

Supplemental Material for

VarFish - Comprehensive Variant Analysis for Diagnosis and
Research

Manuel Holtgrewe​1,2,*​, Oliver Stolpe​1,2​, Mikko Nieminen​1,3​, Stefan Mundlos​4,5​, Alexej Knaus​6​, Uwe
Kornak​4,5​, Dominik Seelow​4,7​, Lara Segebrecht​4​, Malte Spielmann​5,8​, Björn Fischer-Zirnsak​4,5​, Felix
Boschann​4​, Ute Scholl​9,7​, Nadja Ehmke​4​, Dieter Beule​1,3

1​ CUBI – Core Unit Bioinformatics, Berlin Institute of Health, Berlin, 10117, Germany
2​ Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität
zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
3​ Max Delbrück Center for Molecular Medicine, Berlin, 13125, Germany
4​ Institute of Medical Genetics and Human Genetics, Charité – Universitätsmedizin Berlin, corporate
member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin,
13353, Germany
5​ Development and Disease Group, Max Planck Institute for Medical Genetics, Berlin, 14195, Germany
6​ Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Bonn, 53127, Germany
7​ Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178 Berlin, Germany
8​ Institut für Humangenetik Lübeck, Universität zu Lübeck, 23538 Lübeck, Germany
9​ Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität
zu Berlin, and Berlin Institute of Health, Department of Nephrology and Medical Intensive Care, BCRT –
Berlin Institute of Health Center for Regenerative Therapies, 13353 Berlin, Germany

1

S1 In-House Database Feature in Variant Analysis
The following figures demonstrates how users can use the “in-house database” feature of VarFish.

For local (non-Kiosk mode) installations, VarFish computes statistics for each variant about the number of
carries with heterozygous and homozygous state. Figure S1 shows how this can be used for filtering
variants.

Figure S1.​ This figure shows the filter settings form for the “frequency” category. The row for adjusting
the filter settings using the in-house database is highlighted. The user can filter variants based on their
number of occurences in the in-house database in homozygous and heterozygous state or by the total
number of carries. In the example above, variants with more than 20 carriers in the in-house database are
removed.

For variants passing the frequency filter, the user might be interested in the number of total and
homozygous carriers. This information is readily available in the result table (shown in Figure S2) after
selecting “in-house DB” for the result frequency table (only frequencies from one database can be
displayed in the overview at any given time).

Figure S2.​ This figure shows the in-house database frequency in the results table.

Finally, the in-house database frequencies are also available in the variant detail display (variant details
are displayed when clicking the little angular bracket on the left of a variant result table row). This is
shown in Figure S3.

2

Figure S3.​ This figure shows the variant frequency details table for the same variant as in Figure S2. The
in-house database counts are shown in the same way as for the other population databases. Many
columns remain empty because the in-house database does not have the population information
available.

3

S2 User Annotation of Variants
In the results tables, user can open the “Flags & Comments” annotation window for a variant by
clicking on the bookmark/bubble icon as show in Figure S4. The window is shown in Figure S5.

Figure S4.​ The bookmark/speech bubble triggers the “Flags & Comments” window shown in Figure S5.

Figure S5.​ Users can assign flags and color ratings in different categories as well as text comments to
variants.

4

The ACMG-AMP evaluation tool can be triggered by clicking on the current ACMG-AMP
category display (“-” by default to indicate that no assessment has been performed yet) shown
in Figure S6. The ACMG-AMP tool window is shown in Figure S7.

Figure S6.​ A click on the ACMG-AMP category display shows the ACMG-AMP tool shown in Figure S7.

Figure S7.​ The ACMG-AMP tool window.

5

The result row for a variant indicates whether a variant has flags (filled bookmark symbol),
comments (filled comments symbol), or ACMG-AMP ratings (colored number) is displayed in
each result row as shown in figure S8.

Figure S8.​ A variant with bookmarks and comments (in red rectangle) and the ACMG-AMP assessment
result (here “4” for “likely pathogenic”).

All annotations from the user are also displayed in the “Variant Annotation” tab of the case
overview (as shown in Figure S9) and can also be listed for all cases in a project.

Figure S9.​ The variant annotation result display for the variant annotation illustrated in the figures of
Section S2.

6

S3 VarFish SQL Query Generation
One aim in the development of VarFish is to allow for the interactive analysis of variants while at
the same keeping all variants of an exome in the database, e.g., to allow for the in-house
database feature. For the interactive usage, most queries must complete swiftly while keeping
all variants means that tens of thousands of variants need to be kept. These two aims are
somewhat conflicting as the processing time grows with the size of the processed data.

VarFish tackles this by employing three strategies: (1) using the star schema commonly found in
data warehouse applications in combination with (2) indexes, and (3) data partitioning. We
briefly explain each point.

1. All variants are stored in a central “variants” table with the basic information used for the
filtration (including population frequencies, molecular impact, and genotypes in the user).
All further annotation is stored in extra tables that can be joined with the central table in
queries.

2. The VarFish database contains indices for the central variants table, one for each
important class of queries. For example, many queries use the population frequencies
for selecting rare variants. A database index targeting the frequency columns can be
used for efficiently selecting a few hundred records of rare variants that are then
processed further without index by the database server.

3. PostgreSQL also supports table partitioning. This allows to split a table by the numeric
case ID. Each table partition can be considered independently which reduces the
database index sizes and thus improves query performance.

While we have not performed any formal benchmarking, the strategy employed by VarFish is
quite successful. For most use cases, users are interested in obtaining a short list of rare
variants and potentially pathogenic variants. This list can be efficiently created by only
considering variants with low population frequencies using the database index and then further
filtering this shorter list.

Using the query generation approach from VarFish, the query execution is done by PostgreSQL
which has an excellent query analyser and is able to perform the filtration efficiently. However,
this approach also has the drawback that it is not possible to see how many variants passed
which filter. First, VarFish only sends an SQL (standard query language) query to the database
server and returns the final list of variants. Second, the database server will dynamically change
the execution plan based on the query and the data itself (using internal counters and statistics).
While it is possible to obtain the query execution plan of an executed query, it is infeasible to
convert this into useful information for the VarFish user. Third, even if it was feasible to report it,
the information would most probably not be useful to the user. The order of filter steps can be
reordered by the PostgreSQL query optimizer when the user adjusts filter settings. Also,
variants that do not pass a query criteria (e.g., population frequencies) are not further

7

considered (e.g., they are not filtered further for molecular impact). To summarize, using SQL
query generation leads to very efficient data filtration at the cost of losing some transparency.

8

