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Abstract

CXCR4 is a G-protein-coupled receptor that mediates recruitment
of blood cells toward its ligand SDF-1. In cancer, high CXCR4
expression is frequently associated with tumor dissemination
and poor prognosis. We evaluated the novel CXCR4 probe
[68Ga]Pentixafor for in vivo mapping of CXCR4 expression density
in mice xenografted with human CXCR4-positive MM cell lines and
patients with advanced MM by means of positron emission tomo-
graphy (PET). [68Ga]Pentixafor PET provided images with excellent
specificity and contrast. In 10 of 14 patients with advanced MM
[68Ga]Pentixafor PET/CT scans revealed MM manifestations,
whereas only nine of 14 standard [18F]fluorodeoxyglucose PET/CT
scans were rated visually positive. Assessment of blood counts and
standard CD34+ flow cytometry did not reveal significant blood
count changes associated with tracer application. Based on these
highly encouraging data on clinical PET imaging of CXCR4 expres-
sion in a cohort of MM patients, we conclude that [68Ga]Pentixafor
PET opens a broad field for clinical investigations on CXCR4
expression and for CXCR4-directed therapeutic approaches in MM
and other diseases.
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Introduction

Chemokine receptor-4 (CXCR4) is a member of the G-protein-

coupled chemokine receptor family. The sole known natural ligand

of CXCR4 is CXCL12/SDF-1. SDF-1 binding to CXCR4 activates

downstream signaling pathways such as MAP kinase and the PI3

kinase pathway, ultimately resulting in altered cell adhesion, migra-

tion, and homing (Zlotnik et al, 2011; Jacobson & Weiss, 2013).

CXCR4 is normally expressed on T and B lymphocytes, monocytes,

macrophages, neutrophils, and eosinophils, and by hematopoietic

stem/progenitor cells (HSPCs) residing within the bone marrow

(BM) niche. Antagonizing the CXCR4-mediated retention of HPCs in

this niche by means of anti-CXCR4-directed treatment with the

CXCR4 antagonist plerixafor allows mobilization of HPCs for auto-

grafting upon myeloablative therapies (Brave et al, 2010). Plerixafor

treatment also mobilizes various lymphocyte populations into the

peripheral blood, emphasizing the important role of the SDF-1/

CXCR4 axis for lymphocyte trafficking (Kean et al, 2011).
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Pathological CXCR4 overexpression has been reported in various

types of solid cancers and in hematopoietic malignancies such as

leukemia and lymphoproliferative malignancies (Burger & Peled,

2009; Cojoc et al, 2013). In cancer, CXCR4 overexpression and recep-

tor activation by SDF-1 binding are key triggers for tumor growth and

progression, invasiveness, and metastasis (Muller et al, 2001).

Accordingly, CXCR4 overexpression has been identified as an adverse

prognostic factor in various malignancies (Spano et al, 2004; Spoo

et al, 2007). In particular, CXCR4-mediated interaction that holds

cancer (re-)initiating cells within a protective tumor microenviron-

ment (TME) seems to be responsible for resistance to pharmacological

treatment, and for relapse, at least in hematopoietic cancers (Teicher

& Fricker, 2010; Mendelson & Frenette, 2014; Shain & Tao, 2014).

Multiple myeloma (MM, plasma cell myeloma) is the second most

prevalent B-cell cancer. Despite the availability of potent novel drugs,

it remains, for the large part of patients, an incurable disease (Palumbo

& Anderson, 2011; Ocio et al, 2014). MM is characterized by the

expansion of malignant plasma cells predominantly within the BM.

One key clinical characteristic is the uncoupling of bone formation and

bone destruction, resulting in osteolytic bone lesions (Raab et al,

2009; Roodman, 2010). Studies on both cultured and patients’ primary

MM cells showed a strong correlation between CXCR4/SDF-1 activa-

tion and MM-related bone disease (Zannettino et al, 2005; Bao et al,

2013). SDF-1 engages CXCR4 on MM cells favoring their recruitment

to the BM by affecting migration, adhesion, and extravasation (Parmo-

Cabanas et al, 2004; Aggarwal et al, 2006; Alsayed et al, 2007).

Besides the different cell types constituting the BM niche, primary MM

cells themselves secrete SDF-1, which results in autocrine stimulation

of plasma cell proliferation. Therefore, the CXCR4/SDF-1 axis repre-

sents a highly relevant molecular target in MM and other cancers due

to its important role in pathogenesis and its potential involvement as a

mediator of resistance to treatment (Burger & Kipps, 2006).

Despite the fundamental role of CXCR4 in cancer and in particular

MM biology and its significance as a target for therapeutic approaches,

a highly sensitive method for CXCR4 assessment and quantification

in vivo has been lacking so far. Such in vivo assessment of CXCR4

expression could provide an additional and clinically important method

to select patients for CXCR4-directed treatment, for example, by anti-

CXCR4 antibodies that are in early-phase clinical trials (Kashyap et al,

2012) (e.g., ClinicalTrials.gov identifier NCT01359657), or for use

within a theranostic peptide receptor radiotherapy (PRRT) concept. To

meet this clinical need, [68Ga]Pentixafor ([68Ga]CPCR4.2), a high-

affinity CXCR4-targeted nuclear probe for PET imaging, has recently

been developed (Demmer et al, 2011; Gourni et al, 2011) and evalu-

ated in a first proof-of-concept investigation (Wester et al, 2015). The

present study aimed at the evaluation of [68Ga]Pentixafor PET/CT as a

novel and powerful tool for sensitive, non-invasive in vivo quantifica-

tion of CXCR4 in preclinical models of MM and in a clinical pilot

assessment investigating patients with advanced MM.

Results

Frequency of MM patients with high tumor
CXCR4 (CD184) expression

The CXCR4-SDF-1 axis constitutes a central mechanism for recruit-

ing and retaining MM cells within the TME (Zannettino et al, 2005;

Bao et al, 2013). To investigate the frequency of MM patients with

high CXCR4 expression, we performed flow cytometry on an unse-

lected cohort of 25 patients undergoing BM biopsy for previously

established MM, or because of newly diagnosed monoclonal gammo-

pathy. By assessing CXCR4 expression as compared to an isotype

control antibody (gating strategy depicted in Supplementary Fig S1),

we identified 14 of 25 patients (56%) with CXCR4-positive MM.

Representative histograms depicting CXCR4+ vs. CXCR4� MM are

shown in Fig 1A.

In order to estimate the magnitude of CXCR4 expression in

MM cells compared to normal non-malignant cell populations

that have previously been described as CXCR4 positive (Aiuti

et al, 1999; Honczarenko et al, 1999; Burger & Kipps, 2006;

Brave et al, 2010), we compared CXCR4 expression levels in

individual MM patient samples judged CXCR4 positive by flow

cytometric and immunohistochemical assessment (CXCR4+ MM).

In CXCR4+ MM, relative plasma cell surface CXCR4 expression

levels were significantly higher than those on intraindividual

CD19+ B cells, CD3+ T cells, CD34+ HSPCs, and CD14+ mono-

cytes (Fig 1B–D; gating strategy depicted in Supplementary

Fig S1; representative data shown in Supplementary Fig S2A–D),

indicating that a CXCR4-directed PET tracer could be suitable

for MM imaging.

Thus, in our unselected cohort, over 50% of MM patients

expressed CXCR4 on their plasma cells. Relative cancer cell CXCR4

expression in these patients was high compared to intraindividual

control BM cell populations.

[68Ga]Pentixafor is a PET tracer suitable for detecting CXCR4+

MM in vivo

Considering the high CXCR4 expression levels in a substantial

proportion of MM patients as compared to intraindividual control

cell populations, we searched for MM cell lines that could be suited

for preclinical in vivo imaging studies. Considerable levels of CXCR4

transcript (Fig 2A) and protein (Fig 2B) were detected in the

well-established MM lines MM.1S and OPM-2 as opposed to the

ovarian cancer cell line HeLA, which is characterized by low CXCR4

expression. Moreover, MM.1S and OPM-2 cells were found to bind

the CXCR4-directed PET probe [68Ga]Pentixafor (Fig 2C). Thus,

these cell lines represent models for in vivo binding and uptake

studies.

In order to determine the suitability of the high-affinity human

CXCR4-specific probe Pentixafor as an in vivo MM PET tracer,

NOD SCID mice were xenografted with MM.1S and OPM-2 cells

and underwent consecutive [18F]FDG and [68Ga]Pentixafor PET.

Imaging with [68Ga]Pentixafor resulted in markedly higher mean

tumor-to-background ratios (TBR) for both the MM.1S and OPM-2

xenografted tumors, compared to the widely used tracer [18F]FDG

(Fig 2D and E). Flow cytometric quantification of cell surface

CXCR4 expression on resected tumors suggested a correlation

between CXCR4 cell surface levels and the [68Ga]Pentixafor uptake

in the respective xenografts observed in the small animal PET

studies (Fig 2F and G). As expected when using a human CXCR4-

specific probe such as Pentixafor (Gourni et al, 2011), virtually no

tracer uptake was observed in CXCR4-expressing mouse organs

such as spleen, lung, adrenals, or the BM (Fig 2E). To further

substantiate the specificity of [68Ga]Pentixafor binding to human
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CXCR4, we next performed competition studies where mice bear-

ing MM xenograft tumors received the FDA-approved drug

AMD3100 (Plerixafor) (Brave et al, 2010) before receiving the

[68Ga]-labeled PET probe. AMD3100 pretreatment resulted in a

near complete loss of [68Ga]Pentixafor binding in vitro and in vivo

(Fig 2H, Supplementary Fig S3).

Thus, [68Ga]Pentixafor is a PET tracer that binds human

CXCR4 expressed on MM cell lines and xenograft tumors with

high specificity and is suitable as an in vivo CXCR4 PET imaging

probe.

[68Ga]Pentixafor provides additional diagnostic information to
[18F]FDG in MM patients

To evaluate the suitability of [68Ga]Pentixafor for in vivo imaging

of MM in patients and for its usefulness to select patients for

future CXCR4-directed treatments, we visually analyzed 14

patients with histologically proven, advanced MM. The patient

characteristics are shown in Table 1. All patients gave written

informed consent for receiving the [68Ga]Pentixafor PET as well

as undergoing a standard [18F]FDG PET. Representative images of

one [68Ga]Pentixafor PET-positive patient are shown in Fig 3A–D.

Representative images of one [68Ga]Pentixafor PET-negative

patient are shown in Supplementary Fig S4. In summary, 9 of 14

(64%) [18F]FDG scans were rated visually positive, whereas 10 of

14 (71%) [68Ga]Pentixafor scans revealed disease manifestations

(Fig 4A). Visual comparison of [18F]FDG and [68Ga]Pentixafor

scans resulted in comparable findings in 3 (21%) patients. In

7 patients (50%), the [68Ga]Pentixafor signal was superior to

[18F]FDG identifying more tumor lesions, whereas in 2 patients

(14%), [18F]FDG provided additional information compared to

[68Ga]Pentixafor. In the remaining 2 patients (14%), [68Ga]Pentixafor

and [18F]FDG provided complementary information regarding the

detection of myeloma manifestations (Fig 4B). More than three
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Figure 1. CXCR4 expression in MM patient bone marrow.

A Flow cytometric evaluation of CXCR4 surface expression using an anti-CXCR4-PE antibody. Left: positive patient; right: negative patient; representative data are
shown. The gating strategy is depicted in Supplementary Fig S1.

B Representative histograms revealing the magnitude of CXCR4 expression in myeloma cells as compared to the indicated bone marrow cell subtype.
C Median fluorescence intensity of surface CXCR4 expression relative to isotype control (n = 7–10 patients). Horizontal bars indicate mean of all individual patient

values; asterisks indicate statistical significance (plasma cells vs B cells: P = 0.0082; plasma cells vs T cells: P = 0.0091; plasma cells vs CD34+ cells: P = 0.011; plasma
cells vs monocytes: P = 0.0423; Student’s t-test to compare mean plasma cell relative expression with mean relative expression of each further indicated cell
subtype). MM patients judged positive for CXCR4 expression were selected for this analysis.

D Representative MM bone marrow staining of a patient positive for MM CXCR4 expression: hematoxylin and eosin (H&E) staining. Immunohistochemistry for CD138,
CXCR4, light chain kappa, and light chain lambda.
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lesions were reported in 8 of 14 FDG scans and 8 of 14

[68Ga]Pentixafor PET scans. Extramedullary disease (EMD) was

detected in 3 [68Ga]Pentixafor scans and in 2 [18F]FDG PET

scans. In one patient, [68Ga]Pentixafor but not [18F]FDG identified

EMD. In comparison with the PET scans, only 1 of 14 CT scans

did not show MM manifestations resulting in 13 of 14 (93%)

positive scans. More than three lesions were described in 10 of

14 patients, whereas EMD was only reported in 1 patient. An

exemplary patient where [68Ga]Pentixafor imaging provided supe-

rior information is shown in Supplementary Fig S5.

In summary, combined Pentixafor/FDG PET imaging provides

additional information on disease extent in MM patients.
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Figure 2. [68Ga]Pentixafor PET imaging of MM xenografts.

A Real-time PCR analysis of cxcr4 transcript expression levels in HeLa (negative control) and in MM cell lines MM.1S and OPM-2. Shown is the mean relative
expression � SEM (n = 3 independent experiments). Values are normalized to the expression of ubiquitin (Ub). The asterisk indicates statistically significant
differences (HeLa vs MM.1S: P < 0.001; HeLa vs OPM-2: P < 0.0001; Student’s t-test).

B CXCR4 protein expression assessed by immunoblotting (one representative blot out of 3 is shown).
C Binding of [68Ga]Pentixafor to MM.1S and OPM-2 cells after the indicated incubation periods (n = 3 per cell line and time point). Shown is the mean � SEM. The

difference between the OPM-2 groups is statistically significant; *P < 0.0017 (one-way ANOVA).
D Mean tumor-to-background ratio (TBR) for [18F]FDG (left) and for [68Ga]Pentixafor (right) in MM.1S and OPM-2 xenograft-bearing NOD SCID mice. Shown is the

mean � SEM, n = 8 tumors (4 mice); *P = 0.0111 for [18F]FDG and *P = 0.0113 for [68Ga]Pentixafor (Student’s t-test). One-way ANOVA revealed significant
differences between the groups; P < 0.0001 (not graphically shown).

E Representative [68Ga]Pentixafor PET images of three mice bearing MM.1S (right shoulder) and OPM-2 (left shoulder) tumors.
F Flow cytometric quantification of CXCR4 cell surface expression on resected MM.1S and OPM-2 tumors. Data are the mean � SEM, n = 4. *P = 0.0286;

Mann–Whitney U-test.
G Correlation of [68Ga]Pentixafor PET mean TBR and CXCR4 cell surface expression assessed by flow cytometry. n = 8 tumors were analyzed.
H Mice (n = 4) bearing OPM-2 and MM.1S xenografts were coinjected with AMD3100 (right image, one representative mouse) or not pretreated (left image) before

undergoing [68Ga]Pentixafor PET. The white arrows point to the bladder. Quantification is shown in Supplementary Fig S3A.

Source data are available online for this figure.
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Lesion-based visual and semi-quantitative comparison of [18F]
FDG and [68Ga]Pentixafor uptake

Up to three lesions per patient were semi-quantitatively evaluated

accounting for a total of 32 lesions (3 lesions in ten patients and 2

lesions in one patient). For [18F]FDG, a total of 23 lesions were rated

visually positive as opposed to 26 for [68Ga]Pentixafor. While

17 lesions were read as [18F]FDG and [68Ga]Pentixafor positive,

6 lesions only showed increased [18F]FDG uptake. In contrast,

9 lesions were [68Ga]Pentixafor positive and [18F]FDG negative. The

corresponding mean SUVmax value for [18F]FDG was 5.5 (range 2.3–

15.7) and thus significantly lower than the mean SUVmax for [68Ga]

Pentixafor (8.7, range 1.4–33.7; P = 0.018; Wilcoxon signed-rank

test). SUVmax data are summarized in Supplementary Fig S6.

Correlation with standard imaging techniques CT and magnetic
resonance imaging (MRI)

Low-dose CT information was available in all 14 patients revealing

bone involvement in all but one patient (93%). A diagnostic CT with

contrast media was only available in 2 patients, and a diagnostic CT

without contrast media in additional 3 patients. With this limitation

in mind, EMD was only seen in 1 patient. MRI was performed as

part of PET/MRI in two patients showing extended bone disease in

both patients with no EMD. The sensitivity of the [68Ga]Pentixafor

probe for detecting BM infiltration that is not clearly evident as lytic

bone lesions is exemplified in a CXCR4-PET-positive patient, where

the [68Ga]Pentixafor PET showed visual positivity corresponding

well to intramedullary MM infiltration revealed by MRI (Fig 5A–C).

[68Ga]Pentixafor PET is not associated with HSPC mobilization or
blood count variations

Application of [68Ga]Pentixafor was well tolerated. Peripheral blood

was obtained from 7 of 14 patients of the imaging cohort 1 h before

(� 1), 1 h (+ 1), 24 h (+ 24), and 7 days (day 7) after [68Ga]Pentixafor

PET imaging. White blood counts, hemoglobin, and platelet counts

were assessed at the indicated time points and did not reveal signifi-

cant intrapatient changes associated with tracer application. We also

did not observe significant changes in peripheral blood CD34+

Table 1. Patient characteristics at initial diagnosis (imaging cohort).

No of
patients %

Median
(range)

14 100

Age 72 (51–84)

Sex

male 11 79

female 3 21

Monoclonal protein

IgG 6 43

IgA 2 14

Light chain kappa 3 21

Light chain lambda 3 21

Stage of disease at first diagnosis

IA 2 14

IIA 1 7

IIIA 5 36

IIIB 6 43

No of previous regimens 4 (1–9)

High-dose chemotherapy 12 86

Radiotherapy 6 43
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Figure 3. [68Ga]Pentixafor PET/CT and [18F]FDG PET/CT.

A–D Maximum intensity projections (MIP) of [68Ga]Pentixafor (A) and [18F]FDG PET/CT (B) of a 68-year-old male with histologically proven multiple myeloma indicating
the better lesion-to-background contrast for [68Ga]Pentixafor in the corresponding myeloma manifestations. Trans-axial views of the upper thorax (C) and the
pelvis (D) underline the higher uptake values of the bone manifestations (yellow arrows) of [68Ga]Pentixafor compared to [18F]FDG.
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proportion nor absolute number (Supplementary Fig S7). No further

toxicities were observed during or after [68Ga]Pentixafor applica-

tion.

Discussion

Our data represent the first study on quantitative PET imaging of

CXCR4, a key chemokine receptor involved in leukocyte attraction,

hematopoietic stem cell homing, tumorigenesis, and many other

processes, in preclinical models of myeloma and in a cohort of

patients with advanced MM.

High CXCR4 expression has been reported in numerous solid

cancers and in various hematopoietic malignancies, including MM

(Teicher & Fricker, 2010; Weilbaecher et al, 2011). Importantly, the

level of CXCR4 expression assessed by either transcript or whole-cell

protein-level analysis is not necessarily representative of CXCR4

expression level on the cell surface (Teicher & Fricker, 2010).

CXCR4 overexpression on the cell membrane is, however, the key

parameter for successful CXCR4-directed tumor targeting in vivo,

both for diagnostic imaging and in particular for endoradiotherapeu-

tic approaches. Our in-depth analysis of intraindividual surface

CXCR4 levels in BM subpopulations revealed that in at least half of

the patients, CXCR4 expression on the surface of MM cells is signifi-

cantly elevated as compared to B and T cells, monocytes, and

CD34+ HSPCs. Negligible levels of CXCR4-specific binding were

also observed in normal BM and the main lymphatic organs spleen,

thymus, and lymph nodes. Thus, given the high contrast obtained

in [68Ga]Pentixafor PET between low endogenous CXCR4 expres-

sion and pathological CXCR4 overexpression of positive MM lesions,

this imaging methodology may allow for selecting patients for

CXCR4-directed treatment, such as radionuclide or toxin-labeled

Pentixafor analogs. In accordance with the frequent and strong pres-

ence of CXCR4 on plasma cells from MM patients, CXCR4 expres-

sion on transcriptional and protein level in established human MM

cell lines was robust and [68Ga]Pentixafor was found to bind to

these cells in vitro. Additionally, lPET imaging with Pentixafor

detected xenografted MM tumors with high specificity and contrast,

and tracer accumulation was found to correlate with CXCR4 cell

surface expression in tumor tissue. Thus, detection and investiga-

tion of MM lesions in vivo seems to be feasible with [68Ga]Pentixafor.

However, the high tumor/background ratios observed in the mouse

xenograft model are at least partly the result of the selectivity of

[68Ga]Pentixafor for human CXCR4 (Demmer et al, 2011). Since

[68Ga]Pentixafor does not bind to murine CXCR4, [68Ga]Pentixafor

PET studies investigating CXCR4-associated pathologies in a mouse

model are currently limited to xenograft animal models.

High levels of CXCR4 have been shown to indicate particularly

aggressive disease, metastasis, or poor prognosis in solid cancers

(Teicher & Fricker, 2010; Weilbaecher et al, 2011) and AML (Spoo

et al, 2007). Such correlations are, however, not expected in MM, a

malignancy that is at primary diagnosis nearly exclusively BM based

(Raab et al, 2009; Roodman, 2010; Palumbo & Anderson, 2011; Ocio

et al, 2014). Although CXCR4/SDF-1 activation and MM-related

bone disease are clearly associated (Zannettino et al, 2005; Bao

et al, 2013), it is evident that SDF-1 engages CXCR4 on MM cells

favoring their recruitment to the BM by affecting migration, adhe-

sion, and extravasation (Parmo-Cabanas et al, 2004; Aggarwal et al,

2006; Alsayed et al, 2007). Thus, losing the requirement for

MM–TME interactions in situations like plasma cell leukemia or in

extramedullary relapse could point to a scenario where

[68Ga]Pentixafor PET might be inferior to standard [18F]FDG PET,

which has proven diagnostic value in extramedullary MM (Bao

et al, 2013; Stessman et al, 2013). Although we investigated such

patients with EMD after allogeneic SCT with both PET tracers, it is

to date not clear whether this is the case. Our data, however,

suggest a possible complementary benefit when both PET tracers
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Figure 4. Visual comparison of [18F]FDG- and [68Ga]Pentixafor PET scans.

A Number of patients with visual positivity for the indicated PET tracer (total:
n = 14).

B Number of patients (total n = 14) for whom imaging with [18F]FDG PET
(FDG, n = 2) or [68Ga]Pentixafor PET (Pentixafor, n = 7) was superior, with
comparable positivity (comparable, n = 3), and with dual imaging providing
complementary visual information (complementary, n = 2).
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Figure 5. [68Ga]Pentixafor PET/MR images.

A–C Coronal views of [68Ga]Pentixafor (A), T2 STIR weighted MRI (B) and CT
bone window (C) of a male patient with histologically proven multiple
myeloma. The increased [68Ga]Pentixafor uptake correlates with the
hyperintense T2 STIR signal; however, the myeloma manifestations are
underestimated in the corresponding bone window CT.
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are available. For example, [68Ga]Pentixafor did not penetrate the

intact blood–brain barrier, in sharp contrast to FDG.

The CXCR4 antagonist Plerixafor is an FDA- and EMA-

approved drug used for mobilization of HSPCs for stem cell graft

retrieval (Brave et al, 2010). The dosage used for this purpose is

0.24 mg/kg body weight per day, in combination with granulocyte

colony-stimulating factor (G-CSF), and usually applied after several

days of G-CSF treatment alone. As expected on the basis of the

applied amount of Pentixafor (< 20 lg/patient), we did not

observe any side effects of [68Ga]Pentixafor application acutely or

during the course of several days, in particular any blood count

or HSPC abnormalities other than caused by the underlying MM.

Also, toxicity of the radionuclide 68Ga in the administered dose is

negligible. Previous efforts to use Plerixafor-derived probes for

imaging purposes failed due to an accumulation of the drug in

spleen tissue, or by unspecific binding within liver tissue or

liver-based metabolism (Nimmagadda et al, 2009, 2010; De Silva

et al, 2011; Kuil et al, 2012; Weiss & Jacobson, 2013). In none of

our patients did we find evidence of increased binding of

[68Ga]Pentixafor in the liver that was not associated with MM as

documented with the established PET tracer [18F]FDG.

In the vast majority of cases, MM presents as a systemic disease

with a measurable monoclonal gammopathy that allows following

response to treatment and observing the patient for relapse non-

invasively (Rajkumar et al, 2011). Analysis of serum and urine by

means of immunofixation allows for the detection of subclinical

disease, and low-dose whole-body computed tomography is a

powerful tool for the detection of osteolytic lesions which may

prompt initiation of radiotherapy planning (Ippolito et al, 2013).

Magnetic resonance imaging (MRI) provides more detailed infor-

mation about BM infiltration and EMD in MM (Baur-Melnyk et al,

2005), and [18F]FDG PET imaging clearly provides additional infor-

mation with regard to prognosis and extent of local disease, in partic-

ular EMD (Durie et al, 2002; Zamagni et al, 2011; Agarwal et al,

2013). Both MRI and [18F]FDG PET are, however, not considered a

routine procedure required for every patient (Rajkumar et al, 2011).

The purpose of this study was thus not to establish a novel diagnostic

PET tracer for MM in particular, but to test the applicability of this

molecular probe in a disease with frequent CXCR4 surface

expression. More importantly, however, we consider MM a disease

where it would be highly interesting to combine [68Ga]Pentixafor

PET as a selection marker for CXCR4-directed treatment and to

ensure target expression. Upon availability, [177Lu]- or [90Y]-coupled

Pentixafor analogs could become attractive radiopharmaceuticals for

a theranostic approach with 68Ga-labeled Pentixafor as a marker for

patient selection and therapy monitoring, and the latter compounds

as endoradiotherapeutics. Such an approach has previously been

demonstrated in neuroendocrine tumors with resounding success

(Breeman et al, 2003; Das et al, 2007; Werner et al, 2014). The most

obvious and attractive scenario would thus follow the sequence

[68Ga]Pentixafor PET, therapy with a radionuclide or toxin, a stan-

dard myeloablative therapy, followed by SCT. SCT thus would allow

applying labeled Pentixafor doses that will most likely result in

perturbations of BM function. Such an approach is currently under

investigation. Also, disintegrating and targeting the HSC interaction

with its BM niche could be an interesting principle in treating HSPC

disorders (Burger et al, 2009; Shain & Tao, 2014). In addition to such

direct usage of Pentixafor as a carrier for active agents, the use as an

imaging modality for patient selection would be an obvious

approach, for example, for anti-Notch-directed treatments that are

currently being evaluated and involve CXCR4-SDF-1 activation

(Mirandola et al, 2013), or for selection of patients receiving anti-CXCR4

therapies such as BMS-936564/MDX-1338, a fully human anti-CXCR4

antibody currently in clinical investigation (Kuhne et al, 2013).

Our data demonstrate the suitability of [68Ga]Pentixafor for PET

imaging of CXCR4 chemokine receptor expression in MM patients.

We conclude that this novel PET tracer could serve as an innovative

imaging agent, for in vivo biomarker identification that could result

in patient selection for CXCR4-directed treatments, and eventually

for receptor-radio(drug)peptide therapy.

Materials and Methods

Patients

Detailed characteristics for the PET imaging patient cohort are given

in Table 1. All patients had histologically proven MM and active

ongoing disease as assessed by biopsy or immune electrophoresis.

As previously reported for other [68Ga]-labeled peptides (Haug et al,

2014), [68Ga]Pentixafor was administered under the conditions of

pharmaceutical law (The German Medicinal Products Act, AMG §13

2b) according to the German law and in accordance with the respon-

sible regulatory agencies (Regierung von Oberbayern, Regierung

von Unterfranken). All patients gave written informed consent prior

to the investigations. The responsible ethics committees of the Tech-

nische Universität München and the Universitätsklinikum Würzburg

approved data analysis.

The current study is not a confirmatory one. There were no

prespecified hypotheses that would have allowed for sample size calcu-

lation. It is an observational pilot study used to conduct explorative

analyses. Therefore, the sample size was chosen to serve this purpose.

It enabled the computation of descriptive and explorative statistics.

Cell lines and cell culture

The human multiple myeloma cell lines OPM-2 (DSMZ no. ACC50)

and MM.1S (ATCC CRL-2974) were cultured in RPMI 1640 supple-

mented with 10% FCS, 2 mM L-glutamine, 1 mM sodium pyruvate,

100 U/ml penicillin, and 100 lg/ml streptomycin. HeLa cells were

cultured in DMEM supplemented with 10% FCS, 100 U/ml penicil-

lin, and 100 lg/ml streptomycin. Cells were maintained at 37°C in a

5% CO2 humidified atmosphere. All media and supplements were

obtained from Invitrogen (Darmstadt, Germany).

Mice and tumor xenograft experiments

Animal studies were performed in agreement with the Guide for

Care and Use of Laboratory Animals published by the US National

Institutes of Health (NIH Publication No. 85-23, revised 1996), in

compliance with the German law on the protection of animals, and

with approval of the responsible regional authorities (Regierung von

Unterfranken). NOD.CB17-Prkdcscid/NCrHsd mice were bred at the

animal facility at the Center of Experimental and Molecular Medi-

cine (ZEMM) of the University of Würzburg. Equally housed and

fed female mice of same size and age were randomly distributed
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into experimental groups. A total of 5 × 106 MM.1S or OPM-2 cells

in 100 ll PBS were injected subcutaneously into the shoulder region

of approximately 8-week-old animals. Tumor growth was monitored

using a shifting calliper. Imaging experiments were initiated when

tumor size reached 200–300 mm3. Mouse experiment samples sizes

were chosen to allow descriptive and explorative statistical analysis.

RNA and protein extraction, real-time PCR and immunoblotting

RNA extraction was performed using the RNeasy Mini Kit (Qiagen,

Hilden, Germany). cDNA synthesis was performed using the Omni-

script RT Kit according to the manufacturer’s protocol (Qiagen,

Hilden, Germany). Real-time PCR was performed using Platinum

SYBR-Green qPCR SuperMix-UDG (Invitrogen) on an ABI Prism

7700 (Applied Biosystems). Data analysis was performed by

comparing Ct values with a control sample set as 1. Sequences for

primers are available upon request. Protein extracts (30 lg per lane)

were electrophoretically separated on a SDS–PAGE gel, transferred

to membranes (Millipore, Darmstadt, Germany), and blotted with

antibodies specific for CXCR4 (clone UMB2; Abcam, Cambridge,

UK) and b-actin (clone AC-74; Sigma-Aldrich, Taufkirchen,

Germany).

Flow cytometry

White blood cell counts, hemoglobin and platelet counts were

measured using an Advia 120 (Siemens, Erlangen, Germany).

Blood samples from the patients of the imaging cohort were

collected in heparin and filtered. Circulating CD34+ cell counts were

assessed in peripheral blood by standardized and certified single-

platform flow cytometry on a Cytomics FC 500 analyzer (Beckman

Coulter, Krefeld, Germany) at four different time points. Cells were

stained with antibodies to CD34 and CD45 (Stem-Kit IM 3630, clone

581; CD45-ECD, clone J33; Beckman Coulter).

Bone marrow samples from an unselected MM patient cohort

were collected in heparin tubes and filtered. These analyses were

performed upon signed informed consent of all patients to analysis

of samples for scientific purposes in an anonymized fashion only.

Cell populations of interest were selected by sequential gating using

Kaluza Flow Analysis Software (Beckman Coulter). The gating strat-

egy is based on CD45 staining versus side-angle light scatter (SSC)

properties as a primary gate to separate CD45-positive lymphocytes,

monocytes, and CD45low progenitors from CD45-negative plasma

cells. Plasma cells were then identified by CD45/CD38 gating and

CD19 negativity. Colored back-gating was used to ensure correct

gating of all subpopulations. For statistical data analysis, intensity

of the isotype control on each subpopulation was subtracted from

the median fluorescence intensity of surface CXCR4 expression in

that population. Details on the gating strategy used are given in

Supplementary Figs S1 and S2. The following antibodies were used:

Beckman Coulter: CD20-ECD (clone B9E9), CD45-ECD (clone J33),

CD3-PC5 (clone UCHT1), CD138-PC5 (clone BB4), CD14-PC5 (clone

RM052), CD34-FITC (clone 581), CD38-FITC (clone T16), CD19-PC7

(clone J4.119), CD56-PC7 (clone N901), and CD33-PC7 (clone

D3HL60.251); BD Pharmingen: CXCR4-PE (clone 12G5).

Surface CXCR4 levels of xenografted human MM cell lines were

determined by flow cytometry (BD FACSCalibur, Beckton-Dickinson,

Heidelberg, Germany) using an anti-CXCR4-PE antibody (hCD184;

clone 12G5; Miltenyi, Bergisch-Gladbach, Germany) according to

the manufacturer’s instructions. Data were analyzed using CellQuest

software (Beckton-Dickinson).

Synthesis of [68Ga]Pentixafor

Synthesis of [68Ga]Pentixafor was performed at both centers in a

fully automated, GMP-compliant procedure using a GRP module

(SCINTOMICS GmbH, Germany) equipped with disposable single-

use cassette kits (ABX, Germany), using the method (Demmer,

Gourni et al, 2011 and Gourni, Demmer et al, 2011) and standard-

ized labeling sequence previously described (Martin et al, 2014).

Prior to injection, the quality of [68Ga]Pentixafor was assessed

according to the standards described in the European Pharmaco-

poeia for [68Ga]-Edotreotide (European Pharmacopoeia; Monograph

01/2013:2482; available at www.edqm.eu).

In vitro binding study

Binding of [68Ga]Pentixafor to MM.1S and OPM-2 MM cells was

investigated using a modified standard protocol (Lückerath et al,

2013). Briefly, 4 × 105 cells in 500 ll PBS were incubated with

1 × 106 counts per minute (cpm) radiotracer/50 ll PBS (equaling

approximately 1 nM peptide per sample) for the indicated times.

After the removal of unbound tracer and washing with PBS, binding

of [68Ga]Pentixafor was quantified using a gamma-counter

(Wallac1480-Wizard, Perkin-Elmer, Rodgau, Germany). All samples

were measured in triplicate and corrected for background activity

and decay. For competition experiments, MM cell lines were

pretreated for 30 min with AMD3100 100 lM (Selleck Chemicals,

Houston, TX, USA, ordered from Absource Diagnostics GmbH,

Munich, Germany) before being objected to [68Ga]Pentixafor uptake

analysis.

In vivo CXCR4 imaging of mice

Positron emission tomography scans of xenotransplanted MM.1S

and OPM-2 tumors in NOD.CB17-Prkdcscid/NCrHsd mice were

performed as previously described (Graf et al, 2014). Briefly, mice

were intravenously injected with 2.5 MBq/mouse [68Ga]Pentixafor

or 9 MBq/mouse [18F]FDG and static images were acquired for

15 min starting 1 h post-injection on a lPET system (Inveon,

Siemens, Erlangen, Germany). All mice received a [68Ga]Pentixafor

PET scan and a second one with [18F]FDG the following day.

Tumor-to-background ratios of tracer intensity were calculated by

placing three-dimensional regions of interest within the tumors and

in healthy tissue (background). In competition imaging assays,

AMD3100 (2 mg/kg body weight, Selleck Chemicals) was intrave-

nously injected immediately before [68Ga]Pentixafor was injected.

PET scans were acquired 1 h post-PET tracer injection.

PET/CT and PET/MR imaging studies

All [18F]FDG scans and 12/14 [68Ga]Pentixafor scans were

performed on dedicated PET/CT scanners (Siemens Biograph mCT

64; Siemens Medical Solutions, Germany), whereas 2 of 14 [68Ga]

Pentixafor scans were performed on a PET/MRI device (Siemens

Biograph mMR; Siemens Medical Solutions, Germany). Before
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acquisition of [18F]FDG PET scans, patients fasted for at least 6 h

prior to injection of a standard dose of 4.5 MBq per kg body weight.

[18F]FDG was only injected if blood glucose levels were < 180 mg/dl.

Prior to [68Ga]Pentixafor scans, patients fasted for at least 4 h.

Injected activities ranged from 90 to 205 MBq. Corresponding CT

low-dose scans for attenuation correction were acquired using a

low-dose protocol (20 mAs, 120 keV, a 512 × 512 matrix, 5 mm

slice thickness, increment of 30 mm/s, rotation time of 0.5 s, and

pitch index of 0.8) including the base of the skull to the proximal

thighs. In PET/MR, first a coronal 2-point Dixon 3D volumetric

interpolated examination (VIBE) T1 weighted (T1w) MR sequence

was performed for generation of attenuation maps as recently

published (Drzezga et al, 2012). In addition, both a coronal T1 TSE

(TR/TE 600/8.7, slice thickness 5 mm, matrix 384 × 230) and a

T2w STIR (short s inversion recovery) sequence with fat suppres-

sion (TR/TE/TI 5,000 ms/56 ms/220 ms, slice thickness 5 mm,

matrix 106 × 256) were acquired. Consecutively, PET emission data

were acquired in three-dimensional mode with a 200 × 200 matrix

with 2–3 min emission time per bed position. After decay and

scatter correction, PET data were reconstructed iteratively with

attenuation correction using a dedicated software (Siemens Esoft).

PET, CT and MR analysis

All CT and MRI scans were scored by a board-certified radiologist,

and all PET scans were scored by a board-certified nuclear medicine

physician. All PET scans were interpreted in a binary visual fashion

as positive for disease or negative for disease according to the crite-

ria previously described (Zamagni et al, 2011). Briefly, the presence

of focal areas of detectable increased tracer uptake within bones

(e.g., more intense than background bone marrow (BM) uptake

excluding articular processes, with or without any underlying lesion

identified by CT) were rated positive. If the scan was rated as posi-

tive, disease manifestations were rated as either intra- and/or extra-

medullary. Intramedullary disease was then separately assessed for

13 regions including head, spine (cervical, thoracic, lumbar),

sacrum, pelvis (left and right), upper (left and right) and lower (left

and right) extremities, as well as rib cage (left and right). Involve-

ment of the sternum went along in all patients with rib cage

manifestations and was therefore not separately assessed.

Semi-quantitative analysis comprised calculation of maximum stan-

dardized uptake values (SUVmax) as well as SUVmean by 2D ROIs

with a diameter of 1.5 cm around the hottest pixel. Up to 3 lesions

were recorded, if subjects presented with more than 3 focal lesions

(FL); they were categorized into the subgroup > 3 FL. Lesions in the

appendicular skeleton were divided from those in the axial portions.

Diffuse BM involvement was considered if the tracer uptake was

diffusely increased with a SUVmax equal to, or greater than, the

uptake in the spleen. The presence of extramedullary disease

(EMD), defined as [18F]FDG-avid tissue that, according to CT exami-

nation, was not contiguous to bone and arose in soft tissue, was

described by location and number of lesion. Paramedullary disease

arising from bone was considered as a lesion but not as EMD.

CT and MR scans were read as outlined previously (Angtuaco

et al, 2004). In CT, any osteolytic changes not related to degenera-

tive or other benign changes (e.g., hemangioma) were rated as

suspicious for MM. In MR, any focal lesion presenting with low

signal intensity on T1w TSE images (signal intensity not higher than

surrounding muscle) and high signal intensity on T2-weighted

sequences and STIR images were judged as suspicious for MM. For

intramedullary disease, the same regions were rated as in PET. In

addition, any extramedullary lesions defined by extramedullary soft-

tissue formations were noted.

Immunohistochemistry and immunofluorescence of patient
biopsy material

For immunohistochemistry, the following antibodies were used:

anti-CD138 mouse (B-A38) monoclonal antibody (Cell Marque, CA,

USA) and anti-CXCR4 rabbit polyclonal antibody (Abcam). After

deparaffinization and rehydration, the slides were placed in a

pressure cooker in 0.01 M citrate buffer (pH 6.0) and were heated

for 7 min. Incubation with the different antibodies was carried out

overnight at 4°C. Detection was performed with DAKO en vision

system according to the manufacturer0s protocol. For double

immunofluorescence, primary antibodies were detected by incuba-

tion with the following secondary antibodies: donkey anti-rabbit

conjugated with Dylight 488 (Jackson ImmunoResearch, Suffolk,

UK) and donkey anti-mouse conjugated with Cy5 (Jackson Immuno-

Research). After incubation of slides with conjugated secondary

antibody for 30 min, slides were counterstained and mounted with

mounting medium (Vectashield, Vector laboratories, Burlingame,

CA, USA).

Statistical analysis

All statistical tests were performed using SPSS Statistics version 22

(IBM) or GraphPad Prism (GraphPad Software). P-values < 0.05

The paper explained

Problem
Malignancies of the hematopoietic or lymphoid tissues are mostly
considered systemic diseases involving the whole body. Therefore,
systemic treatment approaches are applied, for example, classical
chemotherapy or novel drugs. Cancer cells evade such potentially
effective and curative treatment by localizing to a putative protective
niche, from where relapse is thought to occur. The chemokine/
chemokine receptor axis SDF-1alpha/CXCR4 is a major determinant
for recruiting cancer cells to this protective niche.

Results
Here, we provide the first evaluation of in vivo CXCR4 imaging in a
series of patients with a particular cancer of the lymphoid system,
multiple myeloma, using the CXCR4-specific PET tracer Pentixafor in
comparison with the clinically established tracer FDG. We identify
myeloma manifestations that are positive for CXCR4 uptake and
establish the use of an in vivo biomarker imaging technique for future
therapeutic/theranostic purposes.

Impact
Our findings identify the CXCR4 PET tracer Pentixafor as a novel
tool for in vivo imaging of multiple myeloma. This tracer is suitable
for identifying patients who could be treated with CXCR4-directed
drugs, thus reflecting an in vivo biomarker. Labeling of Pentixafor
or derived peptides with radionuclides or drug conjugation seems
suitable for therapeutic targeting of the cancer cell and its protect-
ing niche.
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were considered statistically significant. Quantitative values were

expressed as mean � standard deviation or standard error of the

mean (SEM) or standard deviation (SD) as indicated. Comparisons

of related metric measurements were performed using Wilcoxon

signed-rank test, and the Mann–Whitney U-test or Student’s t-test

was used to compare quantitative data between two independent

samples. Analysis of variance (ANOVA) statistical test was used to

analyze the differences between group means.

Supplementary information for this article is available online:

http://embomolmed.embopress.org
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