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A B S T R A C T   

Numerous studies have explored influencing factors in COVID-19, yet empirical evidence on spatiotemporal 
dynamics of COVID-19 inequalities concerning both socioeconomic and environmental factors at an intra-urban 
scale is lacking. This study, therefore, focuses on neighborhood-level spatial inequalities of the COVID-19 in-
cidences in relation to socioeconomic and environmental factors for Berlin-Neukölln, Germany, covering six 
pandemic periods (March 2020 to December 2021). Spatial Bayesian negative binomial mixed-effect models 
were employed to identify influencing factors and risk patterns for different periods. We identified that (1) 
influencing factors and relative risks varied across time and space, with sociodemographic factors exerting a 
stronger influence over environmental features; (2) as the most identified predictors, the population with 
migrant backgrounds was positively associated, and the population over 65 was negatively associated with 
COVID-19 incidence; (3) certain neighborhoods consistently faced elevated risks of COVID-19 incidence. This 
study highlights potential structural health inequalities within migrant communities, associated with lower so-
cioeconomic status and a higher risk of COVID-19 incidence across diverse pandemic periods. Our findings 
indicate that locally tailored interventions for diverse citizens are essential to address health inequalities and 
foster a more sustainable urban environment.   

1. Introduction 

As the overarching aim of the United Nations Sustainable Develop-
ment Goals agenda is to promote well-being for all, stark health in-
equities have become a major health concern in many countries, and to 
monitor and to address these inequities are considered among the top 
priorities in the coming decade (Hosseinpoor et al., 2018). In the wake of 
the pandemic, this has become a key challenge particularly in cities. 
They are grappling with triple challenges, encompassing the health 
ramifications of COVID-19, the ecological and climate changes, and 
social and economic inequalities (European Environment Agency, 
2021). Initial studies in many countries have found evidence of ethnic 
minorities and socioeconomically deprived communities facing a 

disproportionally higher risk of COVID-19 morbidity and mortality 
(Benita et al., 2022; Carrión et al., 2021; Das et al., 2021; Dukhovnov & 
Barbieri, 2022; Harris, 2020; McGowan & Bambra, 2022; Ribeiro et al., 
2021). Since COVID-19 might magnify existing inequalities and prob-
lems nested within cities, investigating spatial disparities and factors 
that contribute to COVID-19 incidence through an intra-urban lens is 
crucial to gain insights into building more equitable and sustainable 
cities in the post-pandemic era (Acuto et al., 2020; United Nations, 
2020). In Germany, such research efforts remain scarce. Straßburger and 
Mewes (2022) found that socially disadvantaged neighborhoods were 
particularly affected during the second wave of infection at the 
intra-urban level in the City of Duisburg, Germany. However, evidence 
has suggested that the influencing factors of COVID-19′s health 
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disparities and their impacts may vary, depending on local contexts and 
scales of analysis (Alidadi & Sharifi, 2022). 

Furthermore, as the pandemic progresses, the virus’s variations and 
intervention policies were constantly changing across different phases. 
Assuming that influencing factors have a time-independent, uniform 
impact on COVID-19′s health outcomes would result in inaccurate esti-
mates and misleading conclusions (Maiti et al., 2021). For example, 
while environmental factors’ health effects can differ across seasonal 
variations and social cycles (e.g., school terms and holidays) due to 
changes in the patterns and intensity of human interactions, more 
complex variations arise when people’s actions change in response to 
evolving infection risks and government interventions, such as 
stay-at-home orders, travel restrictions, and quarantine protocols 
(Kwan, 2021). 

As a matter of fact, due to data availability, only very limited 
research has focused on the spatiotemporal variations of COVID-19 at a 
finer intra-urban scale (Nazia et al., 2022). Most spatiotemporal studies 
on COVID-19 up to now have been conducted on the national, provin-
cial, county, or municipal level, or they have only analyzed the pan-
demic’s early stages (Aral & Bakir, 2022; Castro et al., 2021; Chen et al., 
2021; Gaudart et al., 2021; Maiti et al., 2021; Rohleder & Bozorgmehr, 
2021). Further spatiotemporal studies covering different stages of the 
pandemic at neighborhood level are needed to provide a more granular 
view of how COVID-19 spread within urban areas, facilitating the 
development of targeted, evidence-based responses to mitigate its 
effects. 

Previous studies have discussed the various factors’ roles in 
explaining the variability of COVID-19 incidence and mortality. In-
dividuals with a low socioeconomic status have been found to experi-
ence higher rates of COVID-19 cases, hospitalization, and death (Benita 
et al., 2022; McGowan & Bambra, 2022; Mena et al., 2021) and 
increased age is associated with heightened susceptibility to severe 
COVID-19 symptoms (Bartleson et al., 2021). Moreover, extensive evi-
dence has confirmed that children have a substantial impact on the 
transmission of COVID-19, specifically within school and household 
settings (Pierce et al., 2022). COVID-19 has also been shown to take a 
disproportionate toll on minority communities in the US (Andersen 
et al., 2021; Bilal et al., 2021; Carrión et al., 2021). Since the virus that 
causes the disease spreads primarily through human-to-human contact, 
COVID-19 is also strongly associated with urban population dynamics, 
including social interactions and the mobility patterns of urban residents 
(Bönisch et al., 2020; Lai et al., 2020; Manzira et al., 2022). The 
COVID-19 pandemic has also drawn attention to how environmental 
factors contribute to health disparities (Weaver et al., 2022). Initial 
studies have found that the built environment and urban layouts 
(Frumkin, 2021; Li et al., 2021; Schmiege et al., 2023), as well as 
physical environmental factors (such as green-space exposure, air 
quality, temperature, and humidity; Azuma et al., 2020; Grigsby--
Toussaint & Shin, 2022; Han et al., 2022; Kogevinas et al., 2021; Kon-
stantinoudis et al., 2021), are associated with COVID-19 incidence. 
Despite a plethora of efforts to identify influencing factors, few studies 
have considered both socioeconomic and environmental factors simul-
taneously when characterizing the spatial heterogeneities of COVID-19 
incidence (Sun et al., 2021). Given the multi-faceted nature of health 
disparities during this pandemic, a comprehensive approach that con-
siders both environmental and socioeconomic factors is essential to 
understanding the complex dynamics of COVID-19. 

From a methodological perspective, a systematic review of COVID- 
19 spatial analysis (Nazia et al., 2022) found that most existing spatial 
studies employed frequentist approaches, such as geographic weighted 
regression and spatial autoregressive regression. However, these studies 
tended to focus solely on spatial random effects and overlook unob-
served random effects of unaccounted factors, hindering the accurate 
estimation of the impacts of observed variables (Wali, 2023). Bayesian 
methods, commonly preferred over frequentist approaches, could 
accommodate both spatial and unobserved effects through a 

hierarchical modeling scheme (Nazia et al., 2022). Additionally, 
Bayesian analyses can be applied to a much smaller ratio of parameters 
to observations without losing power while retaining precision (Van De 
Schoot et al., 2015) and are therefore very appropriate for small-area 
disease mapping (Ver Hoef et al., 2018). This approach may provide 
local decision-makers a more robust and reliable data-driven gover-
nance than traditional frequentist methods model, especially in sce-
narios with limited data, which is often the case in many intra-urban 
health governances. Moreover, Bayesian methods facilitate the dynamic 
updating of estimates as it can take prior knowledge into account when 
incorporating new data, contributing to more adaptive analyses for 
long-term health monitoring and governance (Nazia et al., 2022; Van De 
Schoot et al., 2015; Ver Hoef et al., 2018). 

The aim of this study is, therefore, to employ a Bayesian approach to 
(1) identify neighborhood-level socioeconomic and environmental 
influencing factors and risk patterns of COVID-19 incidence for the 
entire study period and separately for different pandemic periods; (2) 
discern whether evidence suggests spatial, socioeconomic or environ-
mental inequalities in COVID-19 incidence and risks in Berlin-Neukölln, 
Germany. This study is the first, to our knowledge, to investigate 
neighborhood-level spatiotemporal variations of COVID-19 incidence in 
relation to both socioeconomic factors and environmental factors in the 
context of Germany. Compared to existing studies, we utilize a longer 
time series and incorporate advanced hierarchical modeling approaches 
to promote a more comprehensive and nuanced understanding of the 
complex dynamics shaping health disparities in a dense and diverse 
global city. In practical terms, our approach could be considered as a 
blueprint for future pandemics because it covers various stages of the 
pandemic at neighborhood level, offering practical insights that can 
enhance the precision and effectiveness of public health interventions, 
resource allocation, and policy adaptation. Furthermore, this study 
identified health inequalities in COVID-19 and its influencing factors 
and thus may provide valuable insights that can inform targeted in-
terventions, policy formulation, and urban planning strategies to build 
resilient and equitable cities in the aftermath of the pandemic. 

2. Materials and method 

To address our research objectives, this study was structured into a 
series of steps (Fig. 1) that are explained in more detail in the following 
subchapters. A framework was first proposed to help understand the 
underlying mechanisms and influencing factors of COVID-19 health 
inequalities. We measure COVID-19 inequalities through three per-
spectives of spatial disparities: 1) in incidence outcomes using the Gini 
coefficient, 2) in COVID-19 incidence risks across our study area, 
measured by the Bayesian spatial model and 3) in socioeconomic or 
environmental factors by connecting COVID-19 risks to its influencing 
factors based on the model results. 

2.1. Conceptual framework 

In this study, we measure the inequalities in the spatial distribution 
of COVID-19 incidences and risks, and we try to understand these in-
equalities through their associations with influencing factors. Health 
inequalities manifest when neighborhoods facing environmental and 
social disadvantages exhibit higher COVID-19 risks, while those 
endowed with environmental resources and social privilege show lower 
COVID-19 risks (Zhuang et al., 2022). To properly unveil and address 
COVID-19 inequalities, we need to better understand the influencing 
factors and underlying mechanisms shaping the health inequalities. 

While environmental and social inequalities have long been rooted in 
our society, the COVID-19 pandemic magnified these existing defects 
due to the disease’s highly transmissible nature (Alberti et al., 2020; 
McGowan & Bambra, 2022). Fig. 2 presents our conceptualization of the 
underlying pathways of COVID-19 health inequalities. While an envi-
ronmental hazard is a natural or human-induced physical event or 
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physical impact that may cause certain negative health effects (e.g., air 
pollution, noise, and heat stress; European Environment Agency, 2018), 
environmental benefits are natural or human-induced resources that may 
positively affect human health (e.g., green space and blue space; Schüle 
et al., 2019). Social vulnerability combines sensitivity (which is primarily 
driven by age and health) and the capacity to avoid, manage, or adapt to 
environmental health hazards (which is linked to socioeconomic status, 
available health and social support, or risk awareness) (European 
Environment Agency, 2018). In the context of COVID-19 exposure, the 
roles of virus variants, control measures such as social distancing 
implemented by local governments, and people’s behaviors in response 
to these implemented measures are considered crucial. 

The presence of social vulnerability may influence COVID-19 expo-
sure levels via disease transmission, susceptibility, and treatment 
(Bambra, 2022; Fu & Zhai, 2021; Huang et al., 2022), while exposure to 
certain environmental conditions could mitigate or exacerbate the 

health influence of COVID-19. The combined impacts of social vulner-
ability, environmental health hazards and benefits, and COVID-19 
exposure have given rise to COVID-19 health inequalities. 

2.2. Study setting 

This study was undertaken in an intra-urban setting in Neukölln, one 
of the twelve municipalities of Berlin. It is located in the southeastern 
part of the city’s metropolitan center, with a total of 327,100 inhabitants 
in an area of 44.9 km2 (Fig. 3a). Neukölln is the third most densely 
populated district in Berlin, and can be considered as the twentieth 
populated city in Germany. The district’s built-up structure, socio- 
demographics, and environmental characteristics are very heteroge-
neous. Generally, many areas in the northern part of Neukölln are lower 
in socioeconomic status, are characterized by high housing density and a 
higher percentage of foreign residents and migrants, whereas the 

Fig. 1. Workflow of this study’s methods and data analysis procedures.  

Fig. 2. Conceptual framework of COVID-19 health inequalities at the neighborhood level, adapted from the work of Zhuang et al. (2022).  
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southern areas are dominated by more dispersed housing with a lower 
living density, and a higher percentage of their population is elderly 
(aged over 65 years) (Senatsverwaltung für Stadtentwicklung und 
Wohnen Berlin, 2021). 

In this study, we utilized the 46 planning zones (PLRs) from the life- 
world-oriented spaces system (Lebensweltlich Orientierte Räume) as our 
unit of analysis (Fig. 3). These zones apply the finest scale created by the 
City of Berlin as planning units that contain relatively homogeneous 
spatial entities in terms of socioeconomic and built characteristics and 
comparable population sizes across units (N = 1247–12,546, on average 
7172 inhabitants) (Senatsverwaltung für Stadtentwicklung und Wohnen 
Berlin, 2020). 

This study took a longitudinal approach from March 1, 2020 to 
December 26, 2021, examining six distinct pandemic periods defined by 
Germany’s national public health institute, the Robert Koch Institute 
(RKI; Schilling et al., 2022). These periods are characterized by varying 
different infection rates, variants, and measure strategies as shown in 
Table 1 (see Schmitz et al. (2023) for more information). This classifi-
cation of periods was commonly used and referred to in the context of 
Germany. We followed this classification to have more policy relevance 
for health department, and for study comparisons in Germany. 

2.3. Model variables 

2.3.1. COVID-19 case data 
Data on the reported COVID-19 cases confirmed by PCR-tests in 

Neukölln were provided by the Neukölln Department of Health. For this 
study, we received the aggregated cumulative incidence (cases per 
population of 100,000) over the whole study period (Fig. 3b) and 
separately for each of the six pandemic periods (Fig. 4) at the PLR level. 
Due to the higher risk of infection in facilities such as nursing homes and 
refugee shelters, as well as these facilities’ uneven distribution in 
Neukölln, a total of 960 cases that occurred in such facilities to avoid 
distribution biases in presenting the COVID-19 cases had been removed 
in the original data, as had been duplicates and data with missing age or 
spatial information. 

2.3.2. Explanatory variables 
We selected explanatory variables to represent influencing factors 

according to the proposed conceptual framework (Fig. 1) with adjust-
ments based on data availability. 

2.3.2.1. Social vulnerability. At the neighborhood level, social vulnera-
bility can be characterized by the local socioeconomic status, de-
mographic structure, and access to health resources (see Table 1 for the 

Fig. 3. The study area (a) The district of Neukölln in Berlin. (b) The spatial distribution of cumulative COVID-19 incidence in Neukölln’s 46 planning zones (PLR).  

Table 1 
Summary of the six pandemic periods’ key features.  

Period Wave 1 SP* 1 Wave 2 Wave 3 SP* 2 Wave 4 

Date March 2, 2020–May 17, 
2020 

May 18, 
2020–September 27, 
2020 

September 28, 
2020–February 28, 
2021 

March 1, 2021–June 13, 2021 June 14, 
2021–August 1, 
2021 

August 2, 
2021–December 26, 
2021 

Total cases 675 1056 12,668 6534 608 16,059 
Total cases 

per 100,000 
inhabitants 

3082 4363 53,700 27,194 2577 67,942 

Key features Full lockdown for one 
month and then lockdown 
measures’ relaxation; face 
mask required in the later 
part of this period 

Active case detection 
and quarantine rules 

Partial lockdown; 
vaccination campaign 
with a prioritization 
strategy 

Alpha virus; childcare centers 
reopened, and rapid antigen tests 
were authorized; COVID-19 
certificate regulation for businesses 
and services; testing strategy for 
employees; schools reopened; new 
case management software was 
introduced 

Vaccine 
prioritization 
was lifted 

Delta virus; 3 G 
regulations; 2 G 
regulation*  

* SP = “summer plateau.”; 3 G = vaccinated, recovered and tested; 2 G = vaccinated and recovered. 
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details on the data). Three socioeconomic factors were chosen to 
represent the neighborhoods’ socioeconomic statuses: the percentage of 
the population in needy households who received state support benefits; 
the percentage of the population under 15 years old who were state 
support beneficiaries in needy households; the percentage of the popu-
lation who were unemployed (Senatsverwaltung für Stadtentwicklung 
und Wohnen Berlin, 2021). 

Five demographic variables were used: the population’s percentage 
of young people, aged less than fifteen years; the population’s percent-
age of elderly people, aged over 65 years; the population’s percentage of 
people with migrant backgrounds1; and the percentage of foreign resi-
dents. For further analysis, the percentage of the population with 
migrant backgrounds was then split into the two largest ethnic groups in 
the study area, immigrants from the European Union (EU)2 and immi-
grants from the Organization of the Islamic Conference (OIC) .3 

The number of physicians (or general practitioners) and the number 
of pharmacies per 100,000 inhabitants represent indicators for health 
resources. 

We assumed the social vulnerability data had not changed markedly 
during the pandemic and therefore collected the data for a single point 
in time only. 

2.3.2.2. Environmental hazards and benefits. The average distance from 
a residential block4 to the nearest public green space and blue space was 
calculated based on the land use map as indicators for access to envi-
ronmental resources. Data on air pollution levels in 2019, the annual 
mean traffic noise (day, evening and night) with 10 m resolution in 2017 
and the predicted annual mean number of hot days in 2020 for each 
residential block in Berlin was used. Additionally, calculated mean 
distances to the nearest transportation stop as a proxy for neighbor-
hoods’ access to transportation, and the average distance from a resi-
dential block to the nearest industrial sites to consider potential 
industry-induced environmental hazards. 

2.3.2.3. COVID-19 exposure. We addressed this factor by analyzing 
incidence distribution separately for different pandemic periods since 
the different virus variants and control measures that characterized 
different pandemic periods may have affected the populations’ levels of 
exposure to the virus. Social distancing’s role in varying COVID-19 
exposure was also crucial. We calculated urban-structure characteris-
tics from the built environment that may have affected social distancing 
as a proxy, following earlier studies (Frumkin, 2021; Gaisie et al., 2022; 
Li et al., 2021). Social distancing was characterized by two variables: 
living density (the average inhabitants per hectare of a residential 
block), based on data provided by FISBroker for 2020, and the number 
of social sites (including restaurants, bars, cafes, pubs, and market-
places), derived from the 2022 OSM data. A summary of all the 
explanatory variables is presented in Table 2. 

2.4. Statistical analysis 

We first calculated the Gini coefficient (Sun et al., 2021), the most 
commonly used measure of inequality, for COVID-19 incidences to 
assess the spatial inequality independently of any socioeconomic or 

Fig. 4. Spatial distribution of cumulative COVID-19 cases per 100,000 inhabitants in the six pandemic periods.  

1 According to the Statistics Office of Berlin-Brandenburg (2021), persons 
with migrant backgrounds are reported as foreigners and Germans with a 
country of birth outside Germany, a second nationality, a naturalization 
marker, or an option identifier (i.e., native German birth; since January 1, 
2000, the children of foreign parents have initially been granted German citi-
zenship via option regulation) and persons under the age of eighteen years who 
do not have their own migration characteristics but who have at least one 
parent with a migrant background if that person is registered at their parent’s 
address.  

2 The members of the EU are Belgium, Bulgaria, Denmark, Estonia, Finland, 
France, Greece, Ireland, Italy, Croatia, Latvia, Lithuania, Luxembourg, Malta, 
Netherlands, Austria, Poland, Portugal, Romania, Sweden, Slovakia, Slovenia, 
Spain, the Czech Republic, Hungary, and Cyprus (the Greek part).  

3 The members of the OIC are Afghanistan, Albania, Azerbaijan, Bangladesh, 
Benin, Brunei, Darussalam, Burkina Faso, Ivory Coast, Gabon, Gambia, 
Cameroon, Guinea, Guinea-Bissau, Guyana, Indonesia, Iran, Kazakhstan, 
Kyrgyzstan, Malaysia, Maldives, Mali, Mozambique, Niger, Nigeria, Pakistan, 
Senegal, Sierra Leone, Suriname, Tajikistan, Togo, Chad, Turkey, 
Turkmenistan, Uganda, Uzbekistan, and the Arab countries. From these coun-
tries, people with migrant backgrounds from Turkey, Iran, Syria, and Lebanon 
account for the highest share of Berlin’s population (Statistics Office of 
Berlin-Brandenburg, 2023). 

4 The smallest statistical subdivision area of the City of Berlin, usually an area 
surrounded by streets (Statistics Office of Berlin-Brandenburg, 2021). 
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environmental factors. 

2.4.1. Base models 
We then applied Bayesian negative binomial regression to develop a 

base model for the case data from all periods. The choice of a negative 
binomial model was driven by its advantages in handling over-dispersed 
count data (Hilbe, 2011). To test for spatial autocorrelation in the 
outcome data, we computed the global Moran’s I statistic with an 
empirical Bayes index modification which is frequently used to adjust 
the estimates of Moran’s I in situations with small sample sizes or high 
data variability (Assunção & Reis, 1999). Given the significant spatial 
correlation in the data for incidence across all periods, as evidenced by 
the Moran’s I Bayes Index (EBI = 0.63, p < 0.001), we first compared 
three potential base regression models with only response variables from 
all periods for the overall study period (See Table 3): (1) a negative 
binomial model with only a fixed intercept (Fixed); (2) a negative 
binomial model with nonspatial random effects to account for unob-
served random effects specific to each planning zone (Random); and (3) 
a negative binomial Besag–York–Mollié model (Besag et al., 1991) with 

two components respectively representing both the spatially structured 
and nonspatial random effects (BYM). All models assumed a 
non-informative prior for hyperparameter precision and the remaining 
parameters, as proposed in a previous study (Bilal et al., 2021). We 
selected the model BYM, the one with the lowest deviance information 
criterion (DIC; Spiegelhalter et al., 2002), for all subsequent analyses 
and regressions. 

Table 2 
Descriptive statistics and data sources for this study’s variables.  

Model Variables*  Min Max Mean SD Source 

Response Variable 
Total_rate Overall COVID incidence 23,943 37,227 30,417 3501 Health Department of Neukölln 
Wave_1_rate COVID incidence in Wave 1 73 590 220 95 
Summer_1_rate COVID incidence in Summer 1 13 1141 311 215 
Wave_2_rate COVID incidence in Wave 2 2844 5972 3828 97 
Wave_3_rate COVID incidence in Wave 3 1197 3108 1939 63 
Summer_2_rate COVID incidence in Summer 2 36 642 184 107 
Wave_4_rate COVID incidence in Wave 4 3498 6442 4843 111  
Social Vulnerability 
PCT_Beneficiaries Percentage of the population who are beneficiaries in 

needy households, according to SGB II and SGB XII 
4.3 36.6 16.3 7.5 Monitoring Soziale Stadtentwicklung Berlin, 2021 

PCT_Childpoverty Percentage of the population under 15 years old who 
are beneficiaries in needy households, according to 
SGB II 

8.9 74.7 38.5 16.0 

PCT_Unemployment Percentage of the population who are unemployed, 
according to SGB II 

2.3 17.8 8.0 3.5 

PCT_O65 Percentage of the population over 65 years old 8.0 33.5 18.4 8.1 Statistical Office for Berlin-Brandenburg, 2020 
PCT_U15 Percentage of the population under 15 years old 10.3 22.2 13.8 2.5 
PCT_FOR Percentage of the population who are foreigners 8.2 43.7 24.9 1.6 
PCT_POP_MB Percentage of the population with migrant 

backgrounds 
24.9 74.3 46.1 13.4 

PCT_MB_OIC Percentage of the population with an OIC migrant 
background 

8.5 46.7 19.9 8.5 

PCT_MB_EU Percentage of the population with a European Union 
migrant background 

6.8 18.5 12.0 3.9 

share_gp Number of general practitioners per 100,000 
inhabitants 

0 301.1 63.9 68.9 Open Street Map (authors’ own calculation) 

share_ph Number of pharmacies per 100,000 inhabitants 0 84.7 22.9 21.5 FISbroker, 2020 (own calculation) 
COVID-19 Exposure (Social Distancing) 
num_social_venue Number of restaurants, bars, cafes, pubs, and 

marketplaces 
0 71.0 14.8 17.4 Open Street Map (own calculation) 

living_density Number of inhabitants per hectare of a residential 
block 

43.9 565.3 273.0 179.0 FISbroker, 2020 (own calculation) 

mean_dist_transport Average distance from a residence block to transit 
stations 

21.1 291.1 94.5 47.7 FISbroker, 2020 (own calculation) 

Environmental Benefits and Hazards 
mean_dist_industry Average distance from a residential block to an 

industrial area 
24.7 937.4 364.8 205.4 FISbroker, 2020 (own calculation) 

mean_dist_greenspace Average distance from a residential block to a 
public green space 

10.1 336.5 126.3 91.6 FISbroker, 2020 (own calculation) 

mean_dist_blue Average distance from a residential block to a 
water area 

68.0 1211.8 544.4 313.7 FISbroker, 2020 (own calculation) 

air_pol Berlin’s air pollution level (including NO2 

measuring stations from 2019 and PM 2.5 
modeled data from 2018) 

1.0 3.0 2.1 0.7 FISbroker, 2022 (own calculation) 

mean_noise Annual mean value for noise (Day-Evening-Night) 
2017 

46.0 61.3 53.9 4.3 FISbroker, 2017 (own calculation) 

mean_hotdays Predicted mean value of annual hot days (max >
30 Celsius degrees) 

6.8 10.3 9.1 0.6 FISbroker, 2011–2040 (own calculation)  

* The final variables were calculated and derived from the source’s original data. 

Table 3 
Characteristics of the three base models (no predictors). A lower deviance in-
formation criterion (DIC) represents a better trade-off between the model’s fit 
and complexity.  

Base 
model 

Unobserved 
random effect 

Spatially 
structured random 
effect 

Effective number 
of parameters 

DIC 

Fixed — — 2.0 883.5 
Random ✓ — 2.1 882.7 
BYM ✓ ✓ 18.4 830.2  
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2.4.2. All-periods model 

2.4.2.1. Variable selection. In this study we leveraged the Lasso algo-
rithm, a powerful statistical tool for automatic variable selection (Sun 
et al., 2021; Tibshirani, 1996), with 5-fold validation to identify the 
most informative explanatory variables, and we further improved the 
selection using expert knowledge from the local health department. 
Stepwise selection was employed to only preserve significant variables 
to ensure a parsimonious final model. Multiple collinearity 
tests—including the variance inflation factor (VIF) and correlation co-
efficients between the remaining explanatory variables were executed to 
detect the models’ redundant variables and ensure that multicollinearity 
was eliminated. 

2.4.2.2. Model fitting. We used the integrated, nested Laplace approxi-
mation (INLA) method and the R-INLA package (Rue et al., 2009) to 
obtain Bayesian estimates for all models. Although this method is 
approximation-based, it has been shown to be accurate and to minimize 
the computational time (Blangiardo & Cameletti, 2015). The INLA 
generated the posterior distributions of the parameter estimates, and we 
separately presented the results with relative risk, exceedance proba-
bilities, and 95 percent credible regions for the whole pandemic period 
and each sub-period. The variables were standardized before they were 
added to the model; thus, the estimate coefficients were comparable 
between variables. Stepwise selection methods were then used to further 
simplify the model until all the remaining variables were statistically 
significant (Whittle & Diaz-Artiles, 2020). The DIC was used to compare 
different models. Generally, a DIC difference greater than ten between 
two models suggested that the model with the lower value was prefer-
able (Spiegelhalter et al., 2002). Finally, we plotted and mapped the 
predicted relative risk (RR) and posterior probability of exceeding an RR 
threshold (RR = 1.1; Rohleder & Bozorgmehr, 2021), estimated for each 
planning zone in our models. 

2.4.2.3. Validation. To check our findings’ robustness to the selection of 
priors, we conducted sensitivity analyses by comparing the fixed effects 
and their 95 % credible intervals for the models with priors chosen in 
this study versus the default priors of the INLA package. To further 
evaluate the final model’s performance, the dataset of all-periods cases 
was randomly split into training (80 %) and test data sets (20 %). After 
estimations were obtained based on the training data set, different 
models with the same variables that remained in the final model were 
applied to the test data set. We compared our BYM spatial model to the 
other two base models under the Bayesian framework, i.e. Fixed and 
Random. In addition to our three base model types, a frequentist model 
(e.g. maximum-likelihood generalized linear model (MLE)) and a pop-
ular machine learning model (e.g. random forest (RF; 500 trees to grow 
and a default setting for other hyperparameters in the R package ran-
domForest) were implemented to allow for a broader comparison. The 
root mean square error (RMSE), one of the most commonly used mea-
sures for evaluating predictions’ quality, was calculated to validate 
models’ performance (van Zoest et al., 2022). 

2.4.3. Period-specific models 
To more closely examine major influencing factors during each one 

of the six pandemic periods, we employed the negative binomial BYM 
model for the cumulative incidence of each pandemic period by further 
repeating the variable selection and model-fitting process mentioning in 
the all-periods model. 

2.4.4. Additional analysis 
We conducted additional analysis based on the informative pre-

dictors identified in the final models to further investigate which social 
groups were facing COVID-19 inequalities. These health inequalities 
were considered existing when disadvantaged social groups showed a 

positive association with higher risk of incidence. Specifically, the per-
centage of the population with migrant backgrounds was split into two 
major ethnic groups in the study area—EU immigrants and OIC immi-
grants—for further analysis. These two groups were selected because 
they are the largest (60 % of the total population with migration back-
ground) and, hence, the most representative migrant ethnic groups in 
Neukölln. In this step, we ran the final model separately for each of these 
two groups, and an age-standardized COVID-19 incidence was calcu-
lated and utilized to control for age’s confounding effect when exploring 
the associations between risk factors and COVID-19 incidence. 

3. Results 

We address the research objectives in the following sections as out-
lined: 1) the overall influencing factors and risk patterns of incidence for 
all pandemic periods; 2) the spatiotemporal dynamics of influencing 
factors and risk patterns across different pandemic periods; and 3) the 
neighborhood-level COVID-19 inequalities in relation to social in-
equalities. After addressing multicollinearity, the remaining predictors’ 
VIFs in the final models (for all periods and the sub-periods) were all 
below five. The spatial distribution of the factors identified in all the 
final models is visualized in Supplementary Figure S1, and the correla-
tion matrix of them is presented in Supplementary Figure S2. 

3.1. Overall influencing factors and risk patterns of COVID-19 

The Gini coefficient for all-period COVID-19 incidence across PLRs is 
0.232, which implies a moderate level of spatial inequalities of COVID- 
19 incidence. 

The all-period final model suggested that six influencing factors 
made statistically significant contributions to the spatial variations in 
the COVID-19 incidence: The percentage of elderly inhabitants had the 
largest effect size with an expected 6.2 % decrease in the COVID inci-
dence (RR = 0.938, 95 % CIs = 0.916–0.961). Additionally, the number 
of pharmacies per 100,000 inhabitants was positively associated with 
the COVID-19 incidence (RR = 1.033, 95 % CIs = 1.018–1.047). 
Moreover, the percentage of the population with migrant backgrounds 
(RR = 1.029, 95 % CIs = 1.006–1.053), the percentage of young pop-
ulation (RR = 1.029, 95 % CI = 1.013–1.045), and the mean distance to 
the nearest transit stop (RR = 1.025, 95 % CIs = 1.011–1.039) were 
positively associated with the incidence. The annual mean traffic noise 
value had a negative association (RR = 0.097, 95 %CIs = 0.956–0.984). 
The posterior RR estimates and the 95 % credibility intervals are sum-
marized in Supplementary Table S1. 

The PLR-specific COVID-19 incidence RR and the exceedance prob-
ability for RR > 1.1 throughout the study periods shows, that 21 from 
the 46 planning zones had an RR greater than 1, and eight faced a risk 
higher than the 1.1 threshold, with the highest RR of 1.19 (see Fig. 5). 
Moreover, most of these areas were clustered in the upper north area of 
Neukölln. 

3.2. Dynamics in influencing factors on COVID-19 over the 6 periods of 
the pandemic 

Fig. 6 visualizes the RR from the models’ posterior estimation for 
different periods, and the results of the model for all-periods were also 
included for reference and comparison. The 95 % CIs indicate great 
uncertainty in estimations for the first wave and the two summer pla-
teaus, possibly due to the much lower incidence during these periods 
and hence lower statistical power. Generally, the percentage of the 
population with migrant backgrounds was selected with a positive as-
sociation in most periods and with the strongest one during Wave 4. The 
percentage of the population aged over 65 years was most strongly 
associated with a lower risk of COVID-19 incidence, selected by the 
models for all-periods, Wave 2, and the two summer plateaus. The effect 
sizes of the covariates in the sub-periods were larger than those of the 
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model for all-periods. For example, the unit effect of a young population 
(under the age of 15) on the COVID-19 incidence increased from 2.9 % 
to 5.9 %, versus 3.0 % to 8.6 % for migrant backgrounds, during the 
second wave. Note that the estimated RR for the mean distance to transit 
exerted effects in the opposite direction in the model for all periods and 
the Summer 1 model, and some variables were only selected by the 
models for certain sub-periods but not the model for all periods, such as 
green space (RR = 0.864, 95 % CIs = 0.747–0.980) in Wave 1, annual 
mean hot days in Wave 4 (RR = 1.042, 95 % CIs = 1.016–1.069), and the 
percentage of state beneficiaries in Wave 3 (RR = 1.105, 95 % CIs =
1.052–1.159). To interpret this result, we must consider both the study’s 
sample size and real-life situations during the considered period. 

Fig. 7a displays PLR-specific RR for sub-period models, while Fig. 7b 
shows the posterior probability of RR exceeding 1.1. In the first wave, 
elevated RR spread across Neukölln; 35 of 46 zones had RRs > 1, with 23 
exceeding 1.1 and nine surpassing 1.2. This period observed high risk in 
the lower southern part, but with a relatively low exceedance proba-
bility. In subsequent waves, especially during the first summer and 
Waves 2 and 3, the upper part of Neukölln, especially the upper east, 
showed greater RR with strong exceedance probability; highest RRs 
were 2.06, 1.43, and 1.33, respectively. In the second summer, the risk 
remained in the northern part, with a slightly lower exceedance prob-
ability. In Wave 4, 11 zones had RRs > 1.1, similar to previous periods, 
but with a slightly elevated risk in the southern inner corner of Neukölln. 

Fig. 5. Unequal distribution of COVID-19 incidence risks over the whole study period. (a) Area-specific Relative Risk (RR). (b) Exceedance probability for RR higher 
than 1.1. An exceedance probability above or equal to 90 % indicated a high likelihood of exceeding the RR thresholds. 

Fig. 6. Estimated relative risks (mean and 95 % credible intervals) for the associations between the explanatory variables and the incidence by all-periods and 
period-specific model. 
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3.3. Validation of model estimation 

We found no major differences in fixed effects or their uncertainty 
estimates with the INLA default priors, indicating our findings’ satis-
fying robustness to our choice of priors. The BYM model achieved the 

highest prediction accuracies with the lowest RMSE value compared to 
other modelling approaches in our study, suggesting a good perfor-
mance of our selected models. Table S2 in the supplementary material 
shows the RMSE values for the different models’ predictions of the 
COVID-19 incidence. 

Fig. 7. Unequal distribution of COVID-19 incidence risks across the six pandemic periods. (a) Area-specific RR. (b) Exceedance probability for an RR above 1.1. An 
exceedance probability above or equal to 90 % indicated a high likelihood of exceeding the RR thresholds. 
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3.4. Additional analysis 

Although several environmental factors were found statistically 
significant in the model results, the direction of the associations did not 
imply that communities with higher burden of environmental hazards or 
lower access to environmental resources are faced with higher risks of 
COVID-19. For example, the noise exposure level was negatively asso-
ciated to COVID-19 incidence, which did not suggest higher risks for 
groups of population suffered higher level of noise. On the other hand, 
the population with migrant backgrounds consistently exhibited a pos-
itive association with the COVID-19 incidence over the three waves and 
in the all-periods model, indicating a potentially elevated health risk for 
this population and hence a social inequality in COVID-19 incidence. 
When splitting the migration group into further sub-groups, we found 
the model’s results to be significant for the percentage of the population 
with OIC migrant backgrounds but not for the population with EU 
migrant backgrounds. For the overall model, a standard-deviation-unit 
increase in the percentage of the population with OIC backgrounds in 
a planning zone led to a 3.1 % (RR = 1.031,95 % CIs = 1.006–1.053) rise 
in the incidence. For the second wave, when replacing the input variable 
- percent of population with migration background- with the percent of 
population with OIC backgrounds, the effect size rose from 8.6 % to 10.4 
% (RR = 1.104,95 % CIs = 1.057–1.152). A standard-deviation increase 
in the OIC group would lead to a 10.9 % (RR = 1.109, 95 % CIs =
1.078–1.141) greater incidence during Wave 4. The adjusted association 
was still significantly positive (RR = 1.009, 95 % CIs = 1.002–1.012) 
between OIC population and age-standardized incidence (see Supple-
mentary Figure S3). 

4. Discussion 

4.1. Variability in influencing factors and relative risks 

A key finding from our results is that socioeconomic factors exerted a 
more significant influence on the spread of COVID-19 when compared to 
environmental factors. This finding is in line with other intra-urban 
studies that identified stronger influence of social characteristics over 
other variables, such as studies in Chicago (Kashem et al., 2021) and 
Tehran (Lak et al., 2021). Among the sociodemographic features, age 
and ethnic minority were identified most constant factors on COVID-19 
infections in our study. In this section, we will discuss the role of the 
social and environmental factors we have highlighted in our results, 
except for ethnic minorities. We will address ethnic minorities sepa-
rately in the next section to delve further into it, considering it a sig-
nificant factor of health inequality. 

4.1.1. Social vulnerability 
While many other studies have found that neighborhoods with 

higher percent of elderly people are associated with greater risks of 
COVID-19 infection and mortality (Alidadi & Sharifi, 2022; Khavar-
ian-Garmsir et al., 2021; Lak et al., 2021; López-Gay et al., 2022), our 
results indicated that, in Neukölln, the generally high percentage of 
elderly inhabitants is associated with a lower COVID-19 incidence. 
Similar negative association was also reported by Johnson et al. (2021) 
that the population over 70 is connected to lower COVID-19 cases in 299 
local authorities in the UK. One possible reason for this finding could be 
that, since cases from nursing homes had been removed for this study, 
the percentage of elderly people was highly associated with a sparse 
housing density (Pearson’s coefficient: − 0.82), which has been consis-
tently linked to reduced COVID-19 transmission in earlier studies (Ali-
dadi & Sharifi, 2022). Besides, the increased vulnerability of the elderly 
to COVID-19 mortality (Williamson et al., 2020) was highlighted in 
public health guidance. Consequently, older individuals may have 
reduced their contact with others and exhibited greater compliance with 
public health measures compared to younger adults (Korn et al., 2022; 
Nivette et al., 2021). Furthermore, the German government has 

prioritized the vaccination of elderly people (Brenner, 2021). Therefore, 
sparse housing, less social contact, and targeted vaccine campaign, 
might all have contributed to less COVID-19 risk for the elderly group. 
Conversely, higher risks were found to be associated with the young 
population. This finding is congruent with evidence from previous 
studies (Whittle & Diaz-Artiles, 2020; Li et al., 2022) suggesting that 
significant transmission was fueled by young, asymptomatic carriers. 
The significant role of children in the transmission of COVID-19 is likely 
a result of elevated exposure within the school environment (Pierce 
et al., 2022), which recognized as high-risk settings for COVID-19 
transmission due to close and frequent contact among students and 
teachers. Moreover, the obligatory testing schemes in schools 
throughout the pandemic and the detrimental effects of crowded and 
poorly-ventilated indoor spaces may further contribute to COVID-19 
transmission in schools (Xu et al., 2021). 

Regarding health resources, the number of pharmacies per 100,000 
inhabitants was found to have a statistically significant positive associ-
ation with the COVID-19 incidence in the all-periods model. A previous 
study confirmed pharmacies’ roles in addressing current population 
health gaps and influencing patients’ health engagement (Livet et al., 
2021). The positive association between the pharmacy indicator and 
incidence was inconsistent with previous studies on city scales in China 
(Zhang et al., 2021), but at neighborhood level it aligned with findings 
in Tehran, Iran (Lak et al., 2021). This finding could suggest that the 
current allocation of health resources involving pharmacies is reason-
able and matches the demand for at-risk populations since areas with 
higher incidence were equipped with more pharmacies. On the other 
hand, inhabitants in areas with more pharmacies might tend to have 
higher health-risk awareness and easier access to self-tests; therefore, 
they may be more likely to take PCR tests, leading to more confirmed 
cases. 

4.1.2. Environmental hazards and benefits 
Generally, in this study, environmental variables only exerted a 

marginal but statistically significant effect. We did not find enough ev-
idence of environmental inequalities since no disproportionate envi-
ronmental burdens had statistically significant connections to higher 
disease incidence. During the first wave, our model suggested that the 
further a residence from public green space, the more likely were lower 
risks of infection. This finding contradicted some previous studies in the 
United States (Liu et al., 2021; Russette et al., 2021; Spotswood et al., 
2021) where green space exposure was a negative predictor on 
morbidity or mortality of COVID-19. However, it aligned with some 
intra-urban studies that focused on the pandemic’s early stage in China 
(Huang et al., 2020; You et al., 2020). We hypothesize that during the 
lockdown, with the closure of indoor workplaces and recreational 
spaces, public green spaces may have experienced increased human 
mobility as a primary recreational venue, potentially leading to more 
transmissions. Previous studies in various countries have supported our 
hypothesis and confirmed a rise in park visitation during the outbreak 
(Geng et al., 2021; Venter et al., 2020). We also found that the Southern 
part of our study area included a large expanse with sparse housing and 
private gardens instead of public green space. This trait may have also 
affected green space’s influence on the COVID-19 incidence. 

The planning zone’s mean noise value was also a statistically sig-
nificant predictor of the cumulative COVID incidence in the combined 
waves and in Wave 4. Contrary to the results of a previous spatiotem-
poral study (Díaz et al., 2021), in our study planning zones with higher 
noise levels were found more likely to have lower COVID incidence. 
According to the metadata of the datasets, the main noise source was 
traffic, and noise value was an annual mean from 2017 for each whole 
planning zone. As studies in London and Dublin indicated, a significant 
decrease in the perceived outdoor noise level were reported during the 
lockdown (Basu et al., 2021; Lee & Jeong, 2021). Therefore, the data we 
used might not fully represent the neighborhood’s noise level that res-
idents experienced during the pandemic. Instead, it could indicate the 
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area’s traffic connections. It is consistent with another variable in the 
final model for all periods—the mean distance to transit—suggesting 
that easier access to transit was associated with a lower COVID-19 
incidence. 

While some studies have demonstrated a positive correlation be-
tween public transport utilization and COVID-19 incidence (Carrión 
et al., 2021; Guo et al., 2021; Huang et al., 2020; Xu et al., 2022), our 
result is supported by the findings of intra-urban studies in Sydney 
(Gaisie et al., 2022), Washington DC (Hu et al., 2021) and Dublin 
Manzira et al. (2022). During the COVID-19 pandemic, fear of infection, 
perceived risk, and travel anxiety took precedence as the primary 
influencers of travel choices and contributed to a shift of transportation 
mode from public transportation (Chen et al., 2022). As a result, most 
public transport operated at reduced capacity with additional hygiene 
measures in place, public transport users may not have been at a higher 
risk of contagion (Manzira et al., 2022). In this case, more transportation 
options in an area could further reduce crowding on public transit and, 
hence, disease transmission. However, note that the mean distance to 
public transit had the opposite effect on disease incidence during the 
first summer. This result might have been due to the high mobility 
during summer vacation time, especially after the previous lockdown. 
This finding is consistent with expectations from earlier studies that 
have suggested that the impact of public transport use is nonlinear and 
context-dependent (Kim et al., 2023). 

As opposed to the results in a recent global multi-city study indi-
cating a negative association between temperature and COVID-19 in-
fections (Nottmeyer et al., 2023), our study found annual mean hot days 
were positively connected to COVID-19 incidence in Wave 4. Nakada 
and Urban (2021) also observed that temperature was inversely corre-
lated to COVID-19 infection in their intra-urban study. Our result might 
indicate a potential detrimental health impact of heat stress instead of 
land or air temperature. People’s reluctance to wear masks on hot days 
could also contribute to the higher incidence (Milošević et al., 2022). On 
the other hand, it could be understood as a proxy for the urban heat 
island effect; the busier and denser an urban area, the higher its land 
temperature. As control measure were gradually lifted and economic 
activities were recovered during this period, the result might indicate 
that neighborhoods with higher urbanicity recorded higher infection 
rates, a trend that has been observed in Melbourne, Australia (Gaisie 
et al., 2022), Huangzhou, China (Li et al., 2021) and multiple cities in 
Brazil (Viezzer & Biondi, 2021). 

4.1.3. Social distancing urban parameters 
Living density and number of social sites, proxies for social 

distancing, have been found as insignificant contributors to the 
spreading of COVID-19 in our study. This was unexpected as in many 
studies, urban densities are main predictors for incidence. For example, 
a recent study in Tokyo has observed a positive association between 
COVID-19 spread and not only population density but also other urban 
density like commercial and healthcare facilities (Alidadi et al., 2023). 
Similar results were also found in Barcelona (López-Gay et al., 2022), 
Tehran (Lak et al., 2021), Wuhan (Xu et al., 2022). However, Khavar-
ian-Garmsir et al. (2021) argued that urban density alone cannot be 
considered a risk factor and has a double-edged effect on COVID-19 in 
Tehran, Iran. This was also confirmed with a study in Chicago (Kashem 
et al., 2021). In our case, the living density and density of recreational 
and social sites were insignificant which might be a result from rela-
tively strong and effective health control measures. Even when the 
lockdown and partial lockdown measures were lifted, strict 2 G, 3 G 
policies and mask mandate in indoor public space and traffic were 
implemented. As pointed out by Chu et al. (2021), COVID-19 spread was 
highly related to urban governance capacity instead of city size, 
denoting the importance of a better urban governance to prevent and 
control public health risks. 

4.2. Structural health inequalities within migrant communities 

The percentage of the population with migrant backgrounds 
demonstrated a significant effect on the COVID-19 incidence across all 
periods and in several separate periods in our data set, indicating a 
persistent health disadvantage rooted in the neighborhoods. As the RR 
map shows, the northeastern part of Neukölln demonstrated some of the 
highest risk and exceedance probability during the first summer, Wave 
2, Wave 3, Wave 4, and the whole study period. This area is also among 
the most socioeconomically deprived areas with high proportions of OIC 
communities. It could indicate that OIC ethnic groups residing in this 
area might suffer socioeconomic disadvantages and a disproportionately 
high risk of COVID-19 infection. These findings corroborate the claims 
by Wulkotte and Bozorgmehr (2022) and Koschollek et al. (2023) that 
migrants in Germany experience higher levels of socioeconomic disad-
vantages and poorer health statuses than non-migrants. This study 
contributes new insights into intra-urban ethnic health inequalities 
within the German context, expanding beyond previous evidence pri-
marily focused on the U.S. For example, Hu et al. (2021) observed that, 
across all wards in Washington DC, African American residents 
accounted for the highest percentage (75 %) of COVID-19 deaths at the 
ward level. In another study, neighborhood Latino and Black population 
proportion was positively correlated with COVID-19 positivity in New 
York (Chan et al., 2021). With partial lockdown measures during the 
pandemic’s second wave, migrant populations became the main pre-
dictor of COVID-19 incidence with an increasing effect size, suggesting 
that lockdowns might worsen existing inequalities (Bajos et al., 2021; 
Dorn et al., 2020). 

These health inequalities may result from a range of fac-
tors—including discrimination, language barriers, and differences in 
housing and workplace conditions, as well as access to healthcare and 
social support. In the context of COVID-19 health inequities, these in-
equalities could be associated with vaccine uptake. Marleen et al. (2023) 
recently pointed out that the sense of belonging to German society is 
associated with vaccine uptake. People who lack this sense of belonging 
are much less likely to be vaccinated than those who feel a strong sense 
of belonging in Germany. As Koschollek et al. (2023) have pointed out, 
living and working situations increased the risk of COVID-19 infec-
tion—not migrant status. Future health resource prioritization and 
policymaking could pay more attention to these migrant communities to 
address potential health inequalities. 

This study incorporated the roles of migration and ethnicity into its 
analysis solely for the purpose of revealing health inequalities and their 
underlying mechanisms. In no way should these statistical representa-
tions entail any discrimination or misinterpretation. It is essential to 
examine migration groups’ health situations in connection with the 
social determinants that shape their lives and influence their health 
(Kajikhina et al., 2023). Apart from ethnic minority groups, evidence of 
social inequalities was also found during Wave 3 when a higher per-
centage of state support recipients in a PLR was significantly associated 
with a higher COVID incidence, indicating that deprived neighborhoods 
might face elevated risks of infection. This is in line with some studies in 
both developing and developed countries, such as Chile, China, Brazil, 
India, Iran, Australia, the US and throughout European countries (Das 
et al., 2021; Gaisie et al., 2022; Han et al., 2022; Lak et al., 2021; Liu 
et al., 2021; Mena et al., 2021; Moosazadeh et al., 2022; Sannigrahi 
et al., 2020; Viezzer & Biondi, 2021). Understanding intra-urban in-
equalities facilitates more effective community engagement. Public 
health campaigns and communication strategies can be customized to 
resonate with the diverse populations across cities, fostering a greater 
understanding of preventive measures and encouraging compliance 
with health guidelines. 

4.3. Strength and limitations 

This study considers time-dependent variations in the influencing 
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factors of COVID-19 incidence. Although the pandemic periods are not 
the finest temporal resolution, the delineation into six distinct phases 
facilitates clearer comparisons of COVID-19 risk patterns and influ-
encing factors across different stages of the pandemic. This structured 
approach simplifies the interpretation of results, making it easier to 
connect the findings to specific public health responses and derive policy 
implications for health departments. The sociodemographic and built 
environment data in Berlin at a fine-grained scale enables us to disen-
tangle the spread of the infection within highly international and mixed- 
use European urban areas. The BYM model and the Bayesian approach 
outperforms other methods investigated in this study, validating its 
ability to enable more robust estimation for small-area study with 
limited observation (van Zoest et al., 2022). By including both 
area-specific, nonstructured noise and spatially structured effects, it al-
lows for the compensation of some unstudied confounders (e.g., 
face-mask measures and vaccination coverage). 

However, several limitations of our study should be acknowledged. 
First, our response variable was based on the reported number of 
COVID-19 positive PCR-tests, which may not reflect the actual number 
of cases due to asymptomatic carriers and the lack of widespread testing. 
Nonetheless, we contend that our findings are valuable in explaining the 
crucial roles of detection and prevalence in effective pandemic man-
agement (Whittle & Diaz-Artiles, 2020). Second, the spatial analysis 
faced methodological challenges, including the ecological fallacy and 
the modifiable areal unit problem inherent in aggregated data analysis. 
Caution is advised in interpreting established associations, as spurious 
correlations may result from unmeasured confounding variables com-
mon in observational studies. Additional research is essential to estab-
lish causal relationships, even when statistically significant associations 
are present. Third, the case data from nursing homes were removed, but 
the population data did not exclude corresponding data since we lacked 
information on the demographic characteristics of individual cases in 
those facilities. This data exclusion might cause slight bias when 
analyzing sociodemographic factors’ roles in determining COVID-19 
incidence. Fourth, we have limited observations at PLR level (46) with 
a wide range of covariates, which might not lead to the best statistic 
power. In this regard, we utilized Lasso technique to reduce variable 
dimensions before modeling and Bayesian approach to minimize the 
influence of our small sample size and to have statistically reliable re-
sults. Finally, due to data availability, we were only able to collect rather 
limited indicators of socioeconomic status, and we were unable to 
collect any housing conditions and vaccine coverage at study level. 
Environmental data were aggregated on the neighborhood level with 
coarse time resolution. Given these data limitations, we may not have 
been able to capture certain spatial variations and fully unravel potential 
inequalities. A future study could incorporate high-resolution longitu-
dinal environmental data to better assess the impact of environmental 
factors. Additionally, conducting a gender-stratified analysis would 
provide insights into potential gender inequalities. A multilevel study, 
incorporating individual-level influencing factors and guided by 
Directed Acyclic Graphs (DAGs) for variable selection, would help 
mitigate ecological fallacies, offering deeper insights into intra-urban 
health inequalities. Furthermore, a broader comparison of various 
modeling approaches for COVID-19 outcomes is encouraged for future 
research. 

5. Conclusions 

In this study, we have investigated the associations between 
explanatory variables from all the components of a proposed health- 
inequality framework and the COVID-19 incidence at an intra-urban 
scale. As the pandemic evolves, the models identified different influ-
encing factors. Sociodemographic factors such as percentage of the 
population over 65 years old and the percentage of the population with 
migrant backgrounds were noted to have stronger effects on COVID-19 
incidence than the environmental factors selected in this study. The 

community with migrant backgrounds, especially those with OIC 
backgrounds, faced a higher risk of COVID-19 incidence, indicating 
health disparities associated with social inequalities. Persistent elevated 
relative risks in the upper part of Neukölln suggest structural spatial 
inequalities. Specific built environmental factors, including green 
spaces, transportation, and pharmacies, were found to influence COVID- 
19 incidence during certain periods. However, the direction of these 
associations does not indicate any COVID-19 inequalities attributable to 
unequal distribution of environmental hazards and benefits. The pro-
posed Bayesian spatial models outperform other model schemes, con-
firming their suitability for local small-area health monitoring and 
governance. 

Our study uncovers a previously unrecognized link between migra-
tion background and increased COVID-19 risk in Berlin, highlighting 
ethnic health disparities. This finding underscores the importance of 
considering sociodemographic factors in understanding disease trans-
mission and addressing health inequalities. Additionally, recognizing 
how influencing factors intersect with COVID-19 incidence to shape 
health inequalities can inform long-term urban planning efforts to build 
more sustainable cities, such as investing in healthcare infrastructure 
and social support systems to bolster resilience in vulnerable commu-
nities. Studying different pandemic periods offers valuable insights into 
evolving health crises and informs adaptive responses by local health 
departments, enhancing their preparedness for future health emergen-
cies. Our Bayesian approach promotes a robust data-driven approach to 
health governance in complex urban areas, providing a promising tool 
for long-term health monitoring and urban planning. Decision-makers 
can leverage these insights to make informed choices, monitor trends, 
and adjust policies accordingly. 
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Bajos, N., Jusot, F., Pailhé, A., Spire, A., Martin, C., Meyer, L., & Carrat, F. (2021). When 
lockdown policies amplify social inequalities in COVID-19 infections: Evidence from 
a cross-sectional population-based survey in France. BMC public health, 21(1), 705. 
https://doi.org/10.1186/s12889-021-10521-5 

Bambra, C. (2022). Pandemic inequalities: Emerging infectious diseases and health 
equity. International Journal for Equity in Health, 21(1), 1–4. https://doi.org/ 
10.1186/S12939-021-01611-2/FIGURES/1 

Bartleson, J. M., Radenkovic, D., Covarrubias, A. J., Furman, D., Winer, D. A., & 
Verdin, E. (2021). SARS-CoV-2, COVID-19 and the aging immune system. Nature 
Aging, 1(9), 769–782. https://doi.org/10.1038/s43587-021-00114-7 

Basu, B., Murphy, E., Molter, A., Sarkar Basu, A., Sannigrahi, S., Belmonte, M., & Pilla, F. 
(2021). Investigating changes in noise pollution due to the COVID-19 lockdown: The 
case of Dublin, Ireland. Sustainable Cities and Society, 65, Article 102597. https://doi. 
org/10.1016/J.SCS.2020.102597 

Benita, F., Rebollar-Ruelas, L., & Gaytán-Alfaro, E. D. (2022). What have we learned 
about socioeconomic inequalities in the spread of COVID-19? A systematic review. 
Sustainable Cities and Society, 86, Article 104158. https://doi.org/10.1016/J. 
SCS.2022.104158 
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Hövener, C. (2023). Recommendations for collecting and analysing migration- 
related determinants in public health research. Journal of Health Monitoring, 8(1). 
https://doi.org/10.25646/11144 
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