Helmholtz Gemeinschaft

Search
Browse
Statistics
Feeds

The absence of serotonin in the brain alters acute stress responsiveness by interfering with the genomic function of the glucocorticoid receptors

[img]
Preview
PDF (Original Article) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
1MB

Item Type:Article
Title:The absence of serotonin in the brain alters acute stress responsiveness by interfering with the genomic function of the glucocorticoid receptors
Creators Name:Sbrini, G. and Brivio, P. and Peeva, P.M. and Todiras, M. and Bader, M. and Alenina, N. and Calabrese, F.
Abstract:Alterations in serotonergic transmission have been related to a major predisposition to develop psychiatric pathologies, such as depression. We took advantage of tryptophan hydroxylase (TPH) 2 deficient rats, characterized by a complete absence of serotonin in the brain, to evaluate whether a vulnerable genotype may influence the reaction to an acute stressor. In this context, we investigated if the glucocorticoid receptor (GR) genomic pathway activation was altered by the lack of serotonin in the central nervous system. Moreover, we analyzed the transcription pattern of the clock genes that can be affected by acute stressors. Adult wild type (TPH2(+/+)) and TPH2-deficient (TPH2(-/-)) male rats were sacrificed after exposure to one single session of acute restraint stress. Protein and gene expression analyses were conducted in the prefrontal cortex (PFC). The acute stress enhanced the translocation of GRs in the nucleus of TPH2(+/+) animals. This effect was blunted in TPH2(-/-) rats, suggesting an impairment of the GR genomic mechanism. This alteration was mirrored in the expression of GR-responsive genes: acute stress led to the up-regulation of GR-target gene expression in TPH2(+/+), but not in TPH2(-/-) animals. Finally, clock genes were differently modulated in the two genotypes after the acute restraint stress. Overall our findings suggest that the absence of serotonin within the brain interferes with the ability of the HPA axis to correctly modulate the response to acute stress, by altering the nuclear mechanisms of the GR and modulation of clock genes expression.
Keywords:Serotonin, Tryptophan Hydroxylase, HPA Axis, Glucocorticoid, Clock Genes, Prefrontal Cortex, Animals, Rats
Source:Frontiers in Cellular Neuroscience
ISSN:1662-5102
Publisher:Frontiers Media SA
Volume:14
Page Range:128
Date:1 June 2020
Official Publication:https://doi.org/10.3389/fncel.2020.00128
PubMed:View item in PubMed

Repository Staff Only: item control page

Downloads

Downloads per month over past year

Open Access
MDC Library