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Abstract 

Recurrent mutations within EGR2 were recently reported in advanced-stage chronic 

lymphocytic leukemia (CLL) patients and associated with a worse outcome. To study 

their prognostic impact, 2403 CLL patients were examined for mutations in the EGR2 

hotspot region including a screening (n=1283) and two validation cohorts (UK CLL4 

trial patients, n=366; CLL Research Consortium (CRC) patients, n=490). Targeted 

deep-sequencing of 27 known/postulated CLL driver genes was also performed in 38 

EGR2-mutated patients to assess concurrent mutations. EGR2 mutations were 

detected in 91/2403 (3.8%) investigated cases, and associated with younger age at 

diagnosis, advanced clinical stage, high CD38 expression and unmutated IGHV 

genes. EGR2-mutated patients frequently carried ATM lesions (42%), TP53 

aberrations (18%), and NOTCH1/FBXW7 mutations (16%). EGR2 mutations 

independently predicted shorter time-to-first-treatment (TTFT) and overall survival 

(OS) in the screening cohort; they were confirmed associated with reduced TTFT and 

OS in the CRC cohort and independently predicted short OS from randomization in 

the UK CLL4 cohort. A particularly dismal outcome was observed among EGR2-

mutated patients who also carried TP53 aberrations. In summary, EGR2 mutations 

were independently associated with an unfavorable prognosis, comparable to CLL 

patients carrying TP53 aberrations, suggesting that EGR2-mutated patients 

represent a new patient subgroup with very poor outcome.   

©    2016 Macmillan Publishers Limited. All rights reserved.
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Introduction 

Chronic lymphocytic leukemia (CLL), the most common adult leukemia in the 

Western world1, is a malignancy of mature B lymphocytes that accumulate in the 

blood, bone marrow and other lymphoid tissues2, 3. Although treatment has 

undergone profound improvements in recent years4-6, CLL shows a remarkable 

clinical variability which is likely to be reflective of a large biological heterogeneity7, 8. 

While numerous prognostic markers have been identified, the mutational status of 

the immunoglobulin heavy variable (IGHV) genes and certain, high-risk 

cytogenetic/genetic aberrations (i.e. 11q, 17p deletions and TP53 mutations) have 

remained the strongest markers and are today applied in routine diagnostics9-12.  

More recently, whole-genome sequencing (WGS) and whole-exome sequencing 

(WES) studies have begun to unravel the molecular landscape of CLL, revealing a 

limited number of frequently mutated genes (e.g. ATM, NOTCH1, SF3B1, TP53)13, 14 

with a long tail of genes altered in <5% of cases (e.g. CHD215, MED1216, NFKBIE17, 

POT118, RPS1519, SETD220, XPO121). Though integration of molecular information 

has been proposed to improve classical risk stratification models22-25, a substantial 

proportion of patients with a dismal clinical course will not be captured by these 

algorithms, hence indicating a need to identify additional molecular markers of 

disease aggressiveness. 

Recurrent missense mutations within the EGR2 (early growth response 2) gene, a 

versatile transcription factor involved in differentiation of hematopoietic cells26-28, 

were recently reported in approximately 8% of advanced-stage CLL patients and 

appeared to be associated with a worse outcome29. Notably, EGR2 mutations were 

predominantly observed within the three zinc-finger domains located in exon 2. 

EGR2 is activated through ERK phosphorylation upon B-cell receptor (BcR) 

©    2016 Macmillan Publishers Limited. All rights reserved.
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stimulation26 and we have previously shown that EGR2-mutated CLL patients display 

altered expression of EGR2 down-stream target genes compared to patients wild-

type for EGR2, thus pointing to a pathogenic role for EGR2 mutations through 

dysregulated BcR signaling29. In addition, global DNA methylation investigations 

linked abnormal EGR2 activity with aberrant hypomethylation of transcription factor 

binding sites in CLL30. 

In this study, we investigated the frequency, clinical and biological associations, and 

prognostic impact of EGR2 mutations in a large well-characterized screening cohort 

(n=1283), two validation cohorts comprising untreated patients from the LRF UK 

CLL4 trial (n=366) and patient samples from the CLL Research Consortium (CRC, 

n=490), a Chinese CLL cohort (n=233) and Richter‟s syndrome (RS) patients (n=31). 

EGR2 mutations were associated with younger age, more advanced disease and 

other molecular high-risk markers, and remained as an independent factor predicting 

poor outcome both in the screening and validation cohort. These findings suggest 

that EGR2 mutations define a new, poor-prognostic subgroup of the disease.  

©    2016 Macmillan Publishers Limited. All rights reserved.
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Methods 

Patients 

Peripheral blood samples from 1283 CLL patients with tumor content ≥60% (median 

94%) were collected from collaborating institutions in the Czech Republic, France, 

Germany, Greece, Italy, the Netherlands, Sweden, and the United States and 

comprised the screening cohort. All CLL cases were diagnosed according to the 

iwCLL guidelines and displayed a typical CLL phenotype31. Over 76% of samples 

were collected before treatment and within a median of 7 months from time of 

diagnosis (EGR2-mutated cases, median 2 months). Clinical and biological 

characteristics of the screening cohort are summarized in Table 1; this cohort had a 

lower median age at diagnosis and a higher proportion of IGHV-unmutated cases 

compared to „general‟ CLL cohorts, likely reflecting that several of the participating 

institutions are referral centers. Additionally, 366 CLL patients, entered into the 

multicenter trial UK LRF CLL4 (a randomized 1st-line comparison of chlorambucil, 

fludarabine and fludarabine plus cyclophosphamide) served as a first validation 

cohort (Supplemental Table S1). Details of the CLL4 treatment protocol have been 

previously reported32. Four hundred and ninety patients collected within the CRC 

served as a second validation cohort (Supplemental Table S2) with 81% samples 

obtained before treatment start. Finally, 233 cases from a Chinese CLL patient cohort 

(Supplemental Table S3) as well as 31 patients with RS were also screened for 

EGR2 mutations. Written consent was obtained in accordance with the Declaration of 

Helsinki and with ethical approval obtained from the local ethics committees. 

 

Analysis of EGR2 mutations  

The EGR2 mutational hotspot region, covering the three zinc-finger domains located 

in exon 2, was screened as follows: Sanger sequencing was performed to analyze 

©    2016 Macmillan Publishers Limited. All rights reserved.
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1048 CLL and 31 RS patients; 622 cases were investigated using targeted next-

generation sequencing (NGS), 171 patients were assessed by both techniques, and 

in 490 patients MassARRAY iPLEX assay was applied. In addition, for 41 patients in 

the screening cohort EGR2 mutation status was derived from WES data19. 

Bidirectional Sanger sequencing was performed according to standard protocols 

(primers available upon request)33. For targeted NGS, a 500bp amplicon was bead-

purified and library preparation was performed using the Nextera XT (Illumina, CA, 

USA) kit. Libraries were sequenced on the MiSeq instrument using v2 sequencing 

chemistry (Illumina). Applying standard settings, sequences were mapped using the 

alignment tool BWA (v.0.7.12)34. Variant calling was carried out using VarScan 2 

(v.2.3.7)35 with a minimum variant allele frequency (VAF) of 0.5% and variants were 

annotated using Annovar36. Samples from 366 patients enrolled in the UK LRF CLL4 

trial were investigated by targeted NGS using a custom design TruSeq gene panel 

(Illumina) that included the entire coding region of EGR220. 490 CRC samples were 

analyzed using the MassARRAY iPLEX assay (Agena, CA, USA) for recurrent 

mutations at EGR2 amino acid positions 356, 384 and 411/12; all mutated samples 

were validated by targeted NGS of a 210bp amplicon using MiSeq (Illumina). 

Samples with >5% VAF were considered mutated. 

 

Analysis of concurrent mutations by targeted deep-sequencing 

Thirty-eight EGR2-mutated patients (including 5 patients with VAF <5%) were 

analyzed using Haloplex technology (Agilent Technologies, CA, USA) according to 

the manufacturer‟s protocol. Probes targeting all coding exons or hotspot regions of 

27 known CLL driver genes and/or genes previously reported in EGR2-mutated 

CLL19, 29, 37-44 were designed using Agilent‟s SureDesign service 

(https://earray.chem.agilent.com/suredesign/home.htm, Supplemental Table S4). 

©    2016 Macmillan Publishers Limited. All rights reserved.
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Cluster generation and 125 cycle paired-end sequencing of the pooled library over 

one lane of the HiSeq 2500 instrument using v4 sequencing chemistry was 

performed (Illumina). Illumina sequencing adapters were removed using TrimGalore 

(v.0.3.7) and trimmed reads were aligned to the hg19 human reference genome 

(February 2009 assembly) using BWA (v.0.7.12). Variants were detected using 

VarScan2 with a VAF cutoff of 5% and a minimum 30 reads covering the variant was 

required. Non-synonymous single nucleotide variants (SNVs) and 

insertions/deletions (indels) that were not present in the 1000 genomes database 

were included for downstream analyses. 

 

Statistical analysis 

Mutational frequencies were assessed using two-sided, descriptive statistics. Overall 

survival (OS) was calculated from date of diagnosis or time from randomization (UK 

LRF CLL4) until last follow-up or death, while time-to-first-treatment (TTFT) was 

calculated from date of diagnosis until initial treatment. Kaplan-Meier analysis was 

performed to construct survival curves and the Cox-Mantel log rank test was used to 

determine differences between groups. Cox regression analysis was applied to 

compare the prognostic significance of EGR2 mutations in relation to other 

prognostic markers. A significance level of p<0.05 was applied and all statistical 

analyses were performed using Statistica Software 13.0 (Dell Inc., OK, USA).   

©    2016 Macmillan Publishers Limited. All rights reserved.
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Results  

EGR2 mutations and their association with patient characteristics 

The overall prevalence of EGR2 mutations in this study was 3.8% (91/2403 patients). 

In detail, EGR2 mutations were detected in 50/1283 CLL patients (3.9%) of the 

screening cohort, in 12/366 patients (3.3%) of the UK CLL4 trial cohort, and in 18/490 

of the CRC cohort (3.7%; Figure 1A and Supplemental Table S5). Further screening 

revealed that 9/233 (3.9%) patients in the Chinese cohort, and 2/31 (6.5%) RS 

patients carried an EGR2 mutation (Figure 1A and Supplemental Table S5).  

All mutations represented heterozygous missense mutations except for a recurrent 

in-frame 3-bp insertion identified in 3 cases. The majority of EGR2 mutations (85/91, 

93%) were localized to the DNA-binding sites of the 3 zinc-finger domains, and 

predominantly affected codons E356, H384 and D411 (Figure 1B). These domains 

are highly conserved between orthologues in different species (Supplemental Figure 

S1). The somatic nature of EGR2 mutations affecting codons E356, H384, D411, and 

E412 has been previously confirmed13, 14, 19, 29. With the exception of R318Q, all 

identified amino acid substitutions were predicted damaging with a SIFT score 

<0.0545.  

For 49 EGR2-mutated samples from the screening cohort and all patients from the 

two validation cohorts, information on allelic frequency was available from deep-

sequencing and the median VAFs were 38.9%, 36.3% (UK CLL4 trial) and 39% 

(CRC cohort), respectively (range, 5.6–62%). Additionally, 33 patients were found to 

exhibit low-frequency EGR2 variants at the aforementioned hotspot codons with a 

VAF ranging from 0.5%-5%. However, only 14/33 (42%) of these variants could be 

verified in an independent experiment (Supplemental Table S6). These low-

frequency EGR2 mutations were excluded from subsequent survival analyses. 

©    2016 Macmillan Publishers Limited. All rights reserved.
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We next evaluated the correlation between clinico-biological characteristics and 

EGR2 mutation status in all 1283 patients included in the screening cohort (Table 1). 

Compared to wild-type cases, EGR2-mutated patients were significantly younger (57 

vs. 62 years; P=0.0042), more often presented with an advanced Binet stage at 

diagnosis (Binet B/C 56% vs. 30%; P=0.0005), carried unmutated IGHV genes (81% 

vs. 61%; P=0.0041) and del(11)(q22) (33% vs. 18%; P=0.0161), as well as 

expressed high levels of CD38 (67% vs. 27%; P<0.0001). 

 

Co-existing mutations and clonal dynamics of EGR2-mutated CLL 

Through targeted enrichment, we investigated 27 known CLL driver genes and/or 

genes previously reported in EGR2-mutated patients19, 29, 37-44 in 38 EGR2-mutated 

CLL patients (including 5 cases with VAF <5%). Overall, a mean coverage of 4099 

reads per targeted region was achieved with at least 500 reads in 95% and 1000 

reads in 90% per nucleotide base of the targeted regions (Supplemental Table S7), 

hence allowing reliable detection of co-existing mutations. A total of 92 

nonsynonymous alterations were detected (Supplemental Table S8); 15 cases 

harbored one, 8 showed two, 5 patients had three, and a single patient presented 

with four additional gene mutations (Figure 1C), while no additional mutations were 

detected in the remaining 9 EGR2-mutated cases. Mutations occurred most 

frequently in ATM (12/38, 31.6%), TP53 (7/38, 18.4%), and SF3B1 (4/38, 10.5%). Of 

note, 4/12 ATM-mutated cases had two ATM mutations and another 5 cases showed 

del(11q), resulting in a high frequency of multiple ATM aberrations in EGR2-mutated 

CLL (9/12, 75%). Alterations affecting the NOTCH signaling pathway were found in 7 

patients (18.4%; NOTCH1 (n=3), FBXW7 (n=3), and SPEN (n=1); Figure 1C). Similar 

findings were observed when comparing identified mutation frequencies with 

published WES data from 964 EGR2-wildtype patients13, 14, showing a significant 

©    2016 Macmillan Publishers Limited. All rights reserved.

http://jco.ascopubs.org/content/29/21/2889.full#T1


Young et al.   EGR2 mutations in CLL 

 13 

enrichment of ATM (31.6% vs. 10.9%, P<0.001, two-sided Fisher‟s exact), TP53 

(18.4% vs. 5.4%, P=0.005, two-sided Fisher‟s exact), and FBXW7 (7.9% vs. 1.8%, 

P=0.036, two-sided Fisher‟s exact) mutations.  

To gain insights into the clonal dynamics of EGR2-mutated CLL patients, we studied 

the VAF derived from WES data before fludarabine, cyclophosphamide, and 

rituximab (FCR) treatment and at relapse in 5 patients with available samples from 

both time points. A sixth patient was sampled one year after diagnosis and again 7 

years later, however remaining untreated at both time points. All samples at both 

times had been negatively selected for CD5+/CD19+ cells to ensure a high tumor 

content (>95%). In all 6 patients, the clone harboring an EGR2 mutation expanded 

during the clinical course and became the dominant clone at relapse or at follow-up 

(Figure 1D).  

 

Clinical impact of EGR2 mutations 

In the screening cohort (1178 cases with available clinical data), the median follow-

up time for patients who remained alive was 87.5 months (interquartile range, 49.1 to 

138.3 months). Patients with mutated EGR2 (VAF >5%) had a significantly worse 

TTFT (median, 7.8 vs. 38.5 months; HR 1.86, 95% CI 1.35-2.57, P<0.001; Figure 2A) 

and OS as compared with EGR2-wild-type patients (median, 74.7 vs. 127.2 months; 

HR 2.03, 95% CI 1.41-2.92, P<0.001; Figure 2B). No survival difference was 

observed neither between patients with TP53abn and EGR2 mutations (P=0.900; 

Figure 2C/D), nor between EGR2-mutated patients with or without concomitant ATM 

lesions (P=0.665; Supplemental Figure S2). Notably, within the subgroup of 691 U-

CLL patients, EGR2-mutated cases (n=39) showed a significantly inferior OS than 

wild-type cases (P=0.009; Supplemental Figure S3). Similarly, among the 164 

©    2016 Macmillan Publishers Limited. All rights reserved.
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patients with TP53abn, a high-risk group defined by a concomitant EGR2 mutation 

with a shorter OS was identified (P=0.023; Supplemental Figure S4).  

In multivariate analysis, EGR2 mutations remained an independent negative 

prognostic marker both for TTFT (HR 1.44, 95% CI 1.01 to 2.06; P=0.047) and OS 

(HR 1.72, 95% CI 1.12 to 2.65, P=0.014; Table 2), when including EGR2 mutation 

status, age, gender, Binet stage, IGHV mutational status, del(11q), and TP53abn in 

the model. This independent effect on shorter TTFT and OS remained significant 

also when including additional molecular markers to the model such as NOTCH1 and 

SF3B1 mutations (Supplemental Table S9). 

In the UK CLL4 trial cohort (n=366), the median follow-up time for patients who 

remained alive was 145 months (interquartile range, 127.7 to 157 months). Among 

the 12 EGR2-mutated cases treated within the CLL4 trial, 7 patients were randomly 

assigned to the fludarabine plus cyclophosphamide arm, 5 patients received 

chlorambucil and none fludarabine treatment. In univariate analysis, EGR2 mutations 

were significantly associated with a reduced median OS from time of randomization 

of 24.6 versus 75.7 months for mutated vs. wild-type patients, respectively (HR 1.71, 

95% CI 1.30-2.25, P=0.004; Figure 3A/B). Multivariate analysis confirmed EGR2 

mutation status as an independent risk factor for OS (HR 1.95, 95% CI 1.02-3.73, 

P=0.043; Table 3).  

In the CRC cohort (486 cases with available clinical data), the median follow-up time 

for patients who remained alive was 64.9 months (interquartile range, 35.6-103.7 

months). In univariate analysis, EGR2 mutations were significantly associated with a 

shorter TTFT (median, 35.8 vs. 55.7 months; HR 2.08, 95% CI 1.21-3.57, P=0.007; 

Figure 3C) and reduced median OS of 98.3 versus 152.9 months for mutated vs. 

wild-type patients, respectively (HR: 2.22, 95% CI 1.03-4.77, P=0.036; Figure 3D). 

©    2016 Macmillan Publishers Limited. All rights reserved.
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Lack of cytogenetic/molecular data in a substantial proportion of CRC patients 

precluded testing of the above multivariate model. Nevertheless, multivariate analysis 

including age, gender, IGHV and EGR2 mutation status, confirmed EGR2 as an 

independent risk factor for TTFT (HR 1.92, 95% CI 1.11 – 3.32, P=0.020), while only 

a borderline significance was seen for OS (HR 1.90, 95% CI 0.88 – 4.12, P=0.10; 

Supplemental Table S10), probably due to relatively few events and shorter median 

follow-up time in this cohort. 

 

Discussion 

Missense mutations within the EGR2 gene were recently reported in progressive 

and/or relapsing CLL patients and hence indicated to be associated with a worse 

clinical outcome29. Here, by investigating large well-characterized cohorts, we not 

only confirm and significantly extend this observation, but also reveal that EGR2-

mutated CLL patients display distinctive clinicobiological features and a rapidly 

progressive disease course. Indeed, survival analysis in our screening cohort 

demonstrated a significant, negative prognostic impact of EGR2 mutations with 

markedly short TTFT and OS, similar to patients with TP53abn, that remained as an 

independent negative factor in multivariate analysis. While EGR2 mutations were 

confirmed as a high-risk marker of short TTFT and OS in the CRC cohort, they were 

also shown to independently predict short OS from time of randomization in the UK 

CLL4 trial cohort. Importantly, the negative prognostic impact of EGR2 mutations was 

also evident in aggressive subgroups, such as U-CLL and patients with TP53 

aberrations, which displayed a particularly short OS. Taken together, our data 

supports that EGR2 mutations define a new subgroup of patients with a particularly 

dismal outcome. 
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This comprehensive analysis identified EGR2 mutations in 3.8% of 2403 investigated 

patients with similar mutation frequencies in the different cohorts analyzed (range, 

3.3-3.9%), although different techniques for mutation screening were used. This 

relatively low mutation rate reflects the known genetic heterogeneity in CLL, with only 

a handful of genes mutated in 10-20% of cases, but with a long list of gene mutations 

occurring in less than 5% of CLL cases13, 14. Notably, no difference was observed 

between European/American and Chinese CLL patients with respect to their EGR2 

mutation frequencies as suggested for other known CLL drivers such as SF3B146. 

EGR2 mutations were less often found in subsets carrying stereotyped BcR 

(4/326=1.2%, P=0.027) in contrast to SF3B1, NOTCH1, TP53, and NFKBIE 

mutations that recently were reported to be enriched in specific stereotyped 

subsets17, 47-49. 

EGR2 mutations were often detected with a high mutant allele burden (median VAF 

38.9%; Supplemental Table S11), indicating that these aberrations occur early in CLL 

development29. From our targeted NGS panel, we noted that patients with EGR2 

mutations frequently displayed concurrent mutations in DNA damage response, i.e. 

ATM and TP53, and in NOTCH signaling pathway, i.e. NOTCH1 and FBXW7, 

indicating that aberrations within these pathways are important contributors to the 

evolution of the aggressive phenotype in EGR2-mutated patients. In fact, the majority 

of EGR2-mutated patients (75%) showed multiple ATM aberrations, which is 

considerably higher than reported in EGR2 wild-type, ATM-mutated CLL patients (30-

40%)50-52. Bi-allelic ATM inactivation is known to be associated with a shorter TTFT 

and OS50. Collectively, our data indicate an accumulation of several distinct poor-

prognostic markers in EGR2-mutated CLL.    
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Although most EGR2 mutations were deemed to be clonal, we observed a minor 

proportion of patients (n=14) with a low EGR2 mutation burden (<5% VAF, confirmed 

by independent experiments). Survival analysis revealed a trend for shorter OS in 

these low-burden cases compared with wild-type patients (P=0.11; Supplemental 

Figure S5). Furthermore, serial sampling in 5 treated CLL cases revealed an 

expansion of the EGR2-mutated subclone over the clinical course and at relapse 

(Figure 1D; Supplemental Figure S6). Interestingly, one additional case that 

remained untreated also showed an expansion of the EGR2-mutated clone. This 

preferential selection of molecularly defined subclones under pressure of 

chemotherapy is similar to other poor-prognostic markers such as TP53 in CLL53 and 

BCOR in myelodysplastic syndromes54. Larger studies are now warranted to further 

analyze the potential clinical impact of low-frequency EGR2 mutations as was 

recently shown for TP53 and NOTCH153, 55.  

Similar to the pivotal studies29, 30, EGR2 mutations were clustered in DNA binding 

domains pointing to a pathogenic role for the hotspots in codons E356, H384 and 

D411. The functional role of mutated EGR2 in leukemogenesis is however still poorly 

understood. We recently showed that mutations in the EGR2 DNA binding domain 

affect cell cycle behavior and lead to altered transcriptional activity and dysregulated 

BcR signaling29. Oakes et al. also identified altered EGR2 activity as a mediator for 

hypomethylation of distinct transcription factor binding sites30. Whether these effects 

are restricted to mutations localized in the three sites within the EGR2 DNA binding 

domain remains to be addressed. Nevertheless, considering the potential role of 

mutated EGR2 in altering BcR signaling, it will be particularly relevant to study the 

efficacy of BcR inhibitors in this patient subgroup.  

©    2016 Macmillan Publishers Limited. All rights reserved.



Young et al.   EGR2 mutations in CLL 

 18 

In summary, our novel data highlight EGR2 mutations as an adverse prognostic 

biomarker for CLL. EGR2 appears to identify a subgroup of CLL patients with a 

particularly dismal outcome similar to patients with TP53abn. Upon confirmation of 

our current data in other cohorts, in particular in patients treated with novel agents 

(e.g. ibrutinib, venetoclax), EGR2 mutation analysis should be considered for 

inclusion in the current work-up of CLL to identify high-risk patients.   
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Figure legends 

 

Figure 1: Frequency, localization and dynamics of EGR2 mutations. (A) 

Frequency of EGR2 mutations in investigated cohorts. (B) Localization of mutations 

identified in EGR2. (C) Co-existing mutations in 38 EGR2-mutated CLL patients. (D) 

Clonal dynamics of six EGR2-mutated CLL patients. The first 5 patients received 

FCR therapy between the first (blue bars) and second (green bars) time point 

sample, while the last patient remained untreated at the second time point (7 years 

between the samples).    

 

Figure 2: Clinical impact of EGR2 mutations in 1178 CLL patients from the 

screening cohort. (A) Time-to-first-treatment and (B) overall survival in the 

screening cohort according to EGR2 mutation status. (C) Time-to-first-treatment and 

(D) overall survival in the screening cohort according to the established hierarchy for 

genomic aberrations9 and EGR2 mutation status. Patients with TP53abn and 

concomitant EGR2 mutation are grouped into the TP53abn group (TTFT, n=7; OS, 

n=8). 

 

Figure 3: Clinical impact of EGR2 mutations in 366 patients from the UK LRF 

CLL4 trial and 486 patients from the CRC cohort. (A) Overall survival in the 

validation cohort according to EGR2 mutation status. (B) Overall survival in the 

validation cohort according to the established hierarchy for genomic aberrations9 and 

EGR2 mutation status. Patients with TP53abn and concomitant EGR2 mutation are 

grouped into the TP53abn group (n=1). (C) Time-to-first-treatment and (D) overall 

survival in the CRC validation cohort according to EGR2 mutation status. 
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Table 1: Comparison of clinical and biological characteristics between EGR2 
mutated and wild-type CLL patients within the screening cohort (n=1283). 
  

 
EGR2 wild-type 
n=1233 

EGR2 mutated 
n=50 

P-value 

Age  
Median (years) 
<55 years - no. (%) 
>71 years - no. (%) 
No information  

 
62.1 
278 (25%) 
194 (17%) 
105  

 
57.4 
17 (35%) 
5 (10%) 
1  

 
.0042 
 

Sex 
Female - no. (%) 
Male - no. (%) 
No information  

 
393 (34%) 
769 (66%) 
71  

 
19 (40%) 
28 (60%) 
3  

.3490 

Binet stage 
A - no. (%) 
B/C - no. (%) 
No information  

 
674 (70%) 
290 (30%) 
269  

 
17 (44%) 
22 (56%) 
11  

 
.0005 
 

Need of treatment 
Yes - no. (%) 
No - no. (%) 
No information 

 
726 (68%) 
334 (32%) 
173 

 
42 (91%) 
4 (9%) 
4 

 
.0010 
 

CD38+  
High (>30%) - no. (%) 
Low (≤30%) - no. (%) 
No information  

 
161 (27%) 
438 (73%) 
634  

 
20 (67%) 
10 (33%) 
20  

 
< .0001 
 

IGHV 
Mutated – (<98% identity) – no. 
(%) 
Unmutated (≥98% identity) – no. 
(%) 
No information 

 
460 (39%) 
710 (61%) 
63  

 
9 (19%) 
39 (81%) 
2  

 
.0041 
 

del(13)(q14) 
Absent - no. (%) 
Present - no. (%) 
No information  

 
665 (64%) 
374 (36%) 
194  

 
35 (81%) 
8 (19%) 
7  

 
.0194 
 

del(11)(q22) 
Absent - no. (%) 
Present - no. (%) 
No information  

 
852 (82%) 
187 (18%) 
194 

 
29 (67%) 
14 (33%) 
7  

 
.0161 
 

+12 
Absent - no. (%) 
Present - no. (%) 
No information  

 
927 (89%) 
112 (11%) 
194 

 
36 (84%) 
7 (16%) 
7  

 
.2587 
 

TP53abn 
Absent - no. (%) 
Present - no. (%) 
No information  

 
993 (86%) 
161 (14%) 
79  

 
41 (84%) 
8 (16%) 
1  

 
.6394 
 

NOTCH1 mutation 
Absent - no. (%) 

 
812 (91%) 

 
42 (91%) 

 
.8773 
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Present - no. (%)  
No information  

84 (9%) 
337  

4 (9%) 
4  

 

SF3B1 mutation 
Absent - no. (%) 
Present - no. (%) 
No information  

 
804 (90%) 
93 (10%) 
336  

 
38 (84%) 
7 (16%) 
5  

 
.2703 
 

Sampled prior to treatment 
Yes – no. (%) 
No – no. (%) 
No information 

 
665 (76%) 
215 (24%) 
353 

 
35 (80%) 
9 (20%) 
6 

.5480 

 
Recurrent genomic aberrations were classified according to the Döhner 
classification9. A two-sided student’s t-test was used to assess differences in age at 
diagnosis, while a Chi-square test was applied to evaluate all other variables in 
EGR2 wild-type versus mutated cases. TP53abn, TP53 aberrations (i.e. mutations 
and or deletions). 
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Table 2: Multivariate Cox proportional hazard analysis of time-to-first-treatment 
(TTFT, cases, n=898; events, n=624) and overall survival (OS, cases, n=863; 
events, n=371) in the screening cohort. 
 

 
NA, not applicable. TP53abn, TP53 aberrations (i.e. mutations and or deletions). 

 

 TTFT OS 

Variable Hazard 
ratio 

95% 
Confidence 

interval 

P-
value 

Hazard 
ratio 

95% 
Confidence 

interval 

P-
value 

EGR2 mutation 
status 

1.44 1.01 – 2.06 .047 1.72 1.12 – 2.65 .014 

Age 1.04 0.89 – 1.22 .611 2.20 1.78 – 2.72 < .001 

Gender 1.11 0.94 – 1.31 .230 1.32 1.05 – 1.65 .016 

Binet stage NA NA NA 2.26 1.82 – 2.81 < .001 

IGHV mutation 
status 

4.18 3.41 – 5.12 < .001 3.28 2.54 – 4.25 < .001 

del(11q)(q22) 1.05 0.87 – 1.27 .620 0.84 0.64 – 1.09 .190 

TP53abn 1.31 1.06 – 1.62 .013 1.66 1.26 – 2.18 < .001 

©    2016 Macmillan Publishers Limited. All rights reserved.



Young et al.   EGR2 mutations in CLL 

 

Table 3: Multivariate Cox proportional hazard analysis of overall survival in the UK 
LRF CLL4 patients (cases, n=297; events, n=231) 
 

Variable Hazard ratio 95% Confidence interval P-value 

EGR2 mutation status 1.95 1.02 – 3.73 .043 

Age 1.72 1.32 – 2.24 < .001 

Gender 1.44 1.04 – 1.99 .029 

Binet stage 1.21 0.86 – 1.71 .271 

IGHV mutation status 2.22 1.64 – 2.99 < .001 

del(11q)(q22) 1.46 1.07 – 1.99 .018 

TP53abn 4.85 2.90 – 8.11 < .001 

 
TP53abn, TP53 aberrations (i.e. mutations and or deletions). 
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