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C A N C E R

Functional antagonism of chromatin modulators 
regulates epithelial-mesenchymal transition
Michela Serresi1*, Sonia Kertalli1†, Lifei Li1†, Matthias Jürgen Schmitt1, Yuliia Dramaretska1, 
Jikke Wierikx1, Danielle Hulsman2, Gaetano Gargiulo1*

Epithelial-mesenchymal transition (EMT) is a developmental process hijacked by cancer cells to modulate prolif-
eration, migration, and stress response. Whereas kinase signaling is believed to be an EMT driver, the molecular 
mechanisms underlying epithelial-mesenchymal interconversion are incompletely understood. Here, we show 
that the impact of chromatin regulators on EMT interconversion is broader than that of kinases. By combining 
pharmacological modulation of EMT, synthetic genetic tracing, and CRISPR interference screens, we uncovered a 
minority of kinases and several chromatin remodelers, writers, and readers governing homeostatic EMT in lung 
cancer cells. Loss of ARID1A, DOT1L, BRD2, and ZMYND8 had nondeterministic and sometimes opposite conse-
quences on epithelial-mesenchymal interconversion. Together with RNAPII and AP-1, these antagonistic gatekeepers 
control chromatin of active enhancers, including pan-cancer-EMT signature genes enabling supraclassification 
of anatomically diverse tumors. Thus, our data uncover general principles underlying transcriptional control of 
cancer cell plasticity and offer a platform to systematically explore chromatin regulators in tumor-state–specific 
therapy.

INTRODUCTION
Epithelial-mesenchymal transition (EMT) is a developmental pro-
gram activated during gastrulation and neural crest formation (1). 
Epithelial-mesenchymal plasticity allows cancer cells to undergo 
functional adaptations during the invasion-metastasis cascade (2). 
Evidence correlates tumor EMT with the acquisition of migration 
properties (2), chemotherapy resistance, and selective chemothera-
peutic vulnerabilities (3, 4). Aberrations in the transforming growth 
factor– (TGF-) signaling is causal to tumor EMT (5, 6). In breast 
cancer cells, both TGF- and platelet-derived growth factor recep-
tor A receptor tyrosine kinase (RTK) signaling govern EMT and 
mesenchymal-epithelial interconversion (7, 8). Moreover, other 
EMT-regulating RTK axes were described (9, 10), suggesting a 
wider role for kinases in governing EMT. As many RTK pathways 
centrally rely on RAS signaling cascade, it is not surprising that RAS 
cooperates with multiple pathways to control EMT (11–13).

Tumor EMT appears to be a cellular state rather than a unidirec-
tional cell fate decision (2), which fits the definition of a homeo-
static process. Notably, TGF- drives dichotomous programs such 
a tumor suppressive “lethal EMT” and an oncogenic EMT program 
in cooperation with transcriptional regulators (5). Chromatin regu-
lation is a pivotal mechanism for establishing and maintaining cell 
identity in metazoans through transcriptional regulation, but its 
role in tumor EMT remains restricted to individual factors (14). In 
multipotent cells, a bivalent chromatin configuration of develop-
mental and differentiation genes occurs at poised chromatin, which 
is simultaneously decorated by activating and repressive histone 
marks. Upon cell fate changes, bivalent chromatin is resolved as ei-
ther active or repressed (e.g., with monovalent potential) (15). The 
extent of bivalent chromatin marks in multipotent cells may be 

numerically reduced by inhibiting antagonistic cellular signaling 
such as pro–self-renewal and differentiation cues, indicating that 
polymerase II elongation is pivotal to regulate poised genes (16, 17). 
In epithelial cancer cells, the mesenchymal transcription factor 
ZEB1 bears a bivalent chromatin configuration, suggesting that 
epithelial-mesenchymal plasticity involves chromatin regulation (18). 
While it is becoming increasingly evident that EMT is a continuum 
between states (14), how the EMT metastability is controlled under 
convergent activating and repressing cues remains unresolved.

Chromatin regulators are pervasively mutated in human can-
cers, but their mechanism of action is often context dependent 
(19, 20). For instance, the chromatin writer Polycomb repressive 
complex 2 (PRC2), which regulates one of the bivalent chromatin 
marks, dichotomously regulates EMT. PRC2 methyltransferase 
enhancer of zeste homolog 2 (EZH2) cooperates with SOX4 to support 
breast cancer cell EMT, whereas PRC2 inhibition by EED deletion 
or EZH2 pharmacological inhibition promotes EMT in Kras-driven 
lung cancer cells. In both instances, alterations in PRC2 function 
support tumorigenesis through different mechanisms (12, 21). EZH2 
positively regulates EMT through transcriptional repression of epithelial 
genes (21), whereas PRC2 inhibition leads to cell fate changes by 
amplifying RAS-driven transcription (12, 22). Thus, modulating 
PRC2 function may be used as a tool to uncover cancer-relevant 
mechanisms of cellular interconversion, including EMT.

In our previous studies, we developed a synthetic reporter for 
genetic tracing of EMT homeostasis in multiple cellular models (23). 
Here, we combine pharmacological boosting of homeostatic EMT 
in lung cancer cells by EZH2 inhibition, fate mapping by genetic 
tracing, and a large-scale CRISPR interference (CRISPRi) screen for 
genes involved in RTK signaling and epigenome regulation to 
identify factors required for the proper regulation of EMT. These 
screens uncovered a large number of chromatin regulators and a 
more limited number of kinome genes as regulators of EMT inter-
conversion. We found several members of the SWI/SNF chromatin 
remodeling complex (ARID1A, SMARCB1, and SMARCE1); of writer 
complexes such as KMT2A, DOT1L, and EPC1; and of reader 
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complexes such as BRD2 and ZMYND8, whose loss affects epithelial-
mesenchymal homeostasis. Also, cellular fitness and migration 
properties were regulated by these factors, but the outcome of their 
deletion on cellular properties was pleiotropic (i.e., nondeterminis-
tic). Nevertheless, despite the diverse phenotypic outcome of their 
loss on EMT, ARID1A, DOT1L, BRD2, and ZMYND8 occupy a 
common set of enhancers and promoters of genes that are critically 
associated with EMT in multiple cancer types, beyond the context 
of specific tissues. Hence, antagonistic regulation of active chroma-
tin governs the fidelity of cell fate decisions and the plasticity of 
cancer cells during homeostatic regulation or in response to stress.

RESULTS
Phenotypic CRISPRi screens in non–small cell lung cancer 
cells to identify key kinome and epigenome regulators 
of EMT homeostasis
The mesenchymal genetic tracing vector #1 (MGT#1) synthetic 
reporter for mesenchymal program genetic tracing was designed 
by stitching potential cis-regulatory elements. MGT#1 is activated 
during proneural-to-mesenchymal transition in glioblastoma and 
in mesenchymal cells of multiple tissue cancers, at least in part, 
because of its response to broadly expressed transcription factors, 
including nuclear factor B (23). To screen for regulators of MGT#1 
expression as a proxy for homeostatic EMT, we scored for cell states 
in a large panel of human cancers cell lines and chose A549 and H1944 
cells, which are both KRAS-mutant and display a quasi-mesenchymal 
and a quasi-epithelial gene expression program, respectively (Fig. 1, 
A and C). We reasoned that GSK126 would amplify the homeostatic 
EMT and verified this by correlating EMT markers, EZH2-targeted 
posttranslational modification H3K27me3 and MGT#1 expression 
(Fig. 1D).

In agreement with previous data showing that PRC2 inhibition 
through either genetic means or EZH2 inhibitor induces EMT (12), 
GSK126 led to a moderate activation of the reporter in Kras-driven 
A549 and H1944 lung cancer cells, whereas TGF- induces a more 
robust reporter induction (fig. S1A). More broadly, we established a 
correlation between the mesenchymal status of established cell lines 
and MGT#1 expression by quantitative polymerase chain reaction 
(qPCR) (fig. S1A). Using mVenus as a proxy of EMT conversion, 
RNA sequencing (RNA-seq) on fluorescence-activated cell sorting 
(FACS)–sorted MGT#1-high A549 and H1944 cells confirmed the 
activation of a mesenchymal gene program (fig. S1, B to E). Assay 
for transposase-accessible chromatin using sequencing (ATAC-
seq) profiling of FACS-sorted MGT#1-high A549 cells revealed that 
GSK126 induces mild chromatin accessibility at the same genomic 
loci extensively remodeled by TGF- signaling (fig. S1, F to I). Both 
treatments induce the chromatin remodeling at the integration locus 
of the MGT#1 reporter (fig.S1G), indicating that EZH2 inhibition 
by GSK126 sets the ground for EMT conversion.

Next, we exploited this system to identify regulators of EMT 
homeostasis among kinome and epigenome genes. We transduced 
both A549 and H1944 with the MGT#1 reporter. Subsequently, we 
introduced a Tet-inducible KRAB-dCas9 and a library of single-
guide RNAs (sgRNAs) targeting the full complement of the human 
kinome (543 genes and 5901 sgRNAs in total; up to 10 sgRNAs per 
gene) or a selected set of genes involved in epigenome regulation 
(457 genes and 4980 sgRNAs) in both cell lines. To maintain the 
representation of each library, we infected at least 1000 cells per 

sgRNA, at a low multiplicity of infection rate (<0.3). Moreover, 
each library included the same set of sgRNAs targeting essential and 
nonessential genes that serve as control for the screening proce-
dure. This system allows the systematic knockdown of individual 
genes in single cells upon doxycycline (dox) activation of the 
KRAB-dCas9 repressor (Fig. 1B). After prolonged EZH2 inhibi-
tion by GSK126 treatment (11 days), we FACS-purified non–small 
cell lung cancer (NSCLC) cells that were either enhanced or im-
paired in their ability to support the expression of the fluorescent 
reporter, thereby reflecting a more epithelial or mesenchymal 
phenotype, respectively (Fig. 1E). By comparing A549-MGT#1-low 
and H1944-MGT#1-low to their MGT#1-high counterpart, we found 
that multiple sgRNAs in the epigenome library but only a minor 
fraction of the kinome sgRNAs were enriched or depleted in either 
one of the two states in both cell lines (Fig. 1, F and G, and figs. S2 
and S3). In the absence of GSK126, dox-induced depletion of chro-
matin regulators affected a lower number of gRNAs, suggesting that 
transcriptional repression of these genes generally affected lung cancer 
cell EMT and confirming that EZH2 inhibition amplifies physio-
logical EMT. Overall, our screen indicates that multiple chromatin reg-
ulators are potentially involved in EMT, whereas most human kinases 
are dispensable for homeostatic or GSK126-driven EMT. Essential 
and nonessential gene set enrichment analysis (fig. S2G) and the 
fact that no gRNA scored as significant in the absence of dox 
treatment (fig. S2, E and F) supported the overall high quality of the 
screen. In support of the specificity of this screen, and in line with 
our previous observation that Polycomb can antagonize EMT (12), 
gRNAs targeting Polycomb-associated proteins PHF19 (24, 25) and 
L3MBT2 (26) scored among the top negative regulators of EMT 
(Fig. 1F and table S1). The results also align with the well-established 
antagonism between the Polycomb and the mixed-lineage leukemia 
(MLL) or SWI/SNF complex in development and cancer: gRNAs
targeting MLL and SWI/SNF members scored as required for EMT
in both A549 and H1944. These include KMT2A, SMARCB1, and
SMARCE1 (table S1). ARID1A is a key SWI/SNF member that is
among the most frequently mutated genes in cancer, indicating
that synthetic genetic tracing coupled with CRISPRi uncovers
critical pathways converging onto EMT homeostasis. Together,
this suggests that chromatin regulation is a dominant control of
cellular identity metastability.

Genetic loss of potential EMT regulators phenocopies 
CRISPRi screen
To identify robust chromatin regulators of EMT, we decided to inde-
pendently validate the loss of function CRISPRi screen through a panel 
of knockout (KO) cell lines for a selected number of hits identified in the 
CRISPRi screen. As multiple hits may be selected on the basis of signifi-
cance or fold change (FC), we shortlisted candidates on the basis of their 
function as chromatin regulators, including remodelers of the BRG1/
BRM-associated factor (BAF) complex (ARID1A), writers (KMT2A 
and DOT1L), readers (BRD2 and ZMYND8), and scaffolds of writer 
complexes (EPC1). The selection included both potential positive regu-
lators of EMT (e.g., ARID1A, BRD2, DOT1L, and KMT2A) and poten-
tial barriers (EPC1 and ZMYND8). As control for the epigenome, we 
selected ARID2, which is a SWI/SNF member whose loss strongly 
affects the polybromo-associated BAF (PBAF) complex but falls below 
both significance and FC thresholds in our screen. As hits from the 
kinome screen potentially required for EMT in A549 cells, we selected 
ACVR1, previously proposed to promote EMT in A549 cells (27), 
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and CNKSR2, a scaffold component of the RAS complex, which 
promotes EMT upon GSK126 (12). For all of these candidates, ex-
pression changes during EMT in A549 and H1944 were insufficient 
to explain their functional performance in the screen, indicating 
that their function and not simply their expression contributes to 
EMT. Thus, we created KO lines by nucleofecting sgRNAs and 
Cas9 in A549-MGT#1 cells, which is expected to result in the abla-
tion of each protein in a large number of cells and defined a gating 
strategy to perform EMT fate mapping at a single-cell level (Fig. 2A). 
The efficient deletion of each candidate was validated by targeted 
sequencing, and only highly effective KO polyclonal lines were re-
tained for assessing the role of candidate genes on MGT#1 expres-
sion (fig. S4, A to F). For all tested candidates, we observed either an 
increase or decrease in MGT#1 reporter expression, concordant 
with the predictions on the basis of the CRISPRi screen (Fig. 2B). 

Notably, deletion of BRD2, DOT1L, KMT2A, and ARID1A signifi-
cantly impaired MGT#1 expression, and ZMYND8 and EPC1 dis-
play the inverse effect, whereas only minor changes were detected 
upon ARID2 deletion compared to either control or other mutant 
cells (Fig. 2B). The same effect was observed also with a stronger 
EMT driver such as TGF-1 (fig. S4G), thereby validating the CRISPRi 
screen in a broad range of candidates by genetic deletion.

To correlate genetic deletion, MGT#1 expression, and cell iden-
tity, we first focused follow-up validation on the kinome hits. 
CNKSR2 and ACVR1 are required for EMT in quasi-mesenchymal 
A549 cells. CNKSR2 is a scaffold protein involved in RAS-dependent 
signaling, and RAS-driven EMT was previously shown to occur 
indirectly through the Hippo pathway (13). To genetically validate 
that loss of CNKSR2 and ACVR1 affects EMT homeostasis, we es-
tablished both clonal and polyclonal A549 lines using CRISPR-Cas9. 

mVenus
(MGT#1)
Vinculin

E-cadherin

Vimentin

H3K27me3

H3
GSK126
Dox

− +    − +
− − + +

MGT#1-mVenus

FACS

FACS
or

microscopy

EMT triggers
EMT reporter

A

B

D E

F

G

padj, FC > 1.5 (log2)
FC/padj

A549-MGT#1; kinome library A549-MGT#1; epigenome library

padj, FC > 1.5 (log2)
FC/padj

H1944
A549 DM3

RS5
HS229T

HS618T TIG3TD0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Mesenchymal score

Ep
ith

el
ia

l s
co

re

of CCLE cell lines panel
NSCLC

Fibroblasts
Remaining

C

Lung
cancer cells

Lung cancer cells A549 or H1944 + MGT#1

Dox-inducible
KRAB-dCas9

Epithelial
state

Kinome/epigenome
gRNAs library

FACS 
Cells with
low signal

Fluorescence intensity

Ce
ll 

nu
m

be
r

Cells with
high signal

Opposing EMT
+

−
−

+

Required for EMT

Mesenchymal
state

GSK126 + dox

Sequence kinases/epigenetic regulator gRNAs

Control
dox only

Control
GSK126 only

A549-MGT#1

A549-MGT#1; kinome library A549-MGT#1; epigenome library

_ _ _ _

0         1000       2000      3000
gRNA abundance

gR
N

A
 fo

ld
 c

ha
ng

e _

_

_
_ _ _ _

0         1000       2000      3000
gRNA abundance

2000 _

0 _

−2000 _

250 _

150 _

100 _

50 _

0 _
_ _ _ _

0          500        1000      1500

−L
og

10
(p

ad
j)

_ _ _ _

0          500        1000      1500

PHF16-6

DOT1L-6

KMT2A-1 BRD2-2

ARID1A-4KMT2A-3

SMARCE1-2SMARCC1-1
EPC1-8

ZMYND8-2
CNKSR2-4
ACVR1-1

PHF19-6

DOT1L-6

KMT2A-1
BRD2-2

ARID1A-4
KMT2A-3

SMARCE1-2

SMARCC1-1EPC1-8
ZMYND8-2

ACVR1-1
CNKSR2-4

ARID2-9

ARID2-9

0

20

40

60

80

100

0−103 103 104 105

mVenus

%
 o

f t
ot

al

(Control)
Mid

Low
E     M

High
E    M

A549-MGT#1

Fig. 1. A dominant role for chromatin factors as regulators of EMT homeostasis revealed by phenotypic CRISPRi screens. (A) Schematic of EMT reporter lung 
cancer cell line generation. (B) Diagram of phenotypic CRISPRi screen. (C) Selection of quasi-epithelial H1944 and quasi-mesenchymal A549 cell lines by epithelial and 
mesenchymal gene expression scoring of human NSCLC cell lines (see Materials and Methods). Lung fibroblasts (mesenchymal) are shown for comparison. CCLE, Cancer 
Cell Line Encyclopedia. (D) Immunoblotting of samples from intermediate time point of the CRISPRi screen. MGT#1 fluorescence micrograph (above) was taken before lysis. 
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Serresi et al., Sci. Adv. 2021; 7 : eabd7974     24 February 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

4 of 19

In all cases, this resulted in lower basal levels of MGT#1 expression 
and enhanced epithelial features compared to the parental (Fig. 2C). 
GSK126 partly rescued the MGT#1 expression indicating that 
CNKSR2 and ACVR1 KO cells are acutely impaired but still capable 
of executing EMT. Notably, ACVR1 loss of function effect could 
be phenocopied by the ACVR1/ALK2 inhibitor DMH1 in a dose-
dependent manner (Fig.  2D), and MGT#1 activation by GSK126 
was blunted by DMH1 cotreatment (fig. S4, H and I), indicating 
that SMAD1/5/9 phosphorylation by bone morphogenetic protein 
(BMP) type I receptor activation inversely correlates with epithelial 
phenotype in these cells. Last, we extended the validation to the 
remaining chromatin regulators by using immunoblotting of 
E-cadherin expression as a proxy for epithelial cell identity. Both
EPC1 and ZMYND8 KO led to a marked reduction in E-cadherin
expression as opposed to deletion of CNKSR2, ACVR1, DOT1L,
and ARID1A (Fig. 2E).

Thus, our phenotypic CRISPRi strategy uncovered known and 
novel EMT regulators. These include the kinase adaptor CNKSR2, 
which is a novel player in the RAS/mitogen-activated protein kinase 

(MAPK)–dependent signaling directly contributing to EMT and a 
broad range of chromatin modifiers.

Phenotypic consequences of genetic loss of individual  
EMT regulators
Epithelial-mesenchymal conversion can be activated directly by mi-
croenvironmental signals or indirectly, as a result of response to 
stress (2, 14). To investigate whether the hits in our screen directly 
or indirectly regulate EMT, we investigated the phenotypic conse-
quences of individual hit depletion on cellular fitness. First, we con-
ducted a lung cancer–wide gene essentiality analysis on 60 NSCLC 
adenocarcinoma cell lines functionally dissected by the cancer de-
pendency map project (28). Using two independent ranking scores 
for essentiality by CRISPR-Cas9 (CERES) or RNA interference 
(RNAi) (DEMETER2), we compared the essentiality of either the 
kinome or the epigenome genes for all NSCLC adenocarcinoma cell 
line fitness in genome-wide screens. Both the kinome and the epig-
enome libraries contain a limited number of genes whose depletion 
affects NSCLC cell fitness, but—in agreement with our essentiality 
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analysis—the hits selected in our screen are statistically less required 
than the median of well-established essential genes (Fig.  3A). To 
validate this analysis in our set of wild-type and EMT regulator mu-
tants’ NSCLC cells, we next performed parallel longitudinal profil-
ing of cell proliferation. Consistent with the predictions of pooled 
screens, we observed moderate changes in individual polyclonal cell 
line proliferation in all genotypes (Fig. 3B). The proliferation assay 
was corroborated by a colony formation assay, which is generally 
used as a proxy of the ability of normal and tumor cells to recover 
from cell stress. Also in this case, we observed analogous responses 
between wild-type and EMT regulator mutant cells (Fig. 3C). Selec-
tively, BRD2 KO showed a moderate but significant defect as 
compared to wild-type cells, and an opposite trend was observed 
for ARID1A and EPC1, in addition to ACVR1, in the proliferation 
assay (Fig. 3B). ARID1A and EPC1 also showed a moderate but sig-
nificant increase in fitness in the colony assay (Fig. 3C). However, 
overall, none of the EMT regulators are critically required for cell 
fitness, suggesting that they directly regulate EMT.

It is well established that phenotypic changes in epithelial cancer 
cell identity are linked to changes in cell fitness and migration prop-
erties (2, 14). Next, we tested whether individual genotypes display 
private migration properties in a wound healing assay, in which cell 
polarization toward the cell-free zone is assessed. ZMYND8- and 
EPC1-depleted cells healed the wound significantly better than 
BRD2, CNKSR2, KMT2A, and ACVR1 KO cells (Fig. 3D). DOT1L 
loss, which blunts EMT in our screen, appeared to increase cell 
motility, thereby behaving like ZMYND8 and EPC1 in the scratch 
assay. Hence, DOT1L may contribute to epithelial/mesenchymal 
identity and migratory properties through different mechanisms. 
Last, in a live-cell invasion assay, ZMYND8- and EPC1-depleted 
cells also invaded extracellular matrix as efficiently as TGF-1–
treated cells (Fig. 3E), consistent with the view that loss of these 
chromatin modulators led to acquisition of mesenchymal features 
and enhanced migration and invasion.

Last, we next tested whether the genetic deletion of selected chroma-
tin regulators confers predictable outcomes in other cellular contexts. 
To this end, we deleted the pro-EMT BRD2 and ARID1A factors and 
the anti-EMT ZMYND8, in quasi-epithelial lung cancer cells (H1944) 
and in glioma-initiating cells (IDH1-wt-GICs) that undergo proneural-
to-mesenchymal transition upon external signaling stimulation or 
therapy-induced stress (23). Consistent with phenotypic consequences 
in quasi-mesenchymal A549 cells, loss of BRD2 and ZMYND8 in both 
H1944 and IDH1-wt-GICs decreased and increased MGT#1 expres-
sion, respectively (Fig. 3F). ARID1A loss mildly affected H1944 pheno-
type and induced EMT in IDH1-wt-GICs, indicating that prediction 
based on the phenotypic screen in NSCLC cells may have significant 
but opposite outcomes in different contexts (Fig. 3F). Thus, we con-
clude that the individual regulators identified in our screen have a direct 
impact on EMT as their loss affects cell plasticity but not general 
fitness. They also have context-dependent consequences on epithelial-
mesenchymal interconversion, as their effects are tissue-specific.

Antagonistic chromatin regulators mark active promoters 
and enhancers in lung cancer cells
To examine whether the phenotypic behavior of individual EMT-
regulator mutants could be attributed to regulation of downstream 
genes, we performed a genome-wide occupancy analysis. We gen-
erated chromatin immunoprecipitation sequencing (ChIP-seq) 
profiles for ZMYND8, BRD2, ARID1A, and DOT1L in A549 cells 

under homeostatic and pro-EMT conditions (i.e., GSK126 and 
TGF-1). At first, we focused on genomic loci bound by ZMYND8 as 
the most prominent EMT barrier factor per our experiments. Nota-
bly, however, after k-means partitioning of the ZMYND8 ChIP-seq 
profiling into three clusters, we observed limited differences in 
cluster intensities and, most notably, that ZMYND8 largely shares 
binding with the EMT promoters BRD2, ARID1A, and DOT1L 
(Fig. 4A and table S2). The most obvious difference between the 
three clusters was a variable enrichment of the active chromatin 
mark H3K27ac. No specific enrichment was observed at these 
genomic loci for the poised chromatin mark H3K27me3 or the 
nonspecific control for immunoprecipitation (Fig.  4A). ChIP-seq 
quality was assessed by analyzing technical replica and biological 
features of individual profiles (fig. S5A). For each locus where an 
annotated gene could be assigned, Gene Ontology (GO) analysis of 
cluster I to III genes revealed distinct enrichment for terms attribut-
able to EMT homeostasis (Fig. 4B). Clusters I and III were charac-
terized by GO terms associated with epithelial and mesenchymal 
cell functions, respectively, such as cadherin binding, actin binding, 
and ion channel activity (Fig.  4B). Consistently, cluster I and III 
genes are basally high and low in both A549 and H1944, and cluster 
III genes are up-regulated upon TGF-–driven EMT (fig. S5B). All 
clusters were markedly enriched for genes encoding for DNA bind-
ing, chromatin, and transcriptional regulatory proteins, which are 
broadly considered as key regulators of cell identity and fate chang-
es (Fig. 4B). This is in line with the GO of genes associated with 
bivalent histone marks (15), with the difference that clusters I to III 
are largely devoid of H3K27me3 and are preferentially decorated by 
H3K27ac, which corresponds to active chromatin.

The binding profile of antagonistic chromatin regulators of 
EMT suggests that their function may involve the fine-tuning of a 
common set of cis-regulatory elements. To identify the type of 
cis-regulatory elements and chromatin bound by the chromatin 
gatekeepers, we annotated genome-wide each profile to all hu-
man coding and noncoding mRNAs. This analysis showed that 
ZMYND8 (anti-EMT), BRD2 (pro-EMT), ARID1A (pro-EMT), and 
DOT1L (pro-EMT) are equally associated with promoter regions 
and intragenic and intergenic loci (Fig. 4C). Because we included well-
established markers for active cis-regulatory elements (i.e., H3K27ac 
and ATAC) and poised chromatin (H3K27me3), we conclude that 
nonpromoter elements are bona fide enhancers. In support of this 
conclusion, despite that BRD2 also colocalizes with and is required 
for CCCTC-binding factor (CTCF) boundary maintenance (29), we 
observed low CTCF binding to cluster I, II, or III, as compared to 
robust CTCF binding sites identified by CTCF ChIP-seq in A549 cells 
(Fig. 4D and fig. S5, C and D). Consistent with their antagonistic poten-
tial, BRD2 (pro-EMT) and ZMYND8 (anti-EMT) occupy the same 
regulatory elements surrounding genes with opposite fate during EMT 
(Fig. 4D). Moreover, in addition to their binding to endogenous reg-
ulatory elements, ZMYND8, BRD2, ARID1A, and DOT1L occupy 
the MGT#1 reporter with an enrichment profile akin to H3K27ac 
and ATAC-seq (Fig. 4E). Globally, EMT induction through 
GSK126 or TGF- did not notably modify the binding profile of 
ZMYND8, BRD2, ARID1A, and DOT1L, as assessed by ChIP-seq 
(fig. S5D). Yet, TGF- drove remodeling of selected loci, which was 
followed by increased loading of all factors (Fig. 4, F to H and fig. 
S5E). Moreover, deletion of BRD2 or ZMYND8 induced local 
changes in chromatin binding of the other regulator at endogenous 
and reporter loci, as gauged by ChIP-qPCR (fig. S5F). This suggests 
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Fig. 3. Context-dependent cellular phenotypes by genetic loss of individual EMT regulators. (A) Violin plot showing the distribution of the dependency for prolifer-
ation of all CCLE NSCLC cell lines for individual genes within the indicated families. The plot shows the phenotypic dependency calculated by the DepMap project. CRISPR 
(Avana) CERES score and RNAi DEMETER2 score are displayed in the left and right panels, respectively. Selected genes are labeled within their families. ANOVA, analysis 
of variance. (B) Bar plot of control and mutant A549-MGT#1 cell proliferation in parallel longitudinal analysis. Statistics: Significant by t test and Holm-Sidak post hoc test 
(P < 0.05; n = 4), BRD2, EPC1, ARID1A, and ACVR1 KOs versus control. (C) Bar plot of control and mutant A549-MGT#1 ± GSK126 cell colony formation assay. Statistics: 
Significant by t test and Holm-Sidak post hoc test (P < 0.05; n = 3) in DMSO group: ARID2, ARID1A, DOT1L, and ACVR1 KOs; GSK126: EPC1, ARID1A, BRD2, DOT1L, KMT2A, 
and ACVR1 KOs. (D) Left: Line plot of parallel longitudinal high-content wound healing analysis of A549-MGT#1 cells with the indicated genotypes under homeostatic 
conditions. Each dot represents the mean in each time point. Statistics: Two-way ANOVA and Dunnet post hoc test (n = 4). Asterisks denote significance for the indicated 
comparison. Antagonistic regulators of EMT and motility in A549 cells are shown to the right. (E) Left: Schematic representation of three-dimensional (3D) invasion assay. 
Right: Migration depth of DRAQ5-stained nuclei for each time point and clone normalized to time point T = 0 hours from high-content imaging. Statistical analysis for time 
point 24 hours shows corrected multiple t test (*P < 0.05; ***P < 0.001; n = 4). (F) FACS analysis (left) and quantification (right) of MGT#1 expression in lung and brain 
tumor cells with the indicated genotypes.
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that the qualitative distribution of each chromatin modulator is asso-
ciated with the cell identity, and their levels may be locally regulated 
by state-specific cues. Overall, our data indicate that chromatin regu-
lators whose loss has opposite functional consequences on cell fate 
decisions occupy a common cistrome in human lung cancer cells, sug-
gesting that they contribute to regulation of dichotomous signaling.

A meta-EMT program emerges from pan-cancer analysis 
of the antagonistic chromatin regulators’ cistrome
Given that antagonistic chromatin modulators’ binding profile cor-
relates with cell identity features, we next examined the relevance of 
their functional antagonism and EMT regulation in human cancers 
by studying the expression pattern of their target genes across 
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Fig. 4. Antagonistic chromatin regulators bind to core set of accessible targets in lung cancer cells. (A) Heatmap of signal intensity for ZMYND8, BRD2, ARID1A, 
DOT1L, acetyl- and trimethyl-H3K27, and immunoglobulin G (IgG) occupancy at the indicated genomic loci. k-means clustering was used to partition chromatin occupancy 
into three clusters according to ZMYND8. The number of genes included in each of the clusters and of chromatin regions is indicated to the left and below the heatmap, 
respectively. (B) Top five GO terms per core set of Cluster I, II, and III genes (color, adjusted P < 0.05; size, gene ratio). (C) Pie charts showing the genomic distribution of 
the indicated ChIP-seq peaks. Note that the ZMYND8, BRD2, DOT1L, and ARID1A binding mode mirrors the enhancer-decorating mark H3K27ac. (D) IGV view of the indi-
cated ChIP-seq tracks for known epithelial and mesenchymal markers. For each track, scale values are indicated to the left. (E) IGV view of ZMYND8, BRD2, ARID1A, DOT1L, 
acetyl- and trimethyl-H3K27, and IgG occupancy at the MGT#1 reporter loci. (F) Dendrogram showing hierarchical clustering of the indicated ChIP-seq tracks for loci from 
(A). Note the dominant effect of TGF-1 on the clustering. (G) Density plot (above) and heatmap (below) of the indicated ChIP-seq tracks for TGF-–regulated loci signifi-
cant by DESeq2 (padj < 0.05). (H) Bubble plot showing the expression data for the selected genes in the indicated conditions. Bubble size and color indicate FC compared 
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all human cancers included in the The Cancer Genome Atlas 
(TCGA) dataset.

First, we developed a dual-scoring method (see Materials and 
Methods) to select 74 patients with bona fide epithelial and mesen-
chymal lung adenocarcinoma (LUAD; fig. S6A). Using the full 
tumor transcriptome, non-negative matrix factorization (NMF) 
clustering independently and robustly separated these patients 
in two groups, consistent with our dual-scoring strategy. Metagene 
expression of well-established epithelial or mesenchymal cell iden-
tity markers and markedly different survival profiles are consistent 
with the notion that these patients bear two biologically distinct tu-
mor states (fig. S6, B and C). Notably, clustering of the patients with 
epithelial or mesenchymal LUAD into biologically distinct groups was 
maintained when hierarchical clustering was limited to the antago-
nistic EMT core gene network, regardless of the cluster I, II, or III 
(fig. S6D). Notably, the metagene recurrent across these patients 
included the well-established epithelial or mesenchymal markers. 
Together with the minimal binding differences observed in ChIP-
seq, this supports that clusters I, II, and III are part of a unique 
cistrome, which includes cancer relevant meta-EMT regulators.

To test whether the meta-EMT signature identifies molecular 
similarities that connect tumors originated in different tissues, we 
extended our analysis to other tumors of the pan-cancer TCGA 
dataset (table S4). Using our dual-scoring stratification, we extend-
ed our analysis to 1081 patients with cancer from anatomically and 
histologically distinct diseases. Unsupervised hierarchical cluster-
ing of the ZMYND8-BRD2-ARID1A-DOT1L cistrome (i.e., cluster 
I + II + III) gene expression in these tumors yielded three to five 
groups (Fig. 5A; fig. S7, A to C; and table S4).

The proportion of anatomically and histologically diverse cancer 
types within TCGA cohort was consistent with expectations: the largest 
fraction of patients with either an epithelial or mesenchymal profile be-
ing assigned to carcinomas of the breast (BRCA), lung [adeno (LUAD) 
and squamous (LUSC)], prostate (PRAD), head-and-neck (HNSC), 
kidney (KIRC), and stomach (STAD). The lymphomas, instead, were 
almost entirely excluded (fig. S8A). By NMF, the distribution of these 
cancers within the five clusters followed, in many cases, a supraclassifi-
cation pattern (see Materials and Methods), with NMF C1 being 
predominantly composed of a homogeneous mesenchymal mix of dif-
ferent cancer types (P < 0.01, Fisher’s exact test) and epithelial cancers 
significantly enriched in NMF C2-C4-C5. Cluster C4 appeared as the 
most epithelial NMF cluster (P < 0.01, Fisher’s exact test; fig. S8, B and 
C). As an exception, NMF C3 is the only group largely enriched in one 
cancer type, the brain tumors (Fig. 5B and fig. S8, B and C).

Metagenes associated to each cluster also supported this supra-
classification (Fig. 5A and table S4). In the mesenchymal group of 
patients, the metagene signature returned well-established EMT 
drivers, including TGF-, tumor necrosis factor (TNF), and RAS 
signaling pathways, as well as GO terms of migration (Fig. 5C and 
figs. S8D and S9). We termed this signature the meta-mesenchymal 
module, as it identifies mesenchymal tumors independently of the 
tissue of origin. Although the epithelioid tumors were allotted into 
multiple groups, the NMF C4 and either NMF C2 or C5, the broad 
program downstream of the HNF4A transcription factor emerged as a 
common theme. The main drivers of subepithelioid classifications 
were, on the one hand, metabolic pathway activation [C2; mTOR 
(mammalian target of rapamycin) and oxidative phosphorylation] 
and, on the other hand, cell cycle and DNA repair genes (Fig. 5C, 
figs. S8D and S9, and table S5).

Whereas lymphocytes and macrophages are by far the largest 
fraction of immune cell infiltrates, CIBERSORT estimates the ratio 
between adaptive and innate immunity to be specific for each clus-
ter, further underscoring their peculiar biology (Fig. 5A). The NMF 
C1 and C4 appear to be opposite with respect to their cell identity 
features, adaptive/innate immune cell ratio, and survival. NMF C4 
patients are epithelial and have a significantly higher infiltration of 
lymphocytes [padj (adjusted P) < 0.01, Wilcoxon rank sum test; see 
Materials and Methods], and—at least in the case of LUAD, kidney 
(KIRC), and stomach (STAD) cancers—these patients are charac-
terized by a favorable prognosis when compared to NMF C1 pa-
tients (Fig. 5D), which are instead mesenchymal and bear a larger 
number of innate immune cells. Consistently, in LUAD, KIRC, and 
STAD, differential expression and upstream regulator analyses of 
druggable nodes indicate that acute inflammatory pathways are 
dominant in the mesenchymal state, whereas potential druggable 
nodes emerged in the epithelial state (fig. S8E). From an immuno-
therapy perspective, the NMF C5 appears the most interesting one 
as it contains the largest fraction of DNA mismatch repair genes 
and a positive lymphocytes-to-macrophages ratio but a nonobvious 
survival trend (Fig. 5, A to D), which raises the interesting possibil-
ity that these tumors may bear potentially higher neoantigen load 
and qualify for immune checkpoint blockade therapy.

To assess subtype reproducibility, we compiled an independent 
set of cancer expression profiles from the International Cancer 
Genome Consortium (ICGC) cohort (see Materials and Methods). 
The ICGC validation cohort was highly reproducible for TCGA C1, 
C2, and C4 (fig. S7, D to G) and considering that this dataset is 
much narrower in cancer types and devoid of brain tumors (e.g., the 
main C3 component)—this supported a five-group classification of 
patients with pan-cancer based on the meta-EMT signature.

Using tumor classification by dimensionality reduction, the 
meta-MES signature improved partitioning of patients with epithelial 
and mesenchymal LUAD into coherent molecular subtypes of 
LUAD (Fig. 5E). This approach holds increased power of stratifica-
tion compared to single/few biomarkers and is simpler than inte-
grative analyses of multiple epigenome layers (30).

A subset of meta-EMT signature genes is regulated by RNA 
polymerase II elongation and converge on the activator 
protein 1 (AP-1) transcriptional network
Because the metagene signatures herewith identified bring together 
tumors of different origins, we hypothesized that these genes may 
be regulated by conserved transcriptional mechanisms. The func-
tional antagonism between regulators occurs at enhancers and 
promoters, which led us to test whether regulation of the meta-EMT 
program occurs through RNA polymerase II (RNAPII). Hence, we 
immunoprecipitated RNAPII and assessed its genome-wide distri-
bution in the homeostatic state and in EMT driven by GSK126, 
which precedes chromatin remodeling (fig. S1). Consistent with the 
ATAC-seq and H3K27ac biding profiles, RNAPII qualitative occu-
pancy was also similar in naїve and GSK126 conditions (Fig. 6A). 
Notably, the fraction of transcriptional start site (TSS) associated 
with genes of the meta-EMT signature appears to have a similar 
weight as the other active promoters in the overall distribution, 
suggesting that RNAPII and the antagonistic gatekeepers both 
converge on broadly regulating active chromatin.

The RNAPII elongation inhibitor flavopiridol can rescue both 
the transcriptional amplification of inflammatory genes driven by 
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GSK126  in lung cancer cells (22) and the global RNAPII pausing 
release driven by ARID1A loss in ovarian cancer cells (31). Hence, 
we next investigated whether RNAPII dynamics change during 
GSK126-driven EMT, either globally or locally. To this end, for each 
human gene, we calculated the extent of RNAPII loading at TSSs 
(5′ TSS), coding regions, and termination sites [3′ transcription end 

site (TES)]. Globally, we observed that RNAPII accumulation oc-
curred with higher frequency at 5′ TSS than at 3′ TES of human 
genes, which is consistent with the well-established role for proxi-
mal promoter RNAPII pausing, which contributes to maintain 
transcriptional homeostasis. GSK126-driven EMT did not affect 
this mechanism at a global level (Fig. 6, B and C). To investigate 

A B

C
D

E

Fig. 5. Antagonistic chromatin regulators targets include a pancancer meta-EMT signature influencing molecular tumor classification. (A) Top: Heatmap showing 
1081 epithelial and mesenchymal LUAD biopsies defined by the dual scoring analysis is clustered into five clusters by NMF consensus on the basis of cluster I + II + III genes 
(see Materials and Methods). Selected EPI and MES metagenes are highlighted to the right. Bottom: Composition of the tumor immune infiltrate. For each NMF cluster, 
boxplots show the proportion of six major classes of immune cells (from CIBERSORT). Lymphocytes represent the reference, and the other five classes are compared to 
lymphocytes. Significance is indicated by asterisks (Wilcoxon rank sum test, adjusted P < 0.05). (B) Relative frequencies of each NMF cluster in the MES and EPI patients of 
32 cancer types, respectively; significance of enrichment was calculated by Fisher’s exact test and highlighted with asterisks (see Materials and Methods): *P < 0.05; 
**FDR (false discovery rate) < 0.05. (C) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways displayed were significantly associated with NMF clusters C1 to C5. Two 
panels referred to the log10(FDR) and gene count ratio. (D) Kaplan-Meier survival analysis for five NMF clusters patients of LUAD, KIRC, and STAD. Time is indicated in days. 
Different patient groups are compared using the log-rank test, for which the P value is shown. (E) Uniform manifold approximation and projection (UMAP) clustering of 
patients with LUAD based on either all genes (left) or signature genes from NMF cluster C1 (right). The latter represents the meta-mesenchymal pan-cancer signature genes.

http://advances.sciencemag.org/


Serresi et al., Sci. Adv. 2021; 7 : eabd7974     24 February 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

10 of 19

whether local changes occur at selected genes, we computed the dif-
ferential RNAPII loading at both ends of each gene and, compared 
to the naїve condition, we observed that GSK126-driven EMT was 
accompanied by selective and quantitative changes in RNAPII 

accumulation (Fig. 6C). To gain insights into the biological sig-
nificance of these changes, we focused on the selected fraction of 
transcripts with high load of RNAPII at either side of each gene 
(Fig. 6D). This analysis uncovered changes in RNAPII levels upon 

A B C

D E F

G H I J

Fig. 6. Antagonistic chromatin regulators control meta-EMT activity via enhancers and promoters regulated by RNAPII elongation and converging on the AP-1 
transcriptional network. (A) Pie charts showing the genomic distribution of the RNAPII in naïve and GSK126-treated A549. The NMF signatures genes from Fig. 5A are 
highlighted as a subset of promoters (orange). (B) Cumulative distribution plot of the genome-wide RNAPII loading at 5′ and 3′ of each transcript, as defined above. 
(C) Heatmap (above) and violin plot (below) of RNAPII traveling ratio at 5′ and 3′ of each transcript for naïve and GSK126-treated cells. Clustering was performed using 
k-means, with k = 3, and the “ns” denotes no significance by one-way ANOVA and Sidak post hoc test. (D) Relative RNAPII traveling ratio between naïve and GSK126-treated
cells on selected genes, as defined above. A ±0.5 threshold was decided on the MGT#1-mVenus reporter (more stringent), and selected examples are shown. (E) IGV view 
of FOS. The asterisks denote changes in elongation as determined in (D). (F) Upstream regulator analysis by IPA on the genes passing the FC in (D). The AP-1 transcription 
factor components are highlighted in red. (G) Giraph plot showing the distance between JUN ChIP-seq peak lists. Colors denote the known state of the cell line in which 
ChIP-seq was performed. (H) Heatmap of signal intensity for the indicated ChIP-seq profiles for all JUN peaks in (G). Direct overlap with genomic loci in Fig. 4A was used 
to partition chromatin occupancy into the indicated clusters. (I) Pie charts showing the genomic distribution of all JUN peaks in (G), above. NMF C1 genes were annotated 
when a JUN peak was close to the gene (−2.5 and +0.5 kb). The below charts are referred to the two clusters in (H). (J) Upstream regulator analysis by IPA on the genes 
annotated in (I) as direct JUN/ZMYND8-BRD2 targets.
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GSK126-induced EMT at 3958 genes (of 79,166; ~5%), which are 
characterized by high RNAPII load at their 3′ end. Multiple genes 
showed a positive score (>0.5 log2FC; table S6), a threshold that was 
defined on the basis of the MGT#1-mVenus genetic reporter (i.e., 
positive genomic locus for GSK126-driven activation). Changes in 
score appeared to correlate with increased and decreased RNAPII 
elongation. Upstream regulator analysis of the GSK126-elongating 
(>0.5 traveling) and stalling promoters (<−0.5 traveling) pointed to 
c-Myc and activator protein 1 (AP-1) transcriptional networks as 
critical nodes connecting genes that increase RNAPII during 
EMT. We focused on AP-1 as FOS and JUNB targets were inde-
pendently enriched in the dataset [ingenuity pathway analysis (IPA), 
P = 7.62 × 10−9 and 0.01, respectively] and FOS itself was in the top tier 
of RNAPII elongating genes upon GSK126-driven EMT in A549 
(Fig. 6, D to F, and fig. S10A).

The canonical AP-1 complex is a pioneer transcriptional regula-
tor formed by a diverse set of FOS/JUN-like homo- and heterod-
imers (32). The expression pattern of canonical AP-1 factors in 
patients’ biopsies of LUAD, KIRC, and STAD suggests that c-JUN/
JUNB and FOSL1/2 are bona fide canonical AP-1 transcription fac-
tor configurations in mesenchymal states (fig. S10, B and C). This 
holds true in A549-MGT#1 or H1944-MGT#1 exposed to EMT 
triggers (e.g., GSK126 and TGF-1; fig. S10D). JUN is a pioneer factor 
for mesenchymal and stress response gene activation in glioblastoma 
(GBM) (33) and is activated at protein level in response to various 
EMT triggers such as GSK126, TGF-1, and TNF- in cancer cell 
lines of LUAD (A549 and H1944), KIRC (786-O and A498), STAD 
(MNK45), and GBM (IDH-wt-GICs; fig. S10E). Under these con-
ditions, ChIP-seq for JUN as a surrogate mark for AP-1 binding 
revealed an average of ~25,000 binding sites, largely shared among 
multiple cell lines and states (Fig. 6G). k-means clustering of 
JUN peaks uncovered genomic regions containing 4303 genes 
whose chromatin is decorated with H3K27ac and simultaneously 
bound by the antagonistic chromatin modulators and JUN in 
multiple cell lines and states (Fig. 6H). While JUN binding distri-
bution is predominantly distal to promoters, those genes that could 
be attributed to JUN as direct targets owing to promoter proximity 
(i.e., ±2.5 kb from TSS) included 37% of the metagenes enriched in 
mesenchymal tumors (135/362 of NMF C1; Fig. 6I and fig. S10F). 
Upstream regulators analysis confirmed that genes bound by all 
factors are significantly associated with AP-1 and generally linked 
these genes to pathways repeatedly associated with EMT (Fig. 6J) 
and specifically with the patients’ NMF cluster C1 (Fig. 5C and figs. 
S8D and S9). This underscores RNAPII and AP-1 as pivotal regula-
tors of the pan-cancer EMT program.

Overall, our data reveal that the transcriptional control of EMT 
homeostasis across multiple human cancers is characterized by 
general principles, where antagonistic chromatin modulators 
co-occupy active chromatin and regulate epithelial cancer cell 
metastability. This additional layer of regulation integrates the 
well-established bivalent regulation of poised chromatin.

DISCUSSION
The epigenome plays a key role in the initiation and progression of 
human cancers and offers therapeutic opportunities (20). However, 
targeting chromatin factors that have pleiotropic effects on cell 
proliferation and cell identity poses specific challenges, as exem-
plified by how targeting PRC2  in NSCLC enhances cancer cell 

plasticity and sets the ground for tumor progression (12, 22). Here, 
we exploited the cellular plasticity facilitated by PRC2 inhibition 
in lung cancer cells to uncover factors involved in the phenotypic 
regulation of epithelial cell identity in solid tumors. By com-
bining functional genetic screens with a phenotypic reporter (23), we 
uncovered known and novel players governing EMT in lung 
cancer cells.

The use of a transcriptional reporter might have facilitated the 
discovery of chromatin factors over the kinases, more often operat-
ing in the cytoplasm. Moreover, CRISPRi using KRAB-dCas9 has 
limited discovery power at both per guide and per gene levels (34). 
Thus, future improvement in the screening procedures is needed to 
tackle the detection limits of true positive hits.

The hits in the kinome screen were indeed limited to the discov-
ery of the RAS scaffold CNKSR2 and the tyrosine kinase receptor of 
the TGF-/BMP superfamily, ACVR1. CNKSR2 is understudied 
and determining whether it plays a critical role in one or more tu-
mor types will require further investigation. Instead, ACVR1 is a 
potential driver of pediatric gliomas (35). Our data showing that 
ACVR1 loss or inhibition by DMH1 traps cells in their epithelial 
state and MAPK, MAPK kinase 1/2 (MEK1/2), c-Jun N-terminal 
kinase (JNK), or phosphatidylinositol 3-kinase (PI3K) inhibitors as 
potentially valid therapeutic options in various epithelial cancers 
(fig. S8E) may open to rationale combination of these compounds.

The epigenome screen revealed a functional antagonism be-
tween chromatin modulators that occurs at active chromatin in-
cluding metagenes juxtaposing multiple cancers according to their 
epithelial-mesenchymal identity. This indicates that our findings 
potentially have broad implications in solid tumors. In particular, 
the pan-cancer EMT signature genes bring together the patients 
with lung, kidney, and stomach cancers with mesenchymal features 
and poor overall survival. Whereas their epithelial counterparts 
appear potentially sensitive to MAPK, MEK1/2, JNK, or PI3K inhib-
itors, these tumors appear to have undergone a “malignant EMT,” 
enriched in proinflammatory pathways and infiltrated by myeloid 
cells that pose hurdles to immunotherapy. In these settings, target-
ing the epigenome may involve neoadjuvant therapeutic strategies 
aiming to restore a noninflammatory status or amplifying tumor 
inflammation through a targeted agent followed by hitting acquired 
vulnerabilities (12).

The layer of chromatin regulation identified in our screen likely 
contributes to maintaining metastability between two states, there-
by promoting cell plasticity before more discrete cell fate decisions 
take place. Whereas TGF- signaling potently drives EMT, the 
effect of EZH2 inhibition rather promotes a “partial EMT.” In this 
setting, the binding of antagonistic modulators and their higher 
load at chromatin governing the EMT process in metastable cells is 
reminiscent of how Polycomb and Thritorax complexes control 
embryonic stem cell lineage priming (17). In both cases, two antag-
onistic complexes bind to the same targets, whose transcriptional 
activation relies on intracellular signaling and RNAPII elongation 
[(17) and this study]. Yet, the antagonistic regulation herein report-
ed takes effect at active chromatin rather than inside poised one, 
and the cooperative transcription factors involved are broad regula-
tors such as Myc and AP-1, rather than lineage-specific ones. Note-
worthy, both Myc and AP-1 complexes involve selective homo- and 
heterodimerization and selective activation or repression of their 
targets. Unlike Myc, AP-1 is believed to act as pioneer transcription 
factor, which argues in favor of its ability to reconcile the broadness 
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of the EMT with heterogeneous tissues and states. The future com-
bination of our synthetic reporter and various EMT models may 
help to elucidate the biochemical events regulating cell homeostasis 
at active chromatin.

The functional antagonism by bromodomain-containing ZMYND8 
and BRD2 in regulating EMT is interesting given that both chroma-
tin readers recognize histone acetylation but their mechanism of 
action on gene regulation is markedly different. BRD2 is a positive 
regulator of developmental gene transcription and is required for the 
maintenance of genome architecture (29, 36). In contrast, ZMYND8 
negatively regulates gene expression by preventing enhancer activation 
(37, 38). Our data show that both factors occupy largely overlapping 
genomic regions, which are characterized by the activating histone 
mark H3K27ac and transposase-accessible chromatin, thereby fea-
turing enhancers. Our finding that ZMYND8 is a negative regulator 
of EMT is in keeping with the previous data supporting its role as a 
negative regulator of metastatic gene expression (37). However, giv-
en that ZMYND8 specificity for its targets depends on preexisting 
chromatin configuration and antagonistic function with other 
bromodomain-containing proteins, it is likely that it controls cell 
identity in a cell type–, developmental stage–, and disease-specific 
manner. The comparison between TGF- and GSK126-driven 
EMT suggests that antagonistic fluctuations between cell epithelial-
mesenchymal fates occur in the absence of (or preceding) substan-
tial chromatin remodeling. The identification of multiple negative 
regulators of EMT in the NuA4 histone acetyltransferase complex 
such as EPC1, ING3, DMAP1, and BRD8 aligns well with the SGF29 from 
the SAGA complex to negatively regulate proneural-to-mesenchymal 
glioblastoma transition (23). These findings spark interest in the role 
of histone acetylation as a bivalent chromatin regulatory mark. 
Moreover, similar to a previous link between PRC1 and BRD2 (39), 
it may be interesting to investigate whether KMT2A, which is part 
of the MLL1/COMPASS complex, links the regulation of acetylated 
chromatin to H3K4, H3K27, and DNA methylation, which are fine-
tuned by the MLL2/COMPASS complex (40).

Last, our epigenome screen uncovered a context-dependent role 
for the SWI/SNF member ARID1A (BAF complex) in EMT. ARID1A 
is intensively studied because of its frequent loss-of-function muta-
tions in human cancers (19). Unlike SMAD4 loss that drives irre-
versible and deterministic alterations in BMP signaling, ultimately 
promoting invasion and metastasis in colon cancer (41), ARID1A 
loss impairs mesenchymal conversion in quasi-mesenchymal lung 
cancer cells, is neutral in quasi-epithelial lung cancer cells, and pro-
motes the opposite outcome in proneural GICs (Fig. 3F). In a recent 
independent report, ARID1A loss in neuroblastoma cells promotes 
the adrenergic-to-mesenchymal transition (42). We interpreted this 
evidence as the loss of chromatin modulators to be nondeterminis-
tic in that these may oversee antagonistic and potentially stochastic 
fluctuations between cell states so that their loss will result in context-
dependent outcomes. Cell state changes will be influenced by the 
intersection between alterations in the chromatin modulator and 
the preexisting genetics, tumor differentiation stage, and micro-
environment, notably inflammation. This level of complexity 
underscores the challenges in targeting chromatin factors in cancer. 
SWI/SNF-mutant cancers selectively depend on a functional PRC2 
(43) and EZH2 inhibition as targeted therapy in these tumors is in a 
clinical trial (NCT03213665). Our functional screen identified 
members of the BAF complex (e.g., ARID1A, SMARCB1, and 
SMARCE1) but not of the PBAF complex (e.g., ARID2) as required 

to execute EMT under homeostasis and in response to EZH2 
inhibition. However, ARID1A deletion in EZH2-inhibited lung 
cancer cells was not detrimental to cell fitness, which suggests that 
genetic deletion alone may be insufficiently predictive of thera-
peutic outcome. Alternative to targeting the functional antagonism 
between SWI/SNF and PRC2, selective targeting of intra-SWI/SNF 
dependencies based on synthetic lethality is supported by several 
systematic studies using in vitro cell proliferation as a proxy for 
tumorigenic potential (28, 43–45). Our system may help incorpo-
rating phenotypic cell fate changes in the prioritization of druggable 
dependencies that are developed on the basis of their effect on 
tumor cell proliferation but are likely to also affect their plasticity.

Integrated molecular profiling in human cancers uncovered 
pan-cancer patterns attributed to the tumor cell of origin (30), but 
therapeutic targeting of tumor states is still unattainable. Since the 
original discovery of bivalent domains in pluripotent stem cells (15) 
and their correlation with transcriptional alterations in human 
cancers (46), there has been growing interest in targeting chromatin 
regulators as an anticancer therapy. Our data support the antag-
onistic chromatin regulation in human cancers as a mechanism to 
fine-tune epithelial-mesenchymal cancer cell interconversion. Where-
as targeting pleiotropic regulators poses therapeutic challenges, syn-
thetic genetic tracing of cell fate transitions provides a simple, robust, 
and scalable approach to link phenotypic responses and targeted per-
turbations, thereby offering additional control over prioritization of 
combinatorial treatments that may overcome cancer cell plasticity.

MATERIALS AND METHODS
MGT#1 reporter generation
The MGT#1 synthetic reporter is described elsewhere (23). Briefly, 
mesenchymal GBM tumors were compared to all other GBM sub-
types, and differentially enriched genes and general transcription 
factors were used as the framework for discovery of mesenchymal-
specific cis-regulatory DNA (23). In turn, selected candidate cis-regulatory 
elements were stitched together and cloned upstream of an mVenus 
fluorescent reporter in a lentiviral backbone. The vector showed 
concordant expression with epithelial-mesenchymal status in mul-
tiple cell types. An algorithm for automated generation of synthetic 
reporters from gene signatures will also be described elsewhere.

Cell lines and cell culture
A549, H1944, and H2122 human lung cancer cell lines (R. Bernards 
laboratory, Netherlands Cancer Institute (NKI), Amsterdam, The 
Netherlands) were cultured in RPMI medium (Gibco) supplemented 
with 10% fetal bovine serum (FBS, from Gibco) and penicillin and strep-
tomycin (100 U/ml; Gibco) at 37°C in a 5% CO2 and 95% air incubator.

Human glioma cells (-IDH1-wt-GICs) were propagated as 
described in (33). RHB-A medium (Takara) supplemented with 
epidermal growth factor (20 ng/ml; R&D Systems), basic fibroblast 
growth factor (20 ng/ml; R&D Systems), heparin (1 g/ml; Sigma-
Aldrich), 1% penicillin and streptomycin (Gibco), and PDGF-AA 
(20 ng/ml; R&D Systems). Human GICs were cultured at 37°C in 
a 5% CO2, 3% O2, and 95% humidity incubator.

A498 kidney carcinoma cells were cultured in Dulbecco’s modi-
fied Eagle’s medium (DMEM) (Gibco) supplemented with 10% FBS 
and penicillin and streptomycin (100 U/ml; Gibco). Renal cell 
carcinoma (786-0; K. Schmidt-Ott laboratory, Max Delbrück Center 
for Molecular Medicine, Berlin, Germany) and MKN45 (S. Minucci 
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laboratory, European Institute of Oncology, Milan, Italy) were kept 
in the presence of RPMI (Gibco) with 10% FBS (Gibco) and penicil-
lin and streptomycin (100 U/ml; Gibco).

The MCF7 and MDA-231 breast cancer cell lines (provided by 
the R. Bernards laboratory, NKI) were cultured in DMEM (Gibco) 
supplemented with 10% FBS and penicillin and streptomycin 
(100 U/ml; Gibco). For experiments in CNKSR2 and ACVR1 KO 
(Fig. 2C), cells were treated with 5 M GSK126 (GlaxoSmithKline), 
kept at low confluency, and cultured for 5 days. In fig. S4G, cells 
were cultured for 10 days ± hTGF-1 (5 ng/ml; R&D Systems). In 
Fig. 2D, A549 cells were treated with 1, 3, and 5 M DMH1 (Cayman 
Chemical) for 2 days. In fig. S4H, A549 cells were treated with 
hBMP4 (10 ng/ml, R&D Systems) and GSK126 (5 M) for a total of 
5 days. DMH1 1 M was added for the last 3 days. To measure MGT#1 
reporter, fluorescence in viable cells was identified by FACS using 
Calcein UltraBlue AM (Biozol) and Zombie NIR (BioLegend).

Lentivirus production and infection
Lentivirus was produced by transfecting human embryonic kidney–293 
T cells using FuGENE HD (Promega) as described (33). Infected 
cells with MGT#1 reporter were sorted by FACS for low levels of 
MGT#1 expression.

CRISPRi screening procedure
The CRISPRi library was designed as previously described (34). 
Briefly, gRNAs targeted −50 to +300 relative to the TSS of annotated 
genes (APPRIS). For the CRISPRi screens, A549-MGT#1 ± 
GSK126 ± dox cells were sorted on a MoFlo Astrios. We aimed at a 
library representation of 1000× (>6 million cells) in the 10% of the 
lowest (dim) and 10% of the highest (bright) cells within each pop-
ulation. The mid population was also sorted and included in the 
screen analysis, as control. Cells were lysed for 10 min at 56°C in 
AL lysis buffer + proteinase K buffer (QIAGEN) followed by DNA 
extraction using AMPure beads (Agencourt) and ribonuclease A 
treatment. PCR amplification and barcode tagging of the CRISPRi 
libraries were done essentially as described, including PCR buffer 
composition (47). For each sample, in PCR1, we used 20 g of DNA 
divided over 10 parallel reactions, including from input controls, 
whereas the plasmid library needed 0.1 ng of DNA in PCR1. Parallel 
PCR1 reactions were mixed together, and 5 l was used as a template 
for PCR2. We used Phusion Polymerase (New England Biolabs), 
GC buffer, and 3% dimethyl sulfoxide in both PCR1 and PCR2. 
Primers are available upon request.

Library concentrations were measured, and barcoded libraries 
were pooled and sequenced on an Illumina HiSeq 2500 sequencing. 
Reads were mapped to the in silico library with a custom script 
(available upon request) to generate read counts, which were subse-
quently used as input for SeqMonk. We used a custom genome for 
SeqMonk analysis (available upon request). Aligned reads to the 
custom genome were used as input for Fig. 1 and figs. S2 and S3 
(table S1).

Differential enrichment analysis was performed for sgRNAs us-
ing the R/Bioconductor package DESeq2 v1.16.1 (PMID: 25516281) 
with standard parameters. Genes exhibiting a false discovery rate 
(FDR) ≤ 0.05 and a log2FC ≥1.5 or ≤−1.5 were considered dif-
ferentially enriched. Normalized rlog-transformed gene counts 
were calculated using the DESeq2’s rlog() function. We ran two 
independent CRISPRi screens in A549 and one additional screen 
in H1944.

Flow cytometry analysis
Validation by FACS analysis of MGT#1 was performed by seeding 
2 × 105 cells on a well of a six-well plate for each condition and 
harvested 24 hours later for analysis. Flow cytometric analysis was con-
ducted on a Fortessa five-laser analytical cytometer (BD Biosciences). 
Gating was set on live and single cells using forward scatter and side 
scatter. As gating strategy, we divided wild-type cells into four sub-
populations of 5% low, 45% mid-low, 45% mid-high, and 5% high 
MGT#1 expression. The same gates were applied to all further con-
ditions to determine shift of reporter expression. Comparisons 
between KO and control in Fig. 3F were done with respective con-
trols but different gating due to different instrument setups. Fluo-
rescence intensity of the reporter was detected with the following 
settings for mVenus: excitation, 488 nm; emission, 530 nm (30-nm 
bandpass filter).

Live-cell imaging
For live-cell imaging, human lung and breast adenocarcinoma 
transduced with the MGT#1 reporter and treated with GSK126 
(5 M for 5 days), TGF-1 (5 ng/ml for 5 days), or vehicle were seeded 
out on 384-well plates in FluoroBrite DMEM (Gibco) supplement-
ed with 10% FBS. Imaging was performed on high-content imag-
ing platform (Operetta CLS, PerkinElmer) using 488-nm excitation 
and a 470- to 540-nm emission filter (confocal mode, 40× water 
objective). Maximum projections from 5-m z stacks of MGT#1 
reporter intensities and DRAQ5-stained nuclei are shown (fig. S1A).

Electroporation
Genome editing of all cell lines described was performed by electro-
poration using the Amaxa 4D-Nucleofector Kits and the specific 
program. Briefly, 2 × 105 cells were counted and resuspended in 
20 l of the respective buffers and supplement in a 16-well Nucle-
ocuvette strip. For A549, H1944 electroporation was performed 
with SF nucleofection buffer (Lonza) and using CM130 and FF-120 
programs, respectively. Glioma cell lines were electroporated in 
buffer P3 and using CA-138 program. Gene KOs were generated 
using the Synthego Gene Knockout Kits (single guides and V2 
kit) following the manufacturer’s instructions.

Genomic DNA extraction and T7E1 calculation
Editing efficiency was estimated by T7 endonuclease I assay. Genomic 
DNA was extracted from control and edited cells using the spin 
tissue isolation kit (Invisorb). Target regions were PCR-amplified 
with the Phusion Flash High-Fidelity PCR Master Mix (Thermo 
Fisher Scientific) according to the manufacturer protocol. PCR 
products were denatured at 95°C for 5 min and reannealed at −2°C/s 
temperature ramp to 85°C, followed by a  −0.1°C/s ramp to 
25°C. The heterocomplexed PCR product (200 ng) was incubated 
with 5 U of T7E1 enzyme (New England Biolabs) and buffer 2 at 
37°C for 30  min. Products from mismatch assays were electro-
phoresed on 2% agarose gel. The percentage of editing was analyzed 
by Sanger sequencing and calculated using the ICE (inference of 
CRISPR edits) webtool provided by Synthego.

Western blot
Western blotting analysis was performed using standard meth-
ods. Whole-cell extracts were prepared in radioimmunoprecipi-
tation assay buffer [50 mM tris (pH 8.0), 50 mM NaCl, 1.0% 
NP-40, 0.5% sodium deoxycholate, and 0.1% SDS] containing 
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protease inhibitor cocktail (cOmplete, Roche) and phosphatase 
inhibitor cocktail (Thermo Fisher Scientific). Equal amounts of 
protein, as determined by the Micro BCA Protein Assay Kit 
(Pierce), were resolved on NuPage Novex 4 to 12% bis-tris gels 
(Invitrogen) or NuPAGE Novex 7% tris-acetate protein depending 
on the protein size and transferred onto nitrocellulose membranes 
(0.2 m, Whatman).

Membranes were blocked in phosphate-buffered saline with 
0.1% Tween 20 (PBST) 5% bovine serum albumin (BSA) for 
1 hour, incubated with primary antibodies in PBST 1% BSA over-
night at 4°C and with secondary antibodies coupled to horseradish 
peroxidase for 45 min in PBST 1% BSA. Bands were visualized 
using an enhanced chemiluminescence detection reagent (GE 
Healthcare). Primary antibodies used against the following anti-
gens were as follows: anti-vimentin [D21H3 rabbit monoclonal 
antibody (mAb); Cell Signaling Technology, #5741], anti-vinculin 
(mouse clone h-VIN1; Sigma-Aldrich, #V9131), anti–E-cadherin 
(24E10 rabbit mAb; Cell Signaling Technology, #3195), anti-claudin 
(rabbit mAb; Cell Signaling Technology, #4933), anti-tubulin 
(DM1A mouse mAb; Sigma-Aldrich, #T9026), anti–glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) (rabbit mAb; Santa Cruz 
Biotechnology, #sc-25778), anti-H3K273me [rabbit polyclonal 
antibody (pAb); Cell Signaling Technology, #9733], anti-total H3 
(rabbit mAb; Cell Signaling Technology, #AB1791), anti-Arid1a 
(D2A8U rabbit mAb; Cell Signaling Technology, #12354), anti-
Brd2 (D89B4 rabbit mAb; Cell Signaling Technology, #5848), anti-
DOT1L (D1W4Z rabbit mAb; Cell Signaling Technology, #77087), 
anti-ZMYND8 (rabbit pAb; Atlas Antibodies, #HPA020949), anti-
ARID2 (mouse mAb; Santa Cruz Biotechnology, #sc-166117), 
anti–phospho-SMAD1/5/9 (rabbit pAb; Cell Signaling Technology, 
#9511), and anti–c-JUN (60A8 rabbit mAb; Cell Signaling Tech-
nology, #9165).

Copy number–normalized MGT#1 reporter expression
Human lung and breast adenocarcinoma transduced with the 
MGT#1 reporter were treated with GSK126 (5 M for 5 days), 
TGF-1 (5 ng/ml for 5 days), or vehicle. To perform lentiviral copy 
number normalization, gDNA was extracted using a spin tissue iso-
lation kit (Invisorb). Relative amounts of reporter integration sites 
into the genome of target cells were assessed by qPCR, using mVenus 
(MGT#1) specific primers and N2 primers targeting a genomic re-
gion in chromosome 13 for input normalization between samples. 
gDNA (5 ng) was amplified using respective primers and the Power 
SYBR Green PCR Master Mix (Life Technologies) in a total reaction 
volume of 10 l in quadruplicate. Relative DNA amounts of MGT#1 
were normalized over N2 levels to calculate copy number abun-
dance for each sample.

Expression levels of MGT#1 reporter in corresponding samples 
were assessed in quadruplicate by qPCR using the One-Step TB 
Green PrimeScript RT-PCR Kit II (Takara) with an input of 2-ng 
total RNA using mVenus (MGT#1) specific primers and GAPDH 
primers for normalization. Relative reporter expression of MGT#1 
was calculated by normalizing over GAPDH expression. Final 
normalization as presented in fig. S1A was done by first correct-
ing GAPDH-normalized MGT#1 expression for each condition 
(± treatment) divided over N2-normalized copy number abundance 
from the respective untreated control and then setting H2122 as a 
reference, by calculating the FC increase of copy number–normalized 
reporter expression.

Proliferation, colony formation assay, wound healing assay, 
and three-dimensional Matrigel invasion assay
Proliferation assay was performed by seeding, using a TECAN 
SPARK20M plate reader, 5 × 104 cells in a 24-well plate in triplicate 
and counted after 24 and 48 hours post seeding. For colony formation 
assay, 500 cells were plated for each KO and control cell line in 
triplicate. Colony counting was performed using ImageJ Colony 
Counter plug-in. For the wound healing assay, each cell line ana-
lyzed was seeded in 96-well plates as six replicas until confluence 
and then wounded using a narrow pipette tip. Longitudinal whole-
well imaging with 2-hour intervals starting from wound delivery 
was performed using the Operetta high-content screening platform 
(PerkinElmer). Area of wound size for each time point was calculat-
ed in a defined imaging window by using the Fiji plugin MRI_
Woundhealing_Tool. Wound closure rates for selected time points 
20, 40, and 52 hours were normalized on the respective wound area 
at time point 0 hours and are represented as mean values ± SD of 
minimum three independent replicas using GraphPad Prism.

For three-dimensional Matrigel invasion assay, control cells 
(with and without TGF-1 pretreatment; 5 ng/ml for 5 days) and 
CRISPR-Cas9–KO A549 LUAD cell lines were grown on 96-well 
plates as a monolayer to 30 to 50% confluence in three replicate 
wells. Cells were starved in serum-free medium for 12 hours be-
fore a monolayer was overlaid with TGF-1–enriched (5 ng/ml) 
Matrigel and supplemented with complete medium plus 5 M 
DRAQ5 to label nuclei. Using a high-content imaging platform 
(Operetta CLS, PerkinElmer), z stacks of DRAQ5 channel with 
40-m thickness were imaged every 12 hours to monitor invasion 
into the Matrigel layer. In-built image analysis building blocks facil-
itated DRAQ5-labeled nuclei detection and derivation of positional 
and morphologic properties for each single nucleus at each time 
point. Mean values for geometric centers of all nuclei from three 
replicate wells (total nuclei number 1500 to 3000) were normalized 
to time point T0 for each respective following time points to calcu-
late invasion depth.

ATAC sequencing
ATAC-seq was performed on naїve, GSK126 (5 M)–, or TGF-1 
(5 ng/ml)–treated cells FACS-sorted for MGT#1-mVenus high ex-
pression. A total of 60,000 cells were sorted in biological replica and 
centrifuged; the pellet was gently resuspended in 50 l of ATAC mix 
[25-l 2× tagmentation DNA (TD) buffer, 2.5-l 891 transposase and 
22.5-l nuclease-free water from Nextera DNA Library Prep, Illumi-
na]. Cells were incubated for 60 min at 37°C with moderate shaking 
(500 to 800 rpm), lysed in proteinase K and AL buffer (QIAGEN); 
DNA was purified using 1.8× AMPure XP beads (Beckman Coulter). 
Library prep was made using primers compatible with Nextera Illu-
mina. Each library was individually quantified using Qubit 3.0 Fluo-
rometer (Life Technologies) and profiled on a TapeStation High 
Sensitivity D1000 ScreenTape (Agilent). The multiplexed libraries 
were sequenced on a HiSeq 4000 in a 2× 75–base pair (bp) mode.

ChIP and qPCR
ChIP-seq was performed in biological duplicate on 8 × 106 A549 
cells treated for 11 days ± GSK126 (5 M) or ± TGF-1 (5 ng/ml) 
adapting the ChIPmentation protocol (46). For c-JUN ChIP-seq 
experiments, A498, 786-0, and MKN45 cell lines were pretreated 
for 6 hours with TNF- (10 ng/ml; Enzo Life Sciences), while H1944 
and A549 were treated with GSK126 and TGF-1 for 11 days.
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Briefly, cells were fixed with 1% formaldehyde (Alfa Aesar) for 
10 min at room temperature, and the cross-linking was subsequently 
quenched with Glycine.

The chromatin preparation was conducted following the SimpleChIP 
Enzymatic Chromatin IP Kit (Magnetic Beads, Cell Signaling 
Technology, #9003S) protocol. The chromatin was sheared using 
the Bioruptor (15 cycles, 15-s on and 30-s off), and the ChIP was 
performed with the SimpleChIP Enzymatic Chromatin IP Kit and 
using the following antibodies: anti-H3K27me3 (Millipore, #07-449), 
anti-H3K27ac (Abcam, #ab4729), anti-Arid1a (Cell Signaling 
Technology, #12354), anti-Brd2 (Cell Signaling Technology, #5848), 
anti-DOT1L (Cell Signaling Technology, #77087), anti-ZMYND8 
(Polyclonal Atlas, #HPA020949), anti–c-JUN (Cell Signaling 
Technology, #9165), anti-PolII (Rockland, #600-401-HB3), or with 
rabbit immunoglobulin G (IgG) as control (Cell Signaling Technology). 
The ChIP reactions were further bound with ChIP-Grade Protein G 
Magnetic Beads (Cell Signaling Technology, #9006) and tagmented 
in 50 l of transposition mix containing 25 l of TAPS–N,N′-
dimethylformamide (DMF) buffer [80 mM TAPS, 40 mM MgCl2, 
and 50% (v/v) DMF], 0.625 l in-house–produced hyperactive Tn5 
enzyme, and 24.4 l of nuclease-free water. Tagmentation reactions 
were incubated for 10 min at 37°C and subsequently stopped by 
adding 5 l of 10% SDS. The tagmented bead-bound chromatin-
antibody complexes were washed twice with TET buffer (0.2% 
Tween 20, 1 mM EDTA, and 10 mM tris-HCl), eluted in 1× ChIP 
elution buffer by incubating 30 min at 65°C with gentle vortexing 
(1200 rpm). The reverse cross-linking was performed by adding 6 l 
of 5 M NaCl and 2 l of proteinase K (Cell Signaling Technology, 
#10012) and incubation for 2 hours at 65°C. The DNA was purified 
by means of spin columns and eluted in 50 l of DNA elution buffer. 
To assess the optimal number of PCR cycles for efficient library 
amplification, 2 l of each sample was taken as template for Ct-
determining qPCR using the KAPA HiFi HotStart ReadyMix (Roche) 
and 1xEvaGreen Dye (Biotium). The whole probe amplification was 
performed in 50-l qPCR reaction with 20 l of ChIP DNA. Primers 
were previously described. Each library was individually quantified 
by means of Qubit 3.0 Fluorometer (Life Technologies) and profiled 
on a TapeStation High Sensitivity D1000 ScreenTape (Agilent). The 
multiplexed libraries were sequenced either on the Illumina NextSeq 
500 using a Mid Output V2 75 cycles chemistry kit in a 1× 75-bp mode 
or on the NovaSeq S4 in a 2× 150-bp mode.

To assess the occupancy of BRD2 and ZMYND8 on the specif-
ic target loci (MGT#1, NCL, and background SALL2 3′ end), ChIP 
was performed as described above in a panel of A549 wild-type, 
BRD2-, ARID1A-, and ZMYND8-KO cells. Quadruplicates of the 
ChIP-ed and input DNA were analyzed by real-time qPCR using 
the SYBR Green PCR Master Mix (Life Technologies) in the ViiA 
7 Real-Time PCR System. Primer sequences are available upon 
request.

RNA-seq of MGT#1-expressing cells
Briefly, naїve, GSK126 (5 M)–, or TGF-1 (5 ng/ml)–treated cells 
(11 days) were sorted by FACS for MGT#1-mVenus high and 
low expression.

The RNA was extracted from the cells using the TRIzol Reagent 
(Invitrogen, #15596026) with subsequent isopropanol precipitation 
and AMPure XP bead purification. The quantity and quality profil-
ing of the extracted RNA was conducted using the Qubit RNA HS 
Assay Kit (Invitrogen) and the High Sensitivity RNA ScreenTape 

System (Agilent, #5067-5581). The SMARTer Stranded Total RNA-
Seq Kit v2-Pico Input Mammalian (Takara Bio, #634413) was used 
for to generate the RNA-seq libraries from 10 ng of total RNA 
according to the manufacturer’s protocol. The final libraries were 
quantified using the Qubit dsDNA HS kit (Invitrogen) and the 
KAPA Library Quantification Kit (Roche, #7960204001). The ap-
propriate library size distribution was determined by the TapeStation 
High Sensitivity D1000 ScreenTape kit (Agilent). Pooled libraries 
were sequenced on the Illumina NextSeq 500 platform in a 1× 75-bp 
dual-indexed mode. The demultiplexing was performed using the 
bcl2fastq conversion software (v2.20.0). The reads were aligned to a 
custom genome (sLCRs containing GRCh38) using STAR_2.6.0c. 
HTSeq was used to generate the counts of the uniquely assigned 
reads for each gene (parameters: htseq-count –m intersection-
nonempty -a 10 -i gene_id -s reverse -f bam). The RNA-seq data 
analysis was conducted in R v3.6.0 applying the DESeq2 pipeline 
(http://bioconductor.org/packages/release/bioc/html/DESeq2.
html) on raw prefiltered counts (>50 in at least two samples) for 
assessing the differentially expressed genes (baseMean > 5, padj 
< 0.05, log2FC ± 1.5) between the control and treatment conditions. 
DESeq2 rlog transformation was applied on the prefiltered count 
data for normalization. enrichGO and the dotplot function from 
the “clusterProfiler” R package (https://bioconductor.org/packages/
release/bioc/html/clusterProfiler.html) were used to conduct and 
visualize the GO enrichment analysis of the GSK126 and TGF-1–
induced genes (baseMean > 5, padj < 0.05, log2FC > 1.5) in A549 
and H1944.

ChIP-seq and ATAC-seq analyses
To perform a quantitative analysis, ChIP-seq and ATAC-seq annota-
tion files (.bam) were loaded in SeqMonk (www.bioinformatics.babra-
ham.ac.uk/projects/seqmonk/). ATAC-seq–positive regions were 
identified by unbiased analysis of read counts on the full complement 
of UCSC genome browser (https://genome.ucsc.edu/) deoxyribonu-
clease I hypersensitive sites (~2 million loci of variable length). Read 
count quantitation was performed by correcting for total count per 
million reads and data were log-transformed. Where appropriate, the 
data were further transformed by matching distributions function.

For ATAC-seq, we retained the DNAseI hypersensitive sites (DHS) 
with absolute read count of >−1 (log2) in control A549-MGT#1 ATAC 
profile replica. Read count quantitation using the 913,656 DHS included 
correcting for total count only in probes per million reads and for probe 
length, and data were log-transformed by size factor normalization and 
percentile normalization using “add to the 75.0 percentile” and further 
transformed by matching distributions. Statistical analysis of gene set 
enrichment was performed with standard settings in SeqMonk.

For ChIP-seq, peaks were calculated using a magnetic cell sorter 
(MACS) with cutoff P > 10−5 and assuming a fragment size of 300 bp. 
Individual ChIP-seq profiles (with replicas, wherever available) 
were compared to the IgG background (similar outcomes were ob-
tained if the input DNA was used). The individual peaks lists were 
then merged into one containing 140,761 loci bona fide bound by 
either ARID1A, DOT1L, BRD2, ZMYND8, H3K27ac, H3K27me3, 
and RNAPII in naїve or GSK126-treated cells. Read count quantita-
tion was performed using all reads overlapping the selected probes 
and correcting for total count to largest store, followed by log trans-
formation. Additional filtering retained all probes with normalized 
values >2 and duplicates removed. Moreover, as some of the ChIP-
seq profiles were single reads, and some were paired-end, some 

http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
http://www.bioinformatics.babraham.ac.uk/projects/seqmonk/
http://www.bioinformatics.babraham.ac.uk/projects/seqmonk/
https://genome.ucsc.edu/
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specific artifacts present in all the 2× PE (paired end) were removed 
by statistical analysis and FC of 2× PE versus 1× SR (single read) 
groups. In Fig. 6A, for each ChIP-seq profile, we retained the top 
~75% peaks, as a measure of bona fide binding. For instance, we 
identified 56,540 naїve RNAPII peaks and 55,844 GSK126-treated 
RNAPII peaks, which were reduced to 44,932 and 44,771, respectively. 
These peaks were then annotated to 79,165 Ensembl transcripts for 
which a TSS and a TES were uniquely identified (see below).

Heatmap plots for comparing ChIP-seq profiles and density 
plots in Fig. 5F were generated from bigWig files using ChAsE 
v.1.0.11 (http://chase.cs.univie.ac.at/overview) using as parameters: 
exponential normalization, global stats, and binning by size. For 
Fig. 4A, clustering of 144,007 regions with size >150 and <5000 bp 
with variable extent of ZMYND8 binding and clusters I, II, and III 
were obtained by k-means function using the following param-
eters: left and right extension = 5000 bp, internal bins (with respect 
to the peak) = 200 bp, and number of clusters k = 3. The genomic 
coordinates from each cluster were exported and annotated to 
the HG38.

To normalize ChIP-seq data for Fig. 4E, .bam files were import-
ed in SeqMonk, reads were extended by either 225 or 300 bp, de-
pending on read length (150 or 76 bp), and reads were quantitated 
over the selected probes by standard log2, further quantitated by the 
size factor filter, and eventually transformed in z scores. The com-
mon regions bound by both ZMYND8 and BRD2 and regulated by 
TGF-b1 were identified the intensity difference data filter in SeqMonk 
on normalized data. The final list was the overlap between individual 
ChIP-seq significant loci. The Giraph plot in Fig. 6G was generated 
on normalized JUN ChIP-seq data, using individual MACS peak 
probe lists as input. Annotation was performed by querying the 
probe lists for the closest gene to each probe (±5000 bp, or other-
wise indicated). IGV (integrative genomics viewer) of CHIP-seq data 
was used as a visualization tool, and autoscale or group autoscale was 
applied where appropriate to correct for different sequencing depth.

For DESeq2 analyses, SeqMonk calculated significance by read 
count quantitation using all aligned reads, and significance was 
called when P < 0.05 after Benjamini-Hochberg correction. Where 
indicated, additional stringency was applied through filtering on FC 
thresholds. To count reads aligning to the MGT#1-mVenus, we 
built a custom genome.

RNAPII ChIP-seq analysis
The GSK126-driven RNAPII traveling ratio was inspired by previ-
ous reports (48, 49) and modified and adapted to fit the data and the 
setting specs. Briefly, the “classic” RNAPII traveling ratio was calcu-
lated by annotating the +500 bp of each Ensembl gene retained in 
the analysis. Criteria for retaining a transcript were the availability 
of a unique TSS and TES, which resulted in 79,165 of 194,423. For 
the RNAPII-RNAPII + GSK126 profiles, the raw read count ranged 
from 0 to 9782/9760. Rather than removing the 2607/79,165 tran-
scripts that featured “0” counts or retaining the transcripts with 
>50 in both profiles, 31,892/79,165 (~40%), we established a proce-
dure that would reward transcripts with reasonable normalized 
counts. Therefore, we assessed the 5′ TSS and 3′ TES “RNAPII 
load” scores (log2 5′ TSS or 3′ TES read count + log2 whole tran-
script), in addition to calculating the classic traveling ratio of highly 
expressed transcripts (log2 5′ TSS or 3′ TES read count − log2 whole 
transcript). Follow-up IGV visualization was used to determine the 
best conditions of the analysis.

Pan-cancer analysis
The processed data and clinical data were collected from TCGA 
database. The discovery data consisted of 9112 tumor samples and 
19,672 genes across 32 cancer types, which were obtained via the R 
package “TCGAbiolinks” v2.15.3. The genome was aligned against 
hg19 and was normalized in each sample.

Epithelial and mesenchymal gene expression scoring 
of human NSCLC cell lines
We used 18 EMT markers from (12). Six EPI markers consisted of 
CDH1, ERBB3, TJP3, CLDN7, CLDN4, and MUC1; and 12 MES 
markers included TWIST1, CCL11, IL1A, FN1, CDH2, TWIST2, 
SNAI1, SNAI2, ZEB1, ZEB2, VIM, and L1CAM. The epithelial and 
mesenchymal gene expression scores for each human NSCLC cell 
line were computed by multiplying gene expression values of 6 EPI 
markers and 12 MES markers, respectively, as follows.

Epithelial gene expression score = CDH1 × ERBB3 × TJP3 × 
CLDN7 × CLDN4 × MUC1;

Mesenchymal gene expression score = TWIST1 × CCL11 × IL1A × FN1 
× CDH2 × TWIST2 × SNAI1 × SNAI2 ×ZEB1 × ZEB2 ×VIM × L1CAM.

Functional and pathway analysis
Functional and pathway analysis was performed with the R package 
clusterProfiler v3.10.1. In particular, we focused on the ontologies: 
Kyoto Encyclopedia of Genes and Genomes pathways, Biological 
Processes (BP), Molecular Function (MF), and Cellular Components 
(CC). Terms associated with an FDR ≤ 0.05 were considered signifi-
cantly enriched. Where indicated, other functional analyses were con-
ducted using Ingenuity Pathway Analysis software (QIAGEN).

EMT-MES dual scoring system defining MES and EPI patients
In each cancer type, we computed the EMT score for each patient 
as follows:

EMT score = [(MES1 + 1) × (MES2 + 1) × … (MES12 + 1)] / 
[(EPI1 + 1) × (EPI2 + 1) × … (EPI6 + 1)]

where MES1,...,12 referred the expression value of 12 MES markers 
and EPI1,...,6 represented the expression value of six EPI markers (see 
above). Then, the 10% of patients with highest EMT scores were 
defined as the most likely MES patients and the 10% of patients with 
lowest EMT scores were defined as the most likely EPI patients.

We performed the different expression analysis with DESeq2 to 
identify the significantly differentially expressed EMT markers between 
these 10% MES and EPI patients in each of the 32 cancer types. If the 
MES and EPI markers were significantly differentially expressed in 
at least 16 cancer types (>50% of 32), they were then defined as solid 
signature EMT markers. Finally, we obtained seven solid MES markers 
across cancer types: CCL11, FN1, L1CAM, SNAI2, TWIST1, TWIST2, 
and ZEB2. We computed a MES score as follows:

MES score = (MES1 + 1) × (MES2 + 1) × … (MES7 + 1)

where MES1,...,7 referred to the expression value of seven solid 
MES markers as above.

Last, we defined the 10% patients with highest MES score to be most 
likely MES patients and the 10% patients with lowest MES score as most 
likely EPI patients. The patients who were defined as MES patients by both 
EMT score and MES score were be the best-represented MES patients; 
the patients who were defined as EPI patients by both EMT score and 
MES score were the best-represented EPI patients.

http://chase.cs.univie.ac.at/overview
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NMF, PAM, and SAM analysis
NMF was applied to identify sample clusters. We run NMFconsensus.R 
for NMF analysis using the script available in the GenePattern 
(Broad Institute website, www.broadinstitute.org/cancer/software/
genepattern/). The ZMYND8/BRD2 targets clusters I, II, and III 
were used as input. Particularly, each normalized gene expression 
value was further normalized to N(0, 1) across all samples indepen-
dent of cancer types, which can adjust gene expression values to 
remove systematic variation between microarray experiments. This 
step is useful in rendering sample data comparable. ZMYND8/BRD2 
clusters I, II, and III were merged as input for pan-cancer patient 
clustering. The NMF parameters were default, including number 
of clusterings to build consensus matrix = 20, error function = 
Euclidean, iterations = 500, and cluster K from 2 to 7.

For pan-cancer analysis, the preferred clustering result was de-
termined by the cophenetic correlation between clusters and the 
average silhouette width of the consensus membership matrix. To 
identify the most representative samples with each cluster, silhouette 
widths were computed. The samples with negative silhouette widths 
were regarded as the outliers, which were filtered out. In the NMF 
consensus analysis, K = 3 (cophenetic coefficient = 0.9738) and 
K = 5 (cophenetic coefficient = 0.973) both exhibited good consen-
sus. Although K = 3 displayed slightly higher cophenetic coefficient, 
we chose K = 5 (average silhouette width 0.86) because there was 
evidence for five consensus clusters, which is more in line with the 
literature and K = 3 versus K = 5 did not affect the overall identity of 
the mesenchymal cluster (C1) but rather the subdivided the other 
clusters. We next used a two-step process to identify subcluster-
specific signature genes. First, Significance Analysis of Microarray 
(SAM) with cutoff FDRs set to 0 was used to identify significantly 
differential expression genes in each cluster defined by NMF con-
sensus clustering. SAM function in R package “siggenes” v1.50.0 
was used. Second, Prediction Analysis for Microarrays (PAM) was 
used to predict subcluster signature genes R package “pamr” v1.56.1 
(https://CRAN.R-project.org/package=pamr). In addition, 74 patients 
with LUAD were clustered with NMF clustering in an analogous 
manner as we did for pan-cancer patients above but based on the 
ZMYND8/BRD2 clusters I, II, and III separately. K2 was chosen as 
the best class (see fig. S6).
Enrichment analysis
We performed enrichment analysis to examine the enrichment: (i) 
if MES and EPI patients of each cancer type was enriched in any one of 
the five NMF clusters; (ii) if all MES or EPI patients independent of 
cancer types were enriched in any one of the five NMF clusters; and 
(iii) if ZMYND8/BRD2 clusters I to III were enriched in any one of the 
five NMF clusters. Enrichments were reported as odds ratios, and their 
significance was evaluated using single-sided Fisher’s exact tests. P 
values were adjusted for multiple testing using the FDR. For enrichment 
analysis for (i) as example, the odds ratio was calculated as follows

	​ Odds ratio  = ​  
​ ​N​ ij​​ _ ​N​ i​   j ​​​

​
 ─ 

​​N​ ​   i ​j​​ _ ​N​ ​   ij​​​
 ​
 ​​	

where Nij is the number of MES patients of cancer type i in NMF 
cluster j, ​​N​ i​   j ​​​​ is the number of MES patients of cancer type i not in 
NMF cluster j, ​​N​ ​   i ​j​​​ is the number of MES patients not from cancer 
type i but in NMF cluster j, and ​​N​ ​   ij​​​​ is the number of MES patients 
that were neither in cancer type i nor in NMF cluster j.

Independent validation of NMF clustering analysis in the 
ICGC cohorts
Because of limitation of gene expression availability, additional co-
horts comprising nine non-TCGA projects were obtained from the 
data portal of the ICGC (https://dcc.icgc.org/releases/release_28/
Projects) spanning the following entities: Ewing sarcoma (“BO-
CA-FR”), liver cancer (“LICA-FR” and “LIRI-JP”), malignant lym-
phoma (“MALY-DE”), ovarian cancer (“OV-AU”), pancreatic 
cancer (“PACA-AU” and “PACA-CA”), prostate cancer (“PRAD-CA” 
and “PRAD-FR”), and renal cell cancer (“RECA-EU”) patients. 
We used these data to first identify 112 mostly likely epithelial and 
mesenchymal patients with the EMT-MES dual scoring system as 
described above. Next, those patients were clustered with NMF 
clustering in an analogous manner as we did with the data from 
TCGA based on the 3798 signature genes for TCGA cohorts (see 
fig. S10).
CIBERSORT immune fraction resource
The relative fraction of 22 immune cell types within the leukocyte 
compartment was estimated by CISERSORT analytical tools. Recently, 
the CIBERSORT immune fraction for TCGA patients is available in 
Genomic Data Commons portal (https://gdc.cancer.gov/about-data/
publications/panimmune). The major six aggregated tumor immune 
cell classes, including lymphocytes, macrophages, dendritic cells, 
mast cells, neutrophils, and eosinophils, were considered. Lympho-
cytes were selected as reference. Other five classes are compared to 
lymphocytes; significance was computed by Wilcoxon rank sum 
test; and P values were adjusted for multiple testing using the 
FDR. P < 0.05 was considered as significance.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/9/eabd7974/DC1

View/request a protocol for this paper from Bio-protocol.
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