the
DAW log.

Affected object Describes the type of object addressed by a VC. This
dimension was used to group VC in the previous text.
Possible values: setup, task, and file.

Type Describes the type of a VC. Possible values: static;
dynamic. See also Section 4.1.

Time of check Describes the point in time when a VC should be
checked. Possible values: before, →[ : check before task
starts on a given node, when state changes from 𝖱 to
𝖤; after, ]←: check after a task has finished, when
state changes from 𝖤 to 𝖥; during, [⇝]: check
periodically during task execution, i.e., while in state
𝖤.

Component Describes the component in the DAW architecture (see
Section 3.2 and Fig. 3) which is responsible for
controlling a VC. Possible values: execution engine EE;
scheduler S; resource manager RM; monitoring M.

Recoverable Describes whether the DAW system can try to recover
from the error automatically. Possible values: yes (+),
no (−), maybe (±).

VC is checked: many VCs are checkable either ‘before’ or ‘during’ the
execution; few VCs are checkable ‘after’ the execution. This deviation is
most likely caused by preconditions and invariants being more common
than means to check postconditions. The most predominant component
for checking VCs is the EE, which is tightly coupled to almost all of
he dynamic VCs, as the EE is inherent to the execution. The time
f check also correlates with the discreteness of the checks. If a VCs’
ime of check is ‘before’ or ‘after’, it is usually ‘discrete’. If the time
f check is ‘during’, the VC is usually ‘continuous’. As we do not have
nough examples of ‘triggered’ constraints, we cannot point out similar
orrelations for those. Many VCs are not limited to workflows but
re also applicable in related fields, i.e., they represent more general
onstraints. Many constraint violations are ‘recoverable’ as violating
hem can be caused by spurious problems.

. Related work

In the following, we first look at implicitly and explicitly defined
oncepts similar to VCs one can find in other research fields. This
eview also was an important source of input for Section 5. In Sec-
ion 6.2, we provide a survey of validity checking mechanisms in
elected current workflow languages or systems, namely the Common
orkflow Language (CWL), Nextflow, Snakemake, Airflow, Spark, and

link. Finally, Section 6.3 discusses prior (now essentially historical)
ork in VC-related concepts in scientific workflow research.

.1. VCs in other fields of research

First, we look at VCs in other fields of research.

atabase management systems. Relational databases use tables with
ttributes and values to thore their data, allowing queries through
eclarative languages like SQL [36]. They enforce integrity constraints
ICs) [37], which ensure specific properties of attribute values. These
an be constraints on individual values (e.g., value-range constraints),
onstraints on all values of an attribute (e.g., unique constraint), and
onstraints relating values across attributes (e.g., foreign key con-
traint). In addition, user-defined constraints can be programmed using
riggers for specific actions, such as insertion or deletion of a tuple.
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Validity constraints for workflows.
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Setup-related:
Static res. availability h 𝑃𝐶 (𝑐) or 𝑃𝑇 (𝑠) →[ [⇝] S,M d +

File must exist h 𝑃 𝑖
𝐷(𝑠), 𝑃

𝑜
𝐷(𝑠) →[ ]← EE d/p ±

Infrastructure health b 𝑃𝐶 (𝑐), 𝑃𝐶 (𝑠, 𝑡) [⇝] M d +

Task-related:
Executable must exist h 𝑃𝑇 (𝑠) →[ EE d −

Dynamic res. availability h 𝑃𝐶 (𝑐) or 𝑃𝑇 (𝑠) →[ [⇝] S,M d +
Configuration parameters b 𝑃𝑇 (𝑡) →[ EE d −
License valid h 𝑃𝑇 (𝑡) →[ EE d ±
Metamorphic relations b 𝑃𝑇 (𝑡) ]← EE d/p ±
Tasks end within limits h 𝑃𝑇 (𝑠) [⇝] S,EE d/p ±
Task ends correctly b 𝑃𝑇 (𝑠) ]← EE d ±

File-related:
File properties b 𝑃 𝑖

𝐷(𝑠), 𝑃
𝑜
𝐷(𝑠) →[ ]← EE,RM d ±

File must exist h 𝑃 𝑖
𝐷(𝑠), 𝑃

𝑜
𝐷(𝑠) →[ ]← EE d/p ±

Folder exists h 𝑃 𝑜
𝐷(𝑠) →[ EE d ±

ICs in databases resemble validity constraints (VCs) in workflows,
ut there are key differences. ICs are defined over a persistent database
nd are enforced on every data change, ensuring consistency. In con-
rast, VCs for workflows operate in a transient process and must be
anaged alongside workflow execution. Some VCs prevent inconsistent

states (pre-conditions), while others respond after inconsistencies oc-
cur (post-conditions). Database systems are monolithic, incorporating
IC control, whereas workflow systems involve multiple independent
components, making VC control more challenging (see Section 7).

Model checking. Model checking is a technique for automatic formal
verification of finite state systems. The model checking process can be
divided into three main tasks [38]:

Modeling: Convert a design (software, hardware, DAW) into a
formalism accepted by a model-checking tool.

Specification: State the properties a design must satisfy (i.e., some
logical formalism, such as modal or temporal logics).

Verification: Check if the model satisfies the specification (ideally
completely automatic).

Especially the second task (specification) and the first task (modeling)
are related to VCs. During modeling, the DAW is translated into a
Kripke transition system [38, Ch. 3], an automaton with states (tasks)
and transitions. Each valid path in the Kripke transition represents
a valid execution path in the DAW, thus ensuring that the necessary
task execution order is respected. Temporal logic [38, Ch. 2] is used,
for example, to define VCs locally or globally in the specification. In
ther words, the constraints can be on the state (task) level, which
an indicate that there exists a task along the path that fulfills a given
ondition or constraint. Furthermore, constraints can also be defined
n the path-level, meaning that there exists a path generated from a
tate that holds true for a given condition [39].

usiness Process Management (BPM). BPM studies workflows in
usiness-related areas to improve business process performance.
here are different relevant perspectives to consider. The control-flow
erspective models the ordering of activities and is often the backbone
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of BPM models. Organizational units, roles, authorizations, IT systems,
and equipment are summarized and defined in the resource perspective.
Furthermore, the data or artifact perspective deals with modeling
decisions, data creation, forms, etc. The time perspective addresses task
durations but also takes fixed task deadlines into account. Lastly, the
function perspective describes activities and related applications [40].
Process models can use conditional events to define business rules. A
conditional event allows a process instance to start or progress only
when the corresponding business rule evaluates to true. When handling
exceptions in BPM, validity constraints can be internal (caused inside
the task) or external (caused by an external event) exceptions. Another
constraint is the activity timeout, where an activity exceeds the
predefined time for execution [41].

Software engineering and programming languages. Software engineering
involves designing, implementing, and maintaining software systems.
Data types play a crucial role by defining how different components
can interact. Using inappropriate data types can lead to unspecified
and likely invalid behavior, so enforcing type constraints is vital for
software validity.

Most programming languages have type checking. Dynamically
typed languages like Python do this at runtime, while statically typed
ones like Java do it at compile time. If a type constraint is violated, an
error message is returned.

Assertions and exceptions in programming languages check user-
defined validity constraints at runtime. They are used for tasks like
verifying the existence of a file or specifying correct behavior in soft-
ware tests. Bertrand Meyer introduced Design-by-Contract in the Eiffel
language [42], a methodology for designing reliable systems using
assertions, preconditions, postconditions, and class invariants having
its roots in Hoare Logic [43] for proving program correctness.

Result checking [44], involves a separate program dedicated to
verifying the correctness of results. This differs from software testing in
that the checker must meet strict reliability and runtime requirements.

The Rust programming language2 [45] aims for safety by design,
articularly for concurrent programs. It ensures memory safety using a
orrow checker that validates memory references and controls access
hrough its ownership system, preventing issues with multiple threads
ccessing the same variable.

ervice composition and interface constraints. The topic of automatic
service composition is also the main focus of the book by Tan and
Zhou [46]. It discusses, for example, the verification of service-based
workflows, quality-of-service (QoS) aspects, deadlock detection, and
dead path elimination. Based on interface descriptions they verify
the automatic composability of workflows. As a foundation to an-
alyze properties (e.g., deadlock detection) of DAWs Petri nets [30],
𝜋-calculus [47], process algebra [48], or automata (linear temporal
logic) [49] can be used. When services or tasks are not directly compos-
able, one can look for mediator tasks that make interfaces compatible.
In terms of validity constraints, the work mainly focuses on the validity
of interfaces and data formats between tasks, which may be overcome
with mediators.

Machine Learning Operations (MLOps). MLOps involves the complete
process of integrating machine learning models and pipelines into
applications. For example, a video streaming service might use a model
to suggest content or show relevant ads. The model integration involves
reoccurring tasks, such as the curation, filtering, and preprocessing of
datasets, plus the design, training, and validation of the models [50].

Ensuring model validity in MLOps focuses on robustness and pre-
diction quality. While it is challenging to ensure correctness throughout
the entire pipeline, checks can be made at input and output stages. This
includes cross-checking output quality, detecting changes in input data
distributions, and verifying infrastructure requirements.

2 https://www.rust-lang.org/.

https://www.rust-lang.org/
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Machine learning pipelines are often designed for various infrastruc-
tures and complex technology stacks. Although platforms like TFX [50],
MLFlow [51], or Kubeflow [52] support MLOps, there is no widely
accepted standard to address fully automated validity checking. This
is crucial due to the continuous changes in pipelines driven by real-
world data, regulations, fairness, and safety concerns. Each change has
the potential to introduce errors to the pipeline. Thus, the need for
standardized quality assurance in MLOps is evident.

6.2. VCs in current workflow systems

After this overview of validity constraints of different fields, we
ext describe the state-of-the-art in validity constraint definition and
hecking in actual systems. To this end, we look at a selection of current
opular state-of-the-art workflow systems and examine if and how they
upport the application of validity constraints.

ommon Workflow Language (CWL). The CWL is an open standard
that facilitates the description of command-line tool execution and
workflow creation. It is still under active development [53]. The
ways to define validity constraints are currently limited but subject
to extension. So far, CWL supports a dynamic definition of resource
requirements enabling the optimization of task scheduling and resource
usage without manual intervention. Additionally, it allows the spec-
ification of software requirements. Both the resource and software
requirements are expressed as hints. Workflow engines may consider
or ignore these annotations as CWL is merely a workflow language and
standard but does not provide a full-fledged execution engine other
than a simple proof-of-concept runner. For better validation of work-
flow connections, it is recommended to use file format identifiers [54].
An extension currently under discussion is the addition of input value
restrictions.3 Our proposed VCs are more general and conceptually go
beyond the basic sanity checks that CWL currently offers.

Nextflow. Nextflow is a workflow system that provides its own domain-
specific language to compose user-provided tasks into workflows [55].
Although it is mainly used in the bioinformatics domain, Nextflow can
be used to build workflows in any domain. Recently, the Nextflow
developer team introduced their new language ‘DSL2’ to build Nextflow
workflows. They point out that the next focus is to take advantage of
the improved modularization capabilities of DSL2 to support the testing
and validation of process modules. We are not aware of any built-in
functionality to define or check validity constraints of the workflows
currently, though. Note that in Section 7 we will describe a prototype
implementation of VC for Nextflow.

Snakemake. Snakemake is a workflow management system that uses a
Python-based language to define and execute workflows. Each rule in
Snakemake specifies input and output files, along with any parameters
or commands needed to produce the output from the input. The rules
can be chained together to form a directed acyclic graph that represents
the dependencies between the rules [56]. While Snakemake ensures
that each rule is well-defined and the workflow is reproducible, it does
not, as far as we know, provide a formal mechanism for specifying
validity constraints or checking the correctness of the workflow at
runtime. Although, Snakemake supports a dry-run with the command
line option ‘-n’ that can be used to check whether the workflow is
defined properly and can also provide a rough estimate of the required
computational time necessary to execute it. Furthermore, Snakemake
checks for the existence of a task’s defined output files after its execu-
tion. For further checks, such as checking for them to be non-empty,
users are advised to implement that by shell commands manually to
provoke a non-zero exit status of the task.4 With VCs as an explicit

3 https://github.com/common-workflow-language/common-workflow-
anguage/issues/764.

4 https://snakemake.readthedocs.io/en/v7.25.0/ → FAQ.
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concept, we can keep the main business logic separate from sanity
checks and quality assurance. In a production environment, were every-
thing runs smoothly without infrastructure or other changes, one then
can consider to skip the actual checking of some VCs for performance
easons.

pache Airflow. Apache Airflow is a workflow management system
reated in 2014 by Airbnb [57]. Workflows in Airflow are created
sing the Python API. Airflow does not explicitly provide functionality

targeted at checking the validity of workflows. Instead, they provide
a best practices section in their documentation with a description of
testing of airflow workflows. In this description, the authors suggest
manually inserting customized checks into the workflow to ensure
results are as expected. However, such a check is simply another user-
defined task inside the workflow, and there are no specific airflow
constructs to help build such checks or to react when checks fails. We
discussed benefits of having VCs as a separate concept at the end of the
previous paragraph and throughout the paper.

Apache Spark. Apache Spark, which was started in 2009 at UC Berke-
ley, is a workflow engine for large-scale data analysis [58]. Spark
workflows are defined via APIs in Java, Scala, Python, or R. Apache
Spark does not seem to support validity constraints for their workflows.
Therefore, users need to come up with their own validation schemes.

Apache Flink. Apache Flink is a data analytics engine unifying batch
and stream processing [59]. Akin to Spark, Apache Flink workflows
are created using Java, Scala, or Python APIs. In a document for the
nightly build of Apache v1.15, the Apache Flink team introduces a new
non-stable minimum viable product named ‘‘Fine-Grained Resource
Management’’. This new feature will allow workflow developers to
specify the resource requirements manually for each task. While this
feature’s primary objective is to improve resource utilization, this may
provide the possibility for resource-based validity constraints. Aside
from that, Flink offers extensive support for local testing and validating
workflows with constructs such as test harnesses and mini clusters.

In summary, the concept of VCs seems not yet to be well established
across the different workflow management systems. Nevertheless, the
challenges of portability, productivity, and performance of workflows
get increasing attention also in related fields such as high-performance
computing [60].

6.3. Previous work on VCs for scientific workflows

Scientific Workflows are DAWs in the scientific data analysis domain
(Section 1). Typically, they build on a Scientific Workflow Management
System, which encompass workflow languages, execution engines, a
form of resource management, and a form of data exchange; the later
two components are often delegated to infrastructure components like
shared file systems or resource managers. Over the years, many such
systems were developed with differing features and capabilities [61].
Validity constraints—although they are a vital ingredient for portabil-
ity, adaptability, and dependability as discussed in Section 1—often
remain implicit and unchecked in these systems [3]. Some research
addresses only very specialized aspects, such as Rynge et al. who focus
solely on detecting low-level data corruption (as hard VCs), for instance,
after caused by network or hardware errors [62]. In the following, we
discuss some prominent systems or perspectives from the viewpoint of
validity constraints.

Semantic workflows. Semantic workflows denotes a class of workflow
languages that build on an elaborated, often domain-specific type sys-
tem or ontology [63]. With this ontology, data that is to be exchanged
between tasks are assigned a specialized type (such as ‘‘genomic reads
from machine X’’ instead of the basic ‘‘set of strings’’), tasks are assigned
a type (such as ‘‘read mapper for genomic reads’’), and the IO channels
of tasks are assigned types. Types are arranged in a specialization

https://github.com/common-workflow-language/common-workflow-language/issues/764
https://github.com/common-workflow-language/common-workflow-language/issues/764
https://snakemake.readthedocs.io/en/v7.25.0/project_info/faq.html#how-do-i-make-my-rule-fail-if-an-output-file-is-empty
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hierarchy which allows inference regarding type compatibility or work-
flow planning [64]. For instance, Lamprecht introduced a workflow
language that allows for the definition of semantic constraints, lead-
ing to methodologies for model-guarded and model-driven workflow
design [65]. Another example is the semantics-based ‘Wings’ approach
to workflow development and workflow planning [66].

Types, i.e., semantically defined concepts, combined with compat-
ibility checking are a form of validity constraints. The are usually
defined statically and can be checked before workflow execution based
on annotation of the workflow components. They operate on a dif-
ferent level than the VCs we defined. However, such systems are
yet) rarely used in practice because they require all data files and
ll tasks to be used in a workflow to be annotated with concepts
rom a consistent ontology. In quickly changing fields like scientific
esearch where DAWs are often explorative, this requirement makes
evelopment cumbersome and inflexible. It also requires significant
ffort in community-driven ontology design and maintenance [67].

WDL based workflows and data constraints. Qin and Fahringer [68]
se the abstract workflow description language (AWDL), an XML-based

language expressing workflows. AWDL allows describing the directed
acyclic graph (DAG) of tasks with their conditions and execution prop-
rties (parallel, sequential, alternative paths), etc. Further, it allows
pecifying constraints for the runtime environment, optimization, and
xecution steering. The approach follows a UML-based workflow model-

ing and modularization. The specification of data representations and
activity types with ontologies aims for automatic semantic workflow
composition and automatic data conversion.

AWDL supports simple properties and constraints per data port and
task, such as read-only or read-write data, expected output size, mem-
ory usage, required CPU architecture, etc. It also supports constraints
on the data distribution like ‘‘a task only needs the first index’’, ‘‘a task
can work on single items’’, ‘‘a task needs a window of 𝑥 items’’, etc.
The typed data sources and sinks help the automatic composability of
workflows and necessary data conversion tasks.

Temporal constraints. Liu, Yang, and Chen discuss temporal constraints
in scientific workflow systems [69]. They argue that fixed time con-
straints are often too strict, and their violation not necessarily indicates
a failing (or otherwise wrong) workflow execution. Instead, they intro-
duce probabilistic temporal constraints, e.g., 90% of tasks of class ‘A’
finish within 60 min. They distinguish the components of setting tempo-
ral constraints, monitoring temporal consistency, and handling temporal
violations. Checkpoints can be used for re-execution and temporal
checks. To overcome constraint violations they distinguish statisti-
cally recoverable temporal violations and statistically non-recoverable
temporal violations. The former can be handled by doing nothing, or re-
scheduling, and the latter by adding resources, stopping and restarting
tasks or workflows, or workflow restructuring.

Provenance and provenance validity constraints.
The provenance of information produced by executing a workflow

on some input dataset describes a graph of data derivations, from
the inputs to the outputs, through each of the intermediate tasks,
and potentially including accountability metadata, i.e., who has been
responsible for the data and for the workflow specification.

It has been suggested [70] that provenance graphs can help to check
reproducibility as well as to validate the workflow’s correctness and
its performance, though practical tools to achieve this are still lacking.
When provenance is encoded using a standardized data model, such
as the W3C’s PROV,5 it may be possible to express simple validity
constraints on one workflow, for instance to assert that only inputs with
specific attribution can be accepted. In the context of reproducibility,
more complex constraints involving two or more workflow executions

5 https://www.w3.org/TR/prov-dm/.
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can also potentially be defined, for example to express the acceptable
differences between the outputs obtained from two runs.

The PROV data model is designed to facilitate interoperability of
rovenance information across different data providers and consumers.
or this, PROV itself defines a formal system of validity constraints,

denoted PROV-CONSTRAINTS.6 The constraints define structural and
semantic properties of the graph, asserting for instance that ‘‘a data
element cannot be used before it has been produced’’, but also to
enable inferences, for example ‘‘if a data element is generated by two
activities’’ (for instance, two workflow tasks) ‘‘𝐴 and 𝐵, then 𝐴 and 𝐵
must refer to the same activity’’ (uniqueness of data generation). This is
important in the context of provenance interoperability, to ensure that
semantic correctness of a provenance document received from a third
party ‘‘does not tell an impossible story about the data’’. Constraints
have also been used to define ‘canonical forms’ for PROV graphs [71].
Note that here the constraints are all pre-defined, as opposed to user-
defined, and as such they differ in their purpose and practical usage
from the type of VCs considered in this paper.

7. Implementing VCs as contracts in Nextflow

We implemented a prototype for a subset of the types of VCs defined
in Section 5 in the popular workflow system Nextflow to validate
our conceptual model in practice. Details of the implementation and
its evaluation are available in [72,73]. In brief, we added two new
directives called ‘require’ and ‘promise’ into the Nextflow speci-
fication language, which allow us to insert code for dynamic, task- or
file-related validity constraints specifying pre- or postconditions (but
not runtime conditions) into task definitions. By incorporating VCs
into the workflow definition language, we can leverage the existing
language tools available in Nextflow, such as Groovy. This approach
avoids a separate VC language with its own syntax and interpretation
infrastructure, and VC writers do not have to learn another specification
language [74]. Although VCs are written along the main business logic
of a workflow, the code for VCs should not perform any essential tasks
for the workflow, i.e., the workflow should run properly without the
VCs being executed. The two newly added primitives are part of an
extension to the DAW model borrowing the concept of contracts from
software engineering, described in Section 6.1.

This contract-based approach allows adding a contract to each task
in a workflow. Such contracts manifest as sets of requirements and
promises checked immediately before (→[ ) and after ( ]←) the task
execution to ensure that the task runs in the appropriate environment
and produces valid results. We added the primitives ‘require’ and
‘promise’ to Nextflow’s workflow definition language, so that code
for these contracts can be incorporated into the task definition. These
contracts are then executed alongside the tasks on the cluster as ar-
bitrary bash scripts, thanks to Nextflow’s nature of compiling each
task into a bash script. To facilitate the creation of these contracts,
we introduced auxiliary constructs with an internal domain-specific
language (DSL) [75] to Nextflow’s workflow definition language. Fig. 4
exemplary shows how to define VCs in the form of a contract for a
Nextflow process.

When Nextflow generates the command bash script for a process, it
now places the code from the require block before the process code and
the code from the promise block after the process code. The resulting
program can be sent for execution on the cluster nodes. In this specific
example, the process requires that all FASTA7 files should have lines
that start with certain characters, such as {>,𝐴, 𝐶, 𝑇 , 𝐺, 𝑈,𝑁, ; }. This
is a simple check to verify the file format before data processing and
makes the workflow more robust for better portability and adaptability.
If the preceeding step of data generation is altered and then may use a

6 https://www.w3.org/TR/prov-constraints/.
7 https://blast.ncbi.nlm.nih.gov/doc/blast-topics/.

https://www.w3.org/TR/prov-dm/
https://www.w3.org/TR/prov-constraints/
https://blast.ncbi.nlm.nih.gov/doc/blast-topics/
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Fig. 4. Listing of a Nextflow process with ‘require’ and ‘promise’ primitives to
define VCs.

binary encoding or compression for the data, for example, the VC safe-
guards the task and user from weird errors or unnoticed wrong analysis
results. After processing the data, the task ensures that the process
execution command did not encounter any errors and that the input
files remain unmodified. These contracts are categorized as dynamic va-
lidity constraints because they are code that runs alongside the task they
are defined in. In terms of categorizing VCs as described in Section 5,
these implemented contracts belong to the task-related VCs. The task
contracts can dynamically check node- and file-level properties, such as
verifying that the current node has sufficient resources. However, they
cannot check properties for all nodes. So, they cover the requirements
R1–3, R5–9, and R12 of Section 2. The remaining open requirements
belong either to global checks or continuous monitoring aspects, which
fit not well into the contract-based, task-focused approach but need to
be implemented with different means on another level.

We performed a case study in collaboration with domain sci-
entists from the life sciences involving real-world DAWs from the
bioinformatics domain, where scientists encountered several issues dur-
ing development that caused delays which sometimes lasted several
days [72,73]. We enhanced these workflows with contracts to test the
effectiveness and comprehensiveness of our contract-based approach to
implementing validity constraints. This allowed us to identify common
problems that arise during their execution and demonstrated that the
specific notifications provided by broken contracts aid in debugging the
DAWs. Our investigation focused on three main areas: (1) the impact
of runtime overhead on each task, (2) the amount of computation
time that could be saved by aborting the DAW early, and (3) how
contracts enhance issue localization and explanation. Our practical use
cases confirmed that the specification even of simple contracts are very
effective in supporting the identification of issues in real-world DAWs,
that they can save substantial compute time due to early aborts, and
that the runtime overhead often is negligible, depending on the type
of checks performed. The runtime is illustrated by Figs. 5 and 6 in
two exemplary workflows from bioinformatics we studied [72,73]. The
contract with the highest absolute costs resembles the one outlined
in the listing above, which checks the input files to contain certain
characters for the FASTP task. Nevertheless, it needs only about 3.3%
of the actual task runtime but may save numerous hours of problem
investigation by domain scientists based on the experience we gained
in the case study.
93
Fig. 5. Exemplary STAR workflow from bioinformatics with task and contract
execution times. The Cufflinks task actually failed.

Fig. 6. Exemplary Salmon workflow from bioinformatics with task and contract
execution times.

8. Validity constraints specification approach

Throughout this article, we have argued for the role of VCs as a
means of ensuring the portability and sustainability of a data analysis
workflow across different environments and contexts, ultimately saving
time for users and developers who (re)use the workflow. However, an
important question arises: How can VCs be specified? Typically, VCs
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are established during the final stages of workflow development, once
the workflow has been designed, executed and is ready for sharing. It
is the responsibility of the workflow developer to specify and incorpo-
rate VCs before sharing and publishing the workflow. However, VCs’
specification can be laborious and time consuming. Not only does the
workflow developer need to consider the specific data and processing
requirements within their own execution environment, but they also
need to anticipate potential issues that may arise from variations in
datasets, formats, parameters and environments. While this may seem
like extra work for the workflow developer, it is crucial to ensuring
the long-term viability of workflows and their reuse by others. Some
constraints can be directly stipulated by the developer, such as required
input and output files. Other types of VCs, e.g., setup- and task-related,
however, can be tricky to specify without some investigative effort from
the developer. In this section, we discuss a few sources of information
that can be exploited to assist workflow developers in specifying (at
least in part) VCs.

Debugging. Workflows often require multiple debugging iterations be-
fore achieving successful execution. During this process, workflow
developers execute the workflow using specific inputs, encounter
failures, and then proceed to modify the workflow, input data, or
environment parameters until a successful execution is achieved. Failed
executions of workflows can serve as valuable sources for specifying
VCs. If the workflow developers thoroughly document the reasons a
workflow execution was deemed to fail, e.g., excessively quick or long
task execution, empty output file, as well as identifying the specific
causes, then such documentation can be exploited to harvest VCs. In
articular, debugging is likely to point-out file-related causes such as
issing input file or incorrect input file format, as well as some task-

elated causes, e.g., the existence of a given executable on a given
ode.

esting. While debugging can be effective in helping specify file-based
Cs, it is less effective for setup- and task-related constraints. During
ebugging, the developer focuses on successfully executing the work-
low with specific input files of interest. Just like software products,
orkflow debugging is complemented with testing to ensure that the
orkflow behaves as expected in various settings. Functional and non-

unctional tests can provide valuable information for identifying setup
nd task-related VCs. For instance, tests can involve varying the input
iles, their sizes, formats, and exploring different parameter configura-
ions. These tests can help identify resource availability requirements
e.g., memory or number of cores required by the nodes or cluster) and
onfiguration parameter constraints (e.g., valid range or format). It is
mportant to note that this assumes the user has access to nodes with
arge capacity to identify task memory consumption for large input files
r tasks with greedy processing.

orkflow execution traces. If the workflow system has the capability
to capture execution traces, also known as workflow provenance, then
these traces can be collected during the debugging and testing phases of
the workflow. These traces can serve as valuable resources for refining
existing constraints, such as resource availability and configuration
parameters, and even for identifying new constraints. Specifically, by
analyzing workflow traces from multiple executions, it is possible to
extract information such as the minimum memory requirement for a
particular task. Moreover, execution traces can be leveraged to learn
correlations or functions, which can be used, for example, to predict
the memory needed by a node to perform a task correctly based on the
size of the input files. This will enable the specification of dynamic VCs
that are associated with the workflow task. Execution traces can also
be utilized in specifying metamorphic relations. By mining the traces, it
may become possible to learn functions that describe the relationships
between input and output files for a given task. Furthermore, execution
traces can be employed to set a maximum time limit for task execution.

If a substantial number of execution traces is accessible, then it may
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be possible to acquire more advanced VCs. For instance, it may become
feasible to predict the quality or precision of workflow results based
on its input, as exemplified in a material science user story. If users
annotate the quality of results obtained during tests and specify the
inputs responsible for such quality, correlations can be explicitly drawn
or even learned.

VCs reuse across workflows. Developers often do not specify a workflow
from scratch but reuse existing workflows as building blocks or modify
and repurpose them. They may also use workflow tasks that have
already been used in existing workflows. In such cases, some VCs
associated with the reused workflow can be used in the context of the
newly developed workflow. Task-related VCs, such as the availability
of the executable, resource requirements, configuration parameters,
license, and task limits, as well as metamorphic relations, can be reused
in certain cases. However, it should be noted that the newly developed
workflow may exhibit different features or requirements, which may
necessitate adjustments to the reused constraints. For example, a task-
end limit may be greater or lower depending on the properties of the
input files used in the newly developed workflows.

We have discussed, in this section, various sources of information
that developers can utilize to draw VCs. From the above discussion,
it becomes apparent that VCs’ specification should not be left until
the end of workflow development, as suggested in the introduction of
this section, but should, instead, be an integral part of the workflow
development cycle, whereby VCs are specified and refined gradually
during the debugging and testing operations. It is also worth noting
that certain VCs are somewhat generic and apply to any data analysis
workflow, making their specification straightforward. This is the case,
for example, for constraints ensuring infrastructure health and the
validity of task licenses.

Workflow repair. The evaluation of our VCs can lead to three different
actions: None, stopping an execution with a defined error message, or
only issuing a warning into the workflow logs. However, one could
also think of other possible reactions to a broken constraint. One
intriguing idea is to try to automatically ‘repair’ the ongoing workflow
execution based on the specific constraint [76]. For instance, a VC
that fails because the minimal memory requirement of a task is not
fulfilled on the foreseen node could also report its requirements to the
scheduler to instruct it restarting the task on a more powerful node.
A constraint testing the availability of a valid software license could
also try to acquire such a license from on online repository; VCs failing
due to ill-formatted input files could try reformatting these files. Such
repairs probably are not feasible in all cases described in Table 2; for
instance, a missing input file points to a problem that would be hart
to cure without an in-depth evaluation of the workflow’s history. We
consider an extension of VCs into rules with a more diverse universe
of consequences than just ‘true’ or ‘false’ as a particularly interesting
route for future work.

9. Conclusions

In this article, we introduced VCs as a means to make implicit
assumptions in data analysis workflows explicit, allowing a workflow
engine to perform fine-grained status checking and to take proper
action if needed. We defined a formal model connecting VCs to the
core elements of DAWs, namely tasks for computations, files for data
exchanges, and nodes for execution. Based on this formal model, we
introduced different types of VCs and classified them according to six
dimensions. We extensively discussed related concepts in various fields
of research to show that (a) VCs indeed are a vital and ubiquitous
concept, but at the same time, (b) a unifying theory was missing, and
(c) support for VCs should be considered as partial at best in production
or research systems. We hope our work will help to improve this
situation by making VCs an integral part of future DAW languages and
systems. VCs can support debugging, save energy and time by an early

failure of workflow executions, provide traceable warnings or error
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messages, and raise confidence in analysis results as they help making
DAWs more reliable.

Several extensions to our work are possible. We discussed sharing
of VCs and their extension to workflow repair in Section 8. In certain
ituations, e.g., IoT, DAWs are increasingly often used to analyze data
treams, which would pose specific requirements to validity checking
nd require fundamentally changing their semantics; for instance, the
otion of failure would need to be revisited. One could also increase
he expressiveness of VCs by allowing constraints that affect groups of
asks (e.g., the total memory of a group of tasks scheduled on a node
ay not exceed the overall memory of the node) or groups of files

e.g., the files sent to different downstream tasks must be identical). VC
checking could directly link to counter actions; for instance, breaking a
constraint about necessary memory on a node could result in feedback
to the scheduler and trigger a re-scheduling of affected tasks. Another
idea worth exploring is an analysis of trace files of (failed) workflow
executions to automatically find VCs by studying the common attributes
f an execution leading to a certain behavior, similar to provenance
atterns [77] or methods for failure predictions [78]. We leave such
deas for future work.
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