Original article

Is benign MS really benign? What a meaningful classification beyond the EDSS must take into consideration

David Ellenbergera,⁎, Peter Flacheneckerb, Judith Haasc,d, Kerstin Hellwieg, Friedemann Paulf, Alexander Stahmann, Clemens Warnke, Uwe K. Zettlh,1, Paulus S. Rommerh,i,1, on behalf of the Scientific Advisory Group by the German MS-Register of the German MS Society

ARTICLE INFO

Keywords:
Multiple sclerosis
Benign MS
EDSS progression
Prognostic factors
National MS registries

ABSTRACT

Background: Multiple sclerosis (MS) is a neuroinflammatory and neurodegenerative disease with an unpredictable course that has a broad clinical spectrum and progresses over time. If a person with MS (PwMS) shows overall mild to moderate disability even after a long duration of disease, the term benign MS (BMS) is used. However, there is currently no generally accepted definition of BMS. Most definitions are based on EDSS in connection with disease duration, i.e. EDSS ≤3.0 after 15 years’ disease duration. The question arises whether focusing on EDSS alone is adequate for classifying the disease course taking into account that ‘hidden’ or ‘soft’ symptoms are not sufficiently covered by this instrument. The aims of the study are to assess the prevalence of BMS in one of the largest patient cohorts, to describe the prevalence of patients without disabilities and to assess the further disability progression of these patients over another 15 years.

Methods: Based on data exported from the German MS Registry, PwMS with a disease duration of 15 years or more were included in the analyses. PwMS were divided into BMS (EDSS ≤3.0) or non-benign (NBMS, EDSS >3.0).

Results: Out of 31,824 PwMS included in the German MS Register, we identified 10,874 patients with a disease duration ≥15 years of whom 4,511 (42%) showed an EDSS ≤3.0 fulfilling the criterion of benign MS. In the subgroup with EDSS measured exactly at 15 years’ disease duration, the proportion was 54%. This proportion decreased continuously with increasing disease duration and fell to 30% after 30 years. Female sex (hazard ratio [HR]: 0.84) was associated with BMS, while a progressive (HR: 2.09) and late disease onset (HR: 1.29) were associated with NBMS (p<0.001). With a more rigorous definition of BMS (EDSS ≤1.0, absence of disability, and the ability to work after 15 years of disease duration), only 580 (13%) of the initial BMS remained ‘benign’.

Conclusion: Our data propose an alternative definition (EDSS ≤1.0, absence from any disability, and the ability to work after 15 years of disease duration) which might truly reflect BMS.

1. Introduction

Multiple sclerosis (MS) is a neuroinflammatory and neurodegenerative disease that primarily affects young adults. The disease follows an unpredictable course with a broad clinical spectrum and progresses over time (Krieger et al., 2016; Reich et al., 2018; Zettl et al., 2012). The search for prognostic factors to predict the course of the disease is essential, especially in view of the initiation and choice of disease-
modifying therapies (DMT) which have increasingly emerged over the last decades (Rommer et al., 2019). In general, more efficacious DMT have higher risks for severe adverse events, such as opportunistic infections, secondary autoimmune complications, or infusion reactions. Therefore, there is a need for the definition of ‘benign MS’ that could allow to identify early predictive factors or biomarkers. A person with MS (PwMS) may show slight/moderate disabilities and limitations even after a long period of illness (Weinshenker et al., 1989). These patients usually are classified as benign, but currently, there is no generally accepted definition of this type of MS. Most definitions are based on EDSS (<3.5 or <4.0) in conjunction with a disease duration of 10–15 years (Reynards et al., 2017). In this regard, it is important to note that a mere EDSS based definition has a strong focus on the patient’s mobility, and the fact that ‘hidden’ or ‘soft’ symptoms such as fatigue, depression, cognitive dysfunction, and pain are not sufficiently covered (Meyer-Moock et al., 2014; Paul, 2016; Penner, 2016; Penner and Paul, 2017; von Bismarck et al., 2018). In particular fatigue is a disabling and frequent symptom even in early disease stages and one of the most common across all stages of the disease (Rommer et al., 2019). These soft symptoms have a major impact on the patients’ well-being and work ability. The aims of the study are to assess the prevalence of BMS in one of the largest cohorts of patients worldwide, to describe symptoms and sociodemographic data, to assess patients without disabilities who are still able to work after 15 years of illness, and to investigate subsequent progression of the disease once a patient has fulfilled the common definition of BMS.

2. Material and methods

Based on data exported from the German MS Register (GMSR, www.msregister.de/en; March 2020), people with MS (PwMS) having a disease duration of 15 years or more were included in the analyses. Based on clinically assessed Expanded Disability Status Scale (EDSS) (Kurtzke, 1983), BMS classification was done as interval-censored time-to-event endpoint defined by the event of EDSS >3.0 (Amato et al., 2008). The left side of the censoring interval is the last visit when the sustained EDSS was still ≤3.0 or zero if not observed. The right side is the first visit when the EDSS was sustained >3.0 or infinity if not observed. Disease duration was calculated from the onset of the disease, but in cases where the onset of the disease is unknown, the date of diagnosis was used.

The progression of disability, measured by EDSS and duration of the disease, was examined in regard to the association with other clinical as well as sociodemographic variables from the register. For longitudinal variables, the first visit after at least 15 years within the censoring interval was chosen as the reference visit. For BMS this is the last visit (>15 years) when the (sustained) EDSS was still ≤3.0, and for NBMS, the first visit after at least 15 years of disease duration when the (sustained) EDSS was >3.0. For data reconciliation, we allow an additional two months’ difference in time points. This approach allows the most coherent and real-world based comparison of the two (sub)cohorts, and the resulting difference in average disease duration was small.

MRI activity is rated by a neurologist based on new T2 lesions and gadolinium enhancing lesions. Updating of MRI status during the first 15 years after onset of the disease was examined in regard to the association with other clinical as well as sociodemographic variables from the register. The GMSR has been registered at the German Clinical Trials Register (DRKS, Deutsches Register Klinischer Studien, No. DRKS00011257), and initial ethical approval was gained by the IRB at the University of Würzburg.

3. Results

Out of 31,824 PwMS from the German MS Register with an updated entry since 2014, we identified 10,874 PwMS with a disease duration ≥15 years having a median date of onset in 1996 (IQR: 1990–2000). Of these, 4511 PwMS (41.5%) had an EDSS ≤3.0 after at least 15 years, as shown in Fig. 1. When considering discrete points in time, the proportions with an EDSS ≤3.0 were 54% after exactly 15 years (n = 5082; rounded to whole years), and 30.0% after 30 years (n = 1195), see Fig. 2.

3.1. Demographics

BMS patients were younger at the onset of the disease and more often had a relapsing-remitting course. The employment level in the BMS cohort was higher (75%) than in the NBMS cohort (36%). The educational level showed higher rate of high school diploma in the BMS cohort (33.9%) than in the NBMS cohort (30.4%, p = 0.002). The average disease duration at the reference visit (last visit with EDSS ≤3.0 after at least 15 years of disease) was 22.0 years in the BMS group compared to 23.7 years in the NBMS group at the reference visit (first visit with sustained EDSS >3.0 after 15 years). Table 1 provides an overview of the demographics of the PwMS analyzed. Data on treatment status during the first 15 years after onset of the disease were

![Fig. 1. Flowchart of patients of the study.](image-url)
were associated with a worse prognosis, while sensory signs or symptoms, such as paresis, bladder dysfunction, and cerebellar signs, later disease onset is associated with NBMS (Table 2). It was more likely to be associated with BMS, while a progressive and polysymptomatic being less often benign (Fig. 2b/c).

3.2. Predictive factors at onset of the disease

Multivariable estimates of the Cox model showed that female sex and prog. onset (POMS) was restricted to patients with complete DMT documentation, an observation period of up to 15 years after onset and calculated for RRMS only (p=0.04). All other statistical comparisons between BMS and NBMS were significant with p < 0.01.

Table 1

Comparison of benign and non-benign PwMS and subgroups of BMS when instead of 15 years, 20 or 30 years disease duration were examined. Proportions along with Clopper-Pearson 95% confidence intervals or mean (± sd) are reported. *Mean (median) time to diagnosis as the delay from manifestation of first symptoms to diagnosis of MS in years is given (p=0.14). **Time to first DMT is restricted to patients with complete DMT documentation, an observation period of up to 15 years disease duration. Numbers of patients that are ‘at risk’, i.e. not having been documented with either sustained EDSS >3.0 or been lost to follow-up, given by disease duration in years (y) are: 6103 (20y), 3410 (25y), 1714 (30y), 796 (35y), 338 (40y), 131 (45y), 48 (50y). Covariates gender and type of onset are added in univariable analyses. For 107 PwMS the type of onset is unclassifiable to relapsing onset MS (roms) or progressive onset MS (poms).

Table 2

Multivariable Cox regression estimates (HR) with interval-censored time to EDSS >3.0. Male gender, progressive onset, and later age at onset are associated with a faster EDSS progression. Multivariable models with adjustment for the three baseline covariates also are calculated for symptoms at onset of disease: pyramidal, cerebellar, brainstem, sensory, bladder, visual, depression, polysymptomatic.

Depression may be considered beneficial and were associated with a higher probability of BMS (Table 2).

Fig. 2. Cox-estimates of proportion of PwMS with EDSS ≤3.0 in the period from 15 to 50 years of disease duration. Numbers of patients who are ‘at risk’, i.e. not having been documented with either sustained EDSS >3.0 or been lost to follow-up, given by disease duration in years (y) are: 6103 (20y), 3410 (25y), 1714 (30y), 796 (35y), 338 (40y), 131 (45y), 48 (50y). Covariates gender and type of onset are added in univariable analyses. For 107 PwMS the type of onset is unclassifiable to relapsing onset MS (roms) or progressive onset MS (poms).

Fig. 3 shows current regression estimates in patients when they were still benign (reference visit; last visit after 15 years and EDSS ≤3.0) or first EDSS >3.0 in NBMS patients. It is evident that BMS differed from NBMS mainly in terms of walking problems, spasticity, and bladder dysfunction, which were more common in NBMS patients, while the differences in depression, fatigue, and cognition were smaller but still present.

Taking all above-mentioned factors together, we defined truly benign MS as follows: EDSS ≤1.0 after 15 years disease duration, absence of symptoms, and ability to work), about 70% of these patients remained benign for an other decade.

3.3. Association with other measurements of burden of disease

3.4. EDSS progression within the BMS subgroup

A crucial question when looking at the concept of BMS is how many PwMS remained benign for the next couple of years, and whether reaching the status of BMS might be a predictor for the subsequent disease course. Fig. 5 shows that 60% of PwMS with BMS and an age <50 years remained benign for another decade after the first date of being classified as benign. In older PwMS (age >50 years) this proportion decreased significantly but was still around 40% (Fig. 5). Applying the strictest criteria (EDSS ≤1.0, absence of symptoms, and ability to work), about 70% of these patients remained benign for another decade.
dicate a more favorable course, while dysfunction of the pyramidal tract and cerebellar involvement are associated with a more severe course (Bsteh et al., 2016; Confinder et al., 2003; Weinschenker et al., 1989).

Age was a decisive factor in the long-term prognosis in patients with BMS, similarly as described in the Swedish cohort (Crielaard et al., 2019). At an age of less than 50 years and 10 years additional follow-up, 60% of patients with BMS remained at EDSS ≤3.0, while at an age of over 50 years the proportion was below 40%. There are many reasons for the role of age in disease progression. On the one hand, it might be that with increasing age and disease duration, the probability of suffering a progressive course increases (Mahad et al., 2015). On the other hand, it has recently been shown that with advancing age, physical symptoms occur that can be confused with MS symptoms even in individuals without any neurological disorder (Azvedo et al., 2019; Lynch et al., 2019).

The already mentioned relatively high number of unemployed BMS patients, despite the rather low level of EDSS, makes the definition of BMS additionally come to the fore. The focus on EDSS in the current definition of BMS, which ignores soft or hidden symptoms such as fatigue, cognition, and emotional disorders, may be a possible explanation for this discrepancy. For example, Amato et al. showed that out of 47 patients who met the definition of BMS, 11 patients suffered from cognitive impairment. In addition, Bsteh et al. (2016) demonstrated that neuropsychological disorders have a negative long-term influence on the disease outcome. These neuropsychological symptoms and fatigue (Patejdl et al., 2016) may be present early in the course of the disease (von Bismarck et al., 2018), but are not adequately covered by the EDSS (Rommer et al., 2019).

For this reason, the currently used definition of BMS is too broad, and the percentage of more than 50% in our sample and in other studies seems to be too high. We propose to introduce the following criteria for defining ‘truly’ benign MS: EDSS ≤1.0, absence of any disability, and able to work at least part-time. These criteria were chosen based on of the importance of employment in BMS patients (McAlpine, 1961) and the original definition that patients are fully functional in all neurological systems 15 years after onset (Lublin and Reingold, 1996). Applying these criteria to our sample, the proportion of patients from the original 4511 patients with BMS were reduced to only 580 patients (13%). Tallantyre et al. (2019) also aimed at describing truly benign MS patients. BMS patients were defined as having MS for at least 15 years; an EDSS <3.0; no significant fatigue, mood disturbance, cognitive impairment, or disrupted employment; and had not received DMT. They found that only about 15% of their original population meet these criteria and the main reasons for the reduction were effects on employment and neuropsychological symptoms. Our figures showed a similar decrease in the proportion of BMS patients with the additional criteria, although we did not select for the absence of DMT. In agreement with Tallantyre et al. (2019), we did not see a relevant effect of time to first DMT in our analysis. The reason for this may be limited treatment options at manifestation for our cohort of patients whose...
disease onset was predominantly in the 1990s. Also, it remains unclear on whether a benign course would have caused the avoidance of DMT or whether an early DMT would have caused the course to be benign. Long-term availability of crucial time-varying confounders is needed to address this (Trojano et al., 2017).

Limitations regarding the comparability of the NBMS group and the BMS group may apply. However, our choice of reference visit >15 years disease duration, i.e. the last visit when BMS or the first visit when NBMS, resulted in a much higher similarity of both groups regarding disease duration and year of disease onset, compared to other studies (Crielaard et al., 2019). The question on how to classify a BMS patient who starts rapidly progressing after e.g. 20 or 25 years remains open. Most BMS were found to be stable, but Fig. 5 also reveals a certain amount of cases that may have lost their benignity in a relatively short amount of time. This may suggest that BMS could also be considered a status that could be lost (after being attained) or that is in general time-varying over the course of the disease.

Our figures may indicate that employment status can be considered one of the most important indicators to classify BMS versus NBMS. Conversely, the factor with greatest impact on employment in MS patients is disability, which ranks ahead of education level, age and gender (Salter et al., 2020).

5. Conclusion

Approximately half of all MS patients suffer from BMS according to the most commonly used criteria. These criteria largely neglect neuropsychological symptoms. With stricter application of BMS criteria (ability to work, absence of disability, and EDSS ≤1.0), the number of BMS patients decreased strongly to 13% of the original BMS cohort. Several reports and our data call for a redefinition of BMS. We propose a definition that includes an EDSS ≤1.0, absence from disability, and employment status (taking into account the employment market and age of the patients) after 15 years of disease duration.

Funding

The German MS Registry of the German MS Society was initiated and funded by the German MS Foundation and the German MS Society in 2001. It is operated by a not-for-profit company, the MSFP. In 2018, the MSFP received a grant from Merck and Novartis to support the extension of the registry and the implementation of EMA requirements. In 2019, Biogen and Celgene joined the multi-stakeholder funding approach to support the registry’s operation and to allow the collection and reporting of data required as part of the EMA-minimal data set. Industry funding does not result in restrictions to publish data, nor do the funders have access to raw data or influence in the scientific conduct of the registry.

CRediT authorship contribution statement

David Ellenberger: Conceptualization, Methodology, Formal analysis, Writing - original draft, Writing - review & editing, Visualization. Peter Flachenecker: Conceptualization, Writing - review & editing. Judith Haas: Conceptualization, Writing - review & editing. Kerstin Hellwig: Writing - review & editing. Friedemann Paul: Writing - review & editing. Alexander Stahmann: Conceptualization, Software, Data curation, Writing - review & editing, Project administration, Funding acquisition. Clemens Warnke: Writing - review & editing. Uwe K. Zettl: Writing - review & editing, Supervision. Paulus S.
Rommer: Conceptualization, Writing - original draft, Writing - review & editing, Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

PF has received speaker’s fees and honoraria for advisory boards from Almirall, Bayer, Biogen Idec, Celgene, Genzyme, Novartis, Merck-Serono, Roche and Teva. He has participated in pharmaceutical company sponsored trials by Roche.

JH has received compensation from Almirall, Allergan, Biogen, Bayer, HOFFMANN La Roche, Merck, Novartis, Octapharma, and Teva.

KH has received speaking fees, travel support, and research honoraria from Biogen, Teva, Sanofi-Genzyme, Novartis, Bayer Healthcare, Merck Serono, and Roche.

FP has received speaking fees, travel support, honoraria from advisory boards, and/or financial support for research activities from Bayer, Novartis, Biogen, Teva, Sanofi-Aventis/Genzyme, Merck Serono, Alexion, Chugai, MedImmune, Shire, German Research Council, Weth Stiftung of the City of Cologne, German Ministry of Education and Research, EU FP7 Framework Program, Arthur Arnstein Foundation Berlin, Guthy Jackson Charitable Foundation, and National Multiple Sclerosis of the USA. He serves as academic editor for PLoS ONE and associate editor for Neurology, Neuroimmunology and Neuroinflammation.

AS has received institutional research grant support from Biogen, Celgene, Merck and Novartis.

CW has received institutional support from Novartis, Alexion, Sanofi-Genzyme, Biogen, and Roche.

UKZ has received speaking fees, travel support and/or financial support for research activities from Almirall, Bayer, Biogen, Merck Serono, Novartis, Roche, Sanofi Genzyme, Teva as well as EU, BMBF, BMWI and DFG.

PSR has received speaking fees, honoraria from advisory boards, and/or financial support for research activities from AbbVie, Alexion, Amicus, Biogen, Daiichi-Sankyo, Merck Serono, Novartis, Roche, Sandoz, Sanofi Genzyme, and Teva.

Acknowledgements

We would like to thank all patients that have given their informed consent. Furthermore, this study would not have been possible without the efforts of the centers participating in the registries. Our thanks go to all members of staff in the centers listed below for their contributions.

Celenus Klinik für Neurologie Hilchenbach, Hilchenbach
Charité - Universitätsmedizin Berlin, Ambulanz für Multiple Sklerose und Neuroimmunologie, Berlin
Diakonie-Klinikum Schwäbisch Hall gGmbH, Neurologische Klinik, MS-Ambulanz, Schwäbisch Hall
DKD HELIOS Klinik Wiesbaden, Fachbereich Neurologie, Wiesbaden
Dr. Becker Kiliani-Klinik, Neurologische Abteilung, Bad Windsheim
Dr. med.Cornelia Seidel, Praxis für Neurologie und Psychiatrie, Gladbach
Dr. med. Martin Dief, Facharzt für Neurologie, Dahlwitz-Hoppegarten bei Berlin
Dr. med. Sabine Ghezzi & Dr. med. Gerhard Ghezzi, Ärzte für Neurologie und Psychiatrie, Wendlingen
Dr. Schöll, Dr. Steidl & Kollegen, Bad Homburg
Dres. med. M. Appy, W. Molt, Prof. A. Melms & Kollegen, Berufsausübungsgemeinschaft, Stuttgart
DRK Kamillis Klinik, Neurologische Abteilung, Aschbach
E/M/S/A, Zentrum für Neurologie / Psychiatrie / Neuroradiologie, Singen
Ernst-Moritz-Arndt-Universität Greifswald, Klinik und Poliklinik für Neurologie, Greifswald
Evangelisches Krankenhaus Bethel gGmbH, Klinik für Neurologie, Bielefeld
Facharztpraxis für Neurologie und Psychiatrie, Andreas Stockert und Dr. Claudia Rettennmayr, Pforzheim
Fachklinik Feldberg GmbH, Klinik am Haussee, Feldberger Seenlandschaft
Fachklinik für Neurologie Diemenbronn GmbH, Akademisches Krankenhaus der Universität Ulm, Schwendi
Fachübergreifende Gemeinschaftspraxis Neurologie & Radiologie, Mosbach
Gemeinschaftspraxis Dr. Lamberty, Dr. Schulz, Dr. Lindemuth, G. Hübner, Albertus Magnus Zentrum, Siegen
Gemeinschaftspraxis Dr. med. A. Safavi und M. Schädel, Alzenau
Gemeinschaftspraxis Dr. med. B. Wittmann & P. Rieger, Landschut
Gemeinschaftspraxis Dr. Rieß, Dr. Pfister, Neumühl
Gemeinschaftspraxis Dr. Springburg / Schwarz, Westerstedt
Gemeinschaftspraxis Dres. Ivancic & Kollegen, Gersthofen
Gemeinschaftspraxis Dres. med. Niederhofer, Kauermann, Küper, Bochum
Gemeinschaftspraxis, Dres. Schult-Löffel-Wulff, Hamburg
Gemeinschaftspraxis Dres. Uhlig-Windeleimer, Nürnberg
Gemeinschaftspraxis Dres. Wilburg, Kramer, Brummer, Neu-Ulm
Gemeinschaftspraxis Kasse, Vogelsang-Dietz, Graf, Lünen
Gemeinschaftspraxis Kaesch & Lippert, Bogen
Gemeinschaftspraxis Ricket / Enck / Jansen, Münster
Gesundheitszentrums Clantaf, Meinheim
GPO Kliniken Troisdorf, Fachabteilung Neurologie, Troisdorf
Hardtwaldklinik I, Neurologisches Zentrum, Bad Zwesten
Heilig Geist-Krankenhaus, Klinik für Neurologie, Köln
Heinrich-Schönle-Universität Düsseldorf, Westdeutsches MS-Zentrum Düsseldorf, Düsedorf
HELIOS Fachkliniken Hildburghausen, Klinik für Neurologie, Hildburghausen
Helios Klinik Lengerich GmbH, Abteilung Neurologie, Lengerich
HELIOS Kliniken Schwerin, Neurologische Klinik, Schwerin
HELIOS Klinikum Aue, Klinik für Neurologie, Aue
HELIOS Klinikum Erfurt GmbH, Klinik Für Neurologie, Erfurt
HELIOS Rehaklinik Damp GmbH, Abteilung Neurologie, Damp
Hephata-Klinik, Neurologie, Schwalmstadt
Herz-Jesu-Krankenhaus Hiltrup GmbH, Klinik für Neurologie mit klinischer Neurophysiologie, Münster
Hygieia.net Leipzig, Leipzig
Immanuel-Klinik-Rüdersdorf, MS-Amalian, Rüdersdorf
Johanniter Ordenshaus, Neurologische Abteilung, Bad Oeynhausen
Jüdisches Krankenhaus Berlin, Akademisches Lehrkrankenhaus der Charité, Zentrum für Multiple Sklerose, Berlin
Kallmann Neurologie - Multiple Sklerose Zentrum Bamberg (MSZB), Dr. med. Boris A. Kallmann, Bamberg
Kath. Kliniken Emscher-Lippe GmbH, St. Barbara-Hospital, Neurologische Abteilung, Gladbeck
Klinik Hennigsdorf, Oberhavel Kliniken GmbH, Neurologische Abteilung, Hennigsdorf
Klinik Hohe Warte Bayreuth, Neurologische Klinik, Bayreuth
Kliniken Schmieder Gailingen, Neurologisches Fach- und Rehabilitationskrankenhaus, Gailingen
Klinik Schmieder Konstanz, Neurologisches Fach- und Rehabilitationskrankenhaus, Konstanz
Klinikum Bremerhaven Reinkenhede, Neurologische Tagesklinik, Bremerhaven
Klinikum Ibbenbüren, Klinik für Neurologie, Ibbenbüren
Klinikum Lippe-Lemgo, Neurologische Klinik, Lemgo
Klinikum Osnabrück GmbH, Neurologische Klinik, Osnabrück
Klinikum St. Georg / Fachkrankenhaus Hubertusburg, Klinik für Neurologie und N-urologische Intensivmedizin, Werdensorf
Klinikum Stuttgart Katharinenhospital, Neurologische Klinik, Neurozentrum, Stuttgart
Knappschaftskrankenhaus Recklinghausen, Klinik für Neurologie und Klinische Neurophysiologie, Recklinghausen
References

