Helmholtz Gemeinschaft

Search
Browse
Statistics
Feeds

Metformin improves diastolic function in an HFpEF-like mouse model by increasing titin compliance

[img]
Preview
PDF (Original Article) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
1MB
[img] Other (Data Supplements)
562kB

Item Type:Article
Title:Metformin improves diastolic function in an HFpEF-like mouse model by increasing titin compliance
Creators Name:Slater, R.E. and Strom, J.G. and Methawasin, Mei and Liss, M. and Gotthardt, M. and Sweitzer, N. and Granzier, H.L.
Abstract:Heart failure with preserved ejection fraction (HFpEF) is a complex syndrome characterized by a preserved ejection fraction but increased diastolic stiffness and abnormalities of filling. Although the prevalence of HFpEF is high and continues to rise, no effective therapies exist; however, the diabetic drug metformin has been associated with improved diastolic function in diabetic patients. Here we determine the therapeutic potential of metformin for improving diastolic function in a mouse model with HFpEF-like symptoms. We combine transverse aortic constriction (TAC) surgery with deoxycorticosterone acetate (DOCA) supplementation to obtain a mouse model with increased diastolic stiffness and exercise intolerance. Echocardiography and pressure-volume analysis reveal that providing metformin to TAC/DOCA mice improves diastolic function in the left ventricular (LV) chamber. Muscle mechanics show that metformin lowers passive stiffness of the LV wall muscle. Concomitant with this improvement in diastolic function, metformin-treated TAC/DOCA mice also demonstrate preserved exercise capacity. No metformin effects are seen in sham operated mice. Extraction experiments on skinned ventricular muscle strips show that the metformin-induced reduction of passive stiffness in TAC/DOCA mice is due to an increase in titin compliance. Using phospho-site-specific antibodies, we assay the phosphorylation of titin's PEVK and N2B spring elements. Metformin-treated mice have unaltered PEVK phosphorylation but increased phosphorylation of PKA sites in the N2B element, a change which has previously been shown to lower titin's stiffness. Consistent with this result, experiments with a mouse model deficient in the N2B element reveal that the beneficial effect of metformin on LV chamber and muscle stiffness requires the presence of the N2B element. We conclude that metformin offers therapeutic benefit during HFpEF by lowering titin-based passive stiffness.
Keywords:Animal Disease Models, Desoxycorticosterone Acetate, Diastole, Heart Failure, Heart Ventricles, Inbred C57BL Mice, Metformin, Myocardium, Phosphorylation, Protein Kinases, Stroke Volume, Animals, Mice
Source:Journal of General Physiology
ISSN:0022-1295
Publisher:Rockefeller University Press
Volume:151
Number:1
Page Range:42-52
Date:January 2019
Official Publication:https://doi.org/10.1085/jgp.201812259
PubMed:View item in PubMed

Repository Staff Only: item control page

Downloads

Downloads per month over past year

Open Access
MDC Library