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ABSTRACT

Conditional gene expression systems have devel-
oped into essential tools for the study of gene func-
tions. However, their utility is often limited by the
difficulty of identifying clonal cell lines, in which
transgene control can be realized to its full poten-
tial. Here, we describe HeLa cell lines, in which we
have identified—by functional analysis—genomic
loci, from which the expression of transgenes can
be tightly controlled via tetracycline-regulated
expression. These loci can be re-targeted by
recombinase-mediated cassette exchange. Upon
exchange of the gene of interest, the resulting cell
line exhibits the qualitative and quantitative proper-
ties of controlled transgene expression characteris-
tic for the parent cell line. Moreover, by using an
appropriate promoter, these cell lines express
the tetracycline controlled transcription activator
rtTA2-M2 uniformly throughout the entire cell popu-
lation. The potential of this approach for functional
genomics is highlighted by utilizing one of our
master cell lines for the efficient microRNA-
mediated knockdown of the endogenous human
lamin A/C gene.

INTRODUCTION

Our understanding of gene functions has greatly benefited
from approaches that permit to predictably activate or
deactivate the expression of individual genes and to mon-
itor subsequent phenotypic changes. In this context, tetra-
cycline controlled transcription activation is the most
widely applied principle (1–3). Indeed, the ‘Tet System’
was shown to function not only within a broad spectrum
of cultured cells, but also in whole organisms from
fungi to non-human primates (4,5). Salient features of
the system are reversibility, tightness of control, a wide

regulation window as well as quantitative control of
gene expression in incremental steps.
For optimal function of Tet regulation, two main pre-

requisites have to be met, which sometimes are not trivial
to establish experimentally. First, the target cell has to
constitutively produce appropriate concentrations of one
of the tetracycline controlled transcription activators tTA
(1) or rtTA (2,6) uniformly throughout the cell popula-
tion. Second, the tTA/rtTA responsive RNA polymerase
II promoter, Ptet, has to be integrated in the target cell’s
genome in such a way that the highly specific interaction
between Ptet and tTA or rtTA is not perturbed by the
local chromosomal context. Possible interferences with
its desired expression characteristics can for example be
caused by transcriptional enhancers or silencers in the
vicinity of Ptet or by obstructing chromatin structures
surrounding the integrated Ptet-controlled transcription
unit (1,7).
Here, we address the challenge of predictably placing

Ptet-controlled transcription units into a genomic site
where the full potential of Tet regulation can be exploited.
We describe the identification of a chromosomal locus in a
novel rtTA2-M2 expressing HeLa cell line, where a Ptet-
directed transcription unit is virtually inactive in the
absence of doxycycline (dox), but activated over more
than four orders of magnitude in its presence. This func-
tionally defined ‘silent but activatable’ (s/a) locus (7–9)
can be directly targeted via FLP recombinase-mediated
cassette exchange (RMCE) (10). RMCE empowers us to
efficiently insert any gene of interest into the s/a locus and
to control its expression, mirroring the regulation of
expression of the parental transgene. Moreover, by expres-
sing the transactivator under control of the human elon-
gation factor 1 alpha promoter (EF1a), a uniform
production of rtTA2-M2 is warranted throughout the
entire population of cells.
The possibility to readily place controllable transcrip-

tion units into pre-characterized genomic loci of otherwise
isogenic cell lines as described herein will significantly con-
tribute to the study of gene functions under highly defined
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conditions. We exemplify this principle by precisely con-
trolling the concentrations of the intermediate filament
lamin A/C and the nuclear pore protein Pom121, by
Tet-regulated RNA interference.

MATERIALS AND METHODS

Plasmid constructs

The S2f-lMCg-F3 vector was derived from the retroviral
SIN-vector S2f-lMCg (9) by exchanging the F5 Flp-
recombinase recognition site for the mutated F3 site (10)
(Figure 1A). The plasmid pE11.F3.M.F was derived from
pCMV.MCS.pA.FRTN1ampFRT (a generous gift from
G. Schütz, DKFZ, Heidelberg) by flanking the multiple
cloning site (MCS) with heterospecific Flp recognition
sites F3 and FRT. For cloning of pE11.F3.htk.F., the
hygTK fusion gene was released by XhoI and HindIII
from p.F3.HygTK.F (11) and inserted into XhoI/HindIII
cut pE11.F3.M.F plasmid.
The RMCE vectors depicted in Figures 5 and 6

are based on the plasmid pBI4 (12). pBI4 contains
two MCSs up- and downstream of the bidirectional
tetracycline-inducible promoter (Ptet-bi), which enable
the insertion of two transcription units in opposing direc-
tions. To construct pBI.F3.M.F, the bidirectional expres-
sion cassette of pBI4 was flanked by two heterospecific
Flp recognition sites F3 and FRT, synthesized as com-
plementary oligonucleotides. Subsequently, the cDNAs
for d1EGFP (13), mCherry (cherry) (14), luciferase and
nuclear localized b-galactosidase were inserted in the
MCS of pBI.F3.M.F, thereby constructing the recombina-
tion vectors pd1gfpPtetcherry and plucPtetlacZ.
For RNA interference, we used an optimized

microRNA design (miRNA3) described in detail in
Berger et al. (manuscript submitted). The targeting
sequence for lamin A/C (GenBank acc. no X03444) corre-
sponds to positions 608–628 relative to the start codon
(15) and for human Pom121 to positions 1161–1181,
respectively. The miRNA sequence was interposed as a
synthetic double-stranded oligonucleotide in pBI.F3M.F
facing the d1EGFP cDNA in the second expression unit,
thereby creating the targeting plasmid pd1gfpPtetmiR.

Generating the HeLa-EM2 cell line

HeLa-EM2 cells are HeLa cells stably expressing an
improved version of the reverse tetracycline controlled
transactivator gene coding for rtTA2S-M2 (6) under the
control of the human EF1a promoter. The expression
vector was derived from pEF1 (16). Its MCS was deleted
by 50-HindIII/NotI-30 digestion and substituted with a
50-HindIII/NotI-30- fragment of the pBluescript polylinker
(Stratagene, La Jolla, CA); sequence: 50 AAGCTTGATA
TCGAATTCCTGCAGCCCGGGGGATCCACTAGTT
CTAGAGCGGCCGC 30. This modification facilitated
the insertion of a 50-EcoRI/BamHI-30 fragment from
pUHrT62-1 (6), containing the rtTA2S-M2 open-reading
frame. The resulting expression vector, pEF-M2neo, was
introduced in HeLa cells using the Roti-Fect liposome
formulation (Carl Roth, Karlsruhe, Germany) according
to the manufacturer’s protocol. Several growing colonies

were selected and tested for the expression of the M2
reverse tetracycline controlled transactivator by transfec-
tion with the luciferase reporter plasmid pUHC13-3 as
described earlier (1). Clone EM2 showed the best regula-
tion properties, with low basal luciferase expression levels
and induction factors in the range of three to four orders
of magnitude in transient experiments.

Retroviral transduction

The retroviral infectious particles were produced by 293T
cells as described before (9). Several rounds of fluores-
cence activated cell sorting (FACS) in the presence and
absence of 200 ng/ml dox were used for the isolation of
individual gfp-luc positive clones such as HeLa-EM2-11.

Flow cytometric analysis

For flow cytometric analysis (FACS), cells were prepared
as described before (9) and sorted using a FACSAria flow
cytometer. Data acquisition and analysis were performed
with the CellQuest program. Workstation and software
were both from BD Biosciences, Germany.

Isolation of highly inducible HeLa-EM2 clones

HeLa-EM2 cells were infected with infectious particles at
a MOI of 0.03–0.05 to ensure single-copy integration of
the S2f-lMCg-F3 retrovirus in the majority of transduced
cells. For induction of EGFP expression, the cells were
treated with dox (200 ng/ml) for 16 h. About 0.8% of the
cells were EGFP-positive as monitored at the single-cell
level using FACS. The EGFP positive cells were collected
in a six-well dish (ON-sort) and cultured for 8 days in
the absence of dox. Subsequent FACS demonstrated
that most of the cells remained EGFP-negative in the
absence of dox. These cells were collected (OFF-sort)
while cells expressing EGFP in the absence of inductor
were discarded. After another 8 days of cultivation in
dox-containing medium, cell samples were again analyzed
by FACS (Supplementary Figure 1). At this point, single
EGFP positive cells were isolated (ON-sort) for clonal
expansion.

Flp RMCE

To replace the gfp-luc expression unit in HeLa-EM2-11
cells by the hygtk positive/negative selection cassette,
Flp-mediated RMCE was used. HeLa-EM2-11 cells were
seeded in six-well plates at a density of 2.5� 105 cells 24 h
before transfection. Two micrograms of the targeting plas-
mid pE11.F3.htk.F (17) together with 2 mg of pCAGGS-
FLPe-IRESpuro (18) (Gene Bridges, Heidelberg,
Germany) were used for transfection with Lipofectamine
2000 (Invitrogen) according to the manufacturer’s pro-
tocol. Twelve hours post transfection, the cells were
detached with trypsin/EDTA, transferred into 100mm
Petri-dishes and cultured in DMEM supplemented with
hygromycin B (Invitrogen, 300 mg/ml). Hygromycin-resis-
tant colonies became visible after 8–10 days of selection.
The master cell line HeLa-EM2-11ht was established from
an EGFP negative clone.
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Targeting the master cell line HeLa EM2-11ht

HeLa-EM2-11ht cells were seeded and transfected
as described earlier. The targeting plasmids were
pd1gfpPtetmiR, pgfpPtetcherry or pd1gfpPtetlacZ, respec-
tively. Twelve hours after transfection, the cells were trans-
ferred to 100mm Petri dishes and incubated with 5 mg/ml
puromycin (Sigma-Aldrich) for 36 h. Subsequently, the
medium was exchanged for DMEM supplemented with
30–50 mM ganciclovir (Sigma-Aldrich) for negative selec-
tion. After 8–10 days, single clones were selected, expanded
and characterized.

Luciferase assay

The preparation of cell lysates and the determination of
luciferase activity were described earlier (1). Total protein
concentration in the lysates was measured at 595 nm using
Coomassie Brilliant Blue G-250 (BioRad Laboratories).

Western blotting

Cell lysates were obtained from subconfluent, PBS washed
cell cultures after incubation with sample buffer (2mM
MgCl2, 4% SDS, 140mM Tris base pH 8, 50mM dithio-
threitol, 5M urea and a spatula tip of bromphenol blue)
for 10min at 248C. Benzonase nuclease (Sigma-Aldrich)
was added fresh at a concentration of 5U/100 ml of sample
buffer. Equal concentrations of total protein (corre-
sponding to 5� 104 cells) per lane were separated
on 10% polyacrylamide Laemli gels and transferred
to nitrocellulose membranes. The membranes were
incubated with primary antibodies mouse anti-lamin
A/C (19), rabbit anti-EGFP and mouse anti-a-tubulin
(Sigma-Aldrich) for 3 h. Goat anti-mouse and goat anti-
rabbit conjugated to infrared fluorophores IRDye 800
(LI-COR Biosciences) were used as secondary antibodies.
Detection was performed on a LI-COR Odyssey imaging
system.

Immunofluorescent analysis and microscopy

Cells growing on coverslips were briefly washed with pre-
warmed PBS, fixed for 2min in 3% pre-warmed parafor-
maldehyde, again washed in PBS and quenched with
50mM NH4Cl in PBS for 5min. About 0.1% Triton
X-100 in PBS was used to permeabilize cells followed
by a block for 30min with 1% BSA, 10% goat serum
and 0.1% Triton X-100 in PBS. The primary antibodies
mouse anti-lamin A/C (a gift from K. Weber, MPI
for Biophysical Chemistry, Goettingen, Germany), anti-
Pom121 (20) and Nup107 (21) were diluted in block solu-
tion (1:500, 1:30 000 and 1:1500, respectively) and applied
to the cells for 1 h. Unbound antibodies were washed off
with PBS before Alexa conjugated secondary antibodies
(Invitrogen, diluted 1:500 in block solution) were applied
for 30min. Following incubation, samples were washed
repeatedly by PBS before and after post-fixation with
2% paraformaldehyde for 3min and mounted with
Vectashield (Vector Laboratories). Confocal laser scan-
ning microscopy was performed with a Leica TCS SP5
laser-scanning microscope. The laser lines 405, 488, 561
and 633 nm were used for excitation and all pictures

were taken with a Leica TCX PL APO 63x NA 1.4 oil
objective.

b-Galactosidase staining

Ganciclovir resistant clones were incubated with b-galac-
tosidase substrate 4-bromo-3-chloro-2-indolyl-b-galacto-
sidase (X-gal) for 2 h at 378C as described (22). A 0.1%
Nuclear Fast Red-solution (Certistain, MERCK) in
5% aqueous aluminium sulfate solution was used for
counterstaining.

Locus identification and verification

Linear amplification-mediated PCR (LAM-PCR) was per-
formed with genomic DNA of clone EM2-11 by GATC-
Biotech, Konstanz, Germany, as described previously
(23). The genomic sequence flanking the 30 end of the
integrated DNA was amplified, sequenced and identified
using NCBIs Human Genome BLAST as a specific region
within LOC642354 on chromosome 5. The result of the
LAM PCR was verified by conventional PCR using
HeLa-EM2-11 DNA as control template. The 50 interfaces
of the retroviral insertion was amplified with primers
FP-chr5.upstream (50TAAGTCCCAAAGGAGTGTTCT
AACCAGAGCTTGTG30) in combination with a primer
localized within the retroviral packaging signal Psi (50AG
GTAACCCAACGTCTCTTCTTGACATCTACCGAC
30). The 30 interface was amplified with the primers EGFP
(50AAGACCCCAACGAGAAGCGCGATCACAT30)
and RP-chr5.downstream (50GTGAATGGGGGCCAGG
GAAGGAGAGACGTG30). As a control, the rtTA-M2
sequence was amplified using the primers FP-rtTA
(50CCA TGT CTA GACTGG ACA AGA30) and
RP-rtTA (50CTC CAG GCC ACA TAT GAT TAG30)
(Figure 3).

RESULTS

Generation of the HeLa-EM2 cell line

Synthetic transcription factors of heterologous expression
systems such as the transactivators used in the Tet system
should ideally be produced uniformly throughout a stable
cell population. To this end, we placed the reverse tetracy-
cline controlled transactivator rtTA2-M2 (6) under control
of the human EF1a promoter. This promoter has been
characterized to be efficient for homogenous transgene
expression and was used as a control element for Tet trans-
activators previously (24,25). A corresponding expression
vector was used to generate stable HeLa cell clones. These
were initially characterized by introducing suitable Tet-
responsive reporter genes, both in transient and stable
transfection experiments. One of the cell lines, HeLa-
EM2, showing a high dynamic range of Tet-responsiveness
without signs of mosaic regulation and its derivatives were
used throughout this study (data not shown).

Identification of a silent but activatable (s/a) genomic
locus in the HeLa–EM2 cell line

The identification of transgene insertion sites fulfilling the
criteria for s/a loci was implemented such that these
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genomic loci could be retargeted in subsequent experi-
ments. To this end, HeLa-EM2 cells were transduced
with self-inactivating retroviruses S2f-lMGg-F/F3 at low
MOI to favor single integration of the bidirectional
tTA/rtTA dependent promoter Ptet-bi3 that simulta-
neously controls the expression of luciferase and EGFP
(9). This bidirectional transcription unit is flanked by a
wild type (F) and a mutated, non-compatible (F3) FRT
site (Figure 1A) allowing directed cassette exchange via
Flp recombinase (26) as outlined below.
Transduced cells were cultured in presence of dox to

induce expression of EGFP, which was exploited for mon-
itoring and separating off the most intensely GFP produ-
cing cell population by FACS. The population of cells
obtained, representing the leading edge of the ‘activated’
GFP peak, was grown in absence of dox for 1 week to
allow for degradation of GFP. Cells giving no or a mar-
ginal fluorescence signal were harvested, expanded and
taken through a second round of cell sorting in the pres-
ence and absence of dox. The selected cell population was
again induced with dox and single GFP producing cells
were isolated via FACS (see Supplementary Figure S1).
Clonal cell populations were expanded and examined indi-
vidually for luciferase activity in the presence and absence
of dox. The results from 12 selected clones are shown

in Figure 1B. In the majority of clones, luciferase activity
can be induced over more than three orders of magnitude
to very high levels. Moreover, while 11 of 12 clones ana-
lyzed show luciferase levels <10 rlu/mg protein, for three of
these clones (4,11,27) reporter measurements in absence of
dox was actually indistinguishable from that of the luc-
negative parental cell line. Thus, we conclude that accord-
ing to our isolation procedure, clones with highly dynamic
tet-controlled expression can be routinely isolated. Based
on these findings, several clones were picked and charac-
terized in more detail. Clone 11 (Figure 1B), henceforth
designated as cell line HeLa-EM2-11, was chosen for all
further experiments reported herein. In this line, the
expression of luciferase can be regulated following expo-
sure with dox over a range of about four orders of mag-
nitude (Figure 2A). The kinetics of luciferase induction
was fast (Figure 2A), in line with previous findings (2).
Remarkably, the apparent luciferase background mea-
sured in the un-induced state did not exceed 10 rlu/mg of
protein, comparable to control extracts from HeLa cells
without luciferase transgene (Figures 1B and 2A). To
examine the induction characteristics of HeLa-EM2-11
cells at the single cell level, we analyzed the induction
of EGFP at different dox concentrations via FACS.
As shown in Figure 2B, full induction is reached at
dox concentrations of 50–100 ng/ml. Importantly, the
induced state prevails throughout the entire population
of cells. This demonstrates both the even expression of
rtTA2-M2 governed by the EF1a promoter as well as
the accessibility of the reporter unit in all cells of the
clonal population.

Our data indicate that, in HeLa-EM2-11 cells, the bidir-
ectional expression unit is indeed integrated in a genomic
locus, which has all the characteristics of a s/a locus: tight
control in the absence of dox and high, non-variegating
inducibility when dox is administered.

HeLa-EM2-11 cells contain a single copy of the
bidirectional transcription unit

Given the low MOI of the transduction experiment and
the expression characteristics of luciferase and GFP, it
seemed unlikely that HeLa-EM2-11 cells contain more
than one copy of the bidirectional transcription unit.
However, to avoid any ambiguity when targeting the
locus via RMCE, it was important to prove that indeed
only a single integration event had taken place. We there-
fore identified the genomic site where the SIN vector had
integrated by LAM-PCR (23). A single site within the long
arm of chromosome 5 was revealed and sequence analysis
delineated the insertion at locus 5q31.3. Sequence analysis
showed furthermore that the integration had occurred
at a putative intronic sequence of a hypothetical gene
(LOC642354). These findings were verified by sequence
analysis of the junctions between the insert and the flank-
ing genomic regions (Figure 3). Together, our results
show that HeLa-EM2-11 cells indeed contain a single inte-
grate of the bidirectional transcription unit and that no
deletion or rearrangement had occurred at the site during
the insertion process of the SIN vector. It will be interest-
ing to obtain a more comprehensive picture of integration

Figure 1. Generation of HeLa cell lines with highly regulated gene
expression by retroviral transduction. (A) Schematic outline of the pro-
viral MuLV-based S2f-lMCg-F3 vector used for stable transduction of
HeLa-EM2 cells. The bidirectional tetracycline-inducible promoter
(Ptetbi) controls the bicistronic expression of the reporter genes luc
(luciferase) and egfp (enhanced green fluorescent protein). The reporter
unit is flanked by a wild type (F, downstream) and a mutant (F3,
upstream) Flp-recombinase target site. The viral packaging signal
�+ and the 50LTR and 30SIN-LTR (self-inactivating long terminal
repeats) are retroviral elements, the latter defining the borders of the
integrated provirus. (B) Independent HeLa cell clones show silent, but
highly activatable expression of luciferase. Clonal HeLa-EM2 cell lines
derived from transduction with the S2f-lMCg-F3 retrovirus were kept
in the absence or presence of dox (1 mg/ml). Luciferase activity in
all extracts was measured and normalized to the protein content.
Clone HeLa-EM2-11 was chosen for further analysis.
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sites displaying s/a characteristics by advanced sequence
analysis methods (27). Such an experimental approach
might reveal interesting insights in the nature of genomic
loci displaying such expedient features for genetic
engineering.

Targeted exchange of the bidirectional transcription
unit in HeLa-EM2-11 cells and generation of master
cell line HeLa-EM2-11ht

The quantitative data obtained so far met our definition of
a s/a locus, where the activity of a gene of interest can be
predictably regulated via dox. The inclusion of the hetero-
specific FRT sites allows for cassette exchange by RMCE.
The expression of Flp recombinase does not result in the
deletion of DNA sequences between those sites, but rather
drives recombination and cassette exchange in trans, when
an incoming DNA is equipped with a corresponding pair
of recombination sites (28) (see Figure 4 for outline). In a
first step, we aimed at the exchange of the bidirectional
transcription unit in HeLa-EM2-11 cells for a cassette
encoding the hygtk fusion protein controlled by the con-
stitutive CMV promoter (Figure 4). The resulting master
cell line would be resistant to hygromycin and sensitive
to ganciclovir, providing excellent selection criteria for
subsequent replacements of the hygtk cassette by various
Tet-controlled expression units (Figure 4).
HeLa-EM2-11 cells were cotransfected with the circular

plasmids pE11.F3.htk.F (17) and pCAGGS-FLPe-
IRESpuro (18), and stable hygromycin resistant clones
were derived as described in the Methods section. All
clones analyzed were sensitive to ganciclovir and had
lost their potential to produce luciferase and EGFP
upon addition of dox, thus indicating that the bidirec-
tional expression unit encoding luciferase and EGFP
was replaced by the hygtk cassette. To verify the antici-
pated function of this hygtk master cell line, we initially set
out to reintroduce the original bidirectional transcription
unit encoding luciferase and EGFP in several of our hygtk
positive clones. The outcome of this reconstruction exper-
iment was identical for all clones examined: the hygtk cas-
sette could be readily exchanged again for the original
bidirectional transcription unit, as will be detailed below.
One of the ‘hygtk clones’ was therefore selected as master
cell line and designated HeLa-EM2-11ht. All experiments
described in the following were carried out with this
master cell line.

Insertion of bidirectional Tet-controlled transcription units
into master cell line HeLa-EM2-11ht—quantitative aspects

For HeLa-EM2-11ht to serve as a master cell line for all
future experiments two quantitative parameters were of
particular importance to us: (i) the efficiency of the

Figure 2. Induction kinetics of luciferase expression in HeLa-EM2-11
cells. (A) HeLa-EM2-11 cells were incubated with 200 ng/ml of dox and

harvested as indicated. Luciferase activity was measured and normal-
ized to the protein concentration. The data represent the mean values
and the standard deviations of four independent measurements. (B)
Low concentrations of dox effectively induce EGFP gene expression
in s/a loci. The histogram plots delineate the flow cytometric analysis
of GFP expression after induction with increasing concentrations of
dox for 16 h. Each plot represents 15 000 cells.
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replacement reaction in this cell line and (ii) the reprodu-
cibility of controlled expression, when the s/a locus is
repeatedly targeted. To this end, we generated the three
bidirectional transcription units shown in Figure 5A,
which were inserted in plasmids tailor-made for RMCE.
In a first experiment, we examined the efficiency of

insertion by cotransfecting HeLa-EM2-11ht cells with
plucPtetlacZ (Figure 5A) and the Flp recombinase encod-
ing plasmid pCAGGS-FLPe-IRESpuro. After negative
selection by ganciclovir for 10 days, we exposed the result-
ing colonies to dox for 2 days. Subsequent staining for
b-galactosidase activity revealed that 50–70% of the colo-
nies were homogeneously stained as shown in Figure 5B.
This high efficiency of cassette exchange allows readily
identification and isolation of desired cell lines.
In a second experiment, we replaced the hygtk cassette

in HeLa-EM2-11ht cells by exactly the same bidirectional
gfp/luc transcription unit (Figure 5A) present in the
parental cell line HeLa-EM2-11 following the selection
approach described earlier. From a large number of
clones obtained after the selection procedure, five were
randomly selected and analyzed for luciferase activity in
the presence and absence of dox. Like the parental cell line
HeLa-EM2-11, all clones analyzed showed extremely low
background activities (<10 rlu/mg protein) in the non-
induced state. However, in the presence of dox, more
than 104-fold induction of luciferase activity was measured
in each clone tested (Figure 5C).
These data show that the cell lines derived from the

master cell line HeLa-EM2-11ht exhibit the same regula-
tion potential (>104-fold) as the original parental cell line

while maintaining the low background. If at all, only mar-
ginal differences exist between the individual clones.
Examining the induction of EGFP in various clones via
FACS corroborates this finding. The analysis depicted in
Figure 5D demonstrates again that upon induction with
dox, the entire population of cells is uniformly producing
EGFP.

Finally, by integrating a bidirectional unit, where the
expression of two fluorescent proteins, namely d1GFP
(13) and mCherry (14), are co-regulated via dox, we
show that both proteins are simultaneously produced in
individual cells (Figure 5E).

Together, our results demonstrate that the genomic
locus identified in cell line HeLa-EM2-11 and brought to
use in the master cell line HeLa-EM2-11ht can be effi-
ciently targeted by site-specific recombination, giving rise
to stable cell lines with highly predictable expression
properties.

Controlled expression of micro-RNA

Our system obviously offers itself not only for the over-
expression of genes, but also for the controlled inter-
ference with the function of endogenous genes via
micro-RNA (miRNA). To exemplify this approach, we
developed a Ptet-controlled miRNA construct (Berger
et al., manuscript submitted), which targets the mRNA
of lamin A and C.

Lamin A and C are two abundant proteins, which local-
ize at the nuclear membrane. The A and C variants are
encoded by a single gene and originate by alternative spli-
cing of the respective transcript. Our miRNA was directed
against a sequence, which is shared by both mRNAs (15).

Figure 3. Identification of the retroviral integration site in clone HeLa-
EM2-11. (A) Schematic representation of the retroviral construct inte-
grated as single copy on chromosome 5, region q31.3. The provirus is
integrated within an intronic sequence of the hypothetical gene
LOC642354 (black arrow). Neighboring genes are indicated by gray
arrows. The integration site was first identified using LAM-PCR (see
‘Materials and Methods’ section for details). (B) Verification of the
LAM-PCR results. Genomic DNA was extracted from EM2-11 cells
as well as non-infected HeLa-EM2 cells and used as templates for PCR.
Primers designed to anneal specifically within gene LOC642354 up- and
downstream of the integration site were combined with internal primers
for the amplification of the products I and II, indicated in (A).
An rtTA2S-M2 PCR product served as a positive control for the
PCR-reaction.

Figure 4. Experimental flow in Flp-mediated RMCE: generation of
HeLa-EM2-11ht and subsequent restoration of the reporter unit. In
order to use the preselected genomic locus in the HeLa-EM2-11 cell
line for RMCE, the bidirectional luc/egfp reporter cassette is first
replaced by the selection marker gene hygtk, which confers resistance
to hygromycin (Hygr) and sensitivity to ganciclovir (Gans) (top).
Cassette exchange occurs by double reciprocal crossover between iden-
tical pairs of Flp-recombinase target sites after transfection with the
circular hygtk plasmid and the Flp-recombinase expression vector. The
resulting clone (HeLa-EM2-11ht) is used as master cell line for a
second round of RMCE, in which the gene of interest under control
of Ptetbi is introduced in the respective locus as surrogate for the hygtk
cassette. Cells that have successfully undergone RMCE are selected
based on their resistance to ganciclovir in this step (bottom).
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Figure 5. Stable, uniform and reproducible transgene expression in retargeted HeLa EM2-11 clones. (A) Schematic layout of the targeting vectors
used for RMCE. The bidirectional tetracycline inducible expression cassettes luc/lacZ (1), luc/egfp (2) or d1gfp/mcherry (3) were used as substrate for
Flp-mediated recombination in HeLa-EM2-11ht to obtain stable single-copy cell lines. (B) Retargeting of the hygtk cassette is very efficient.
Recombination efficiency of the retargeting (construct A-1) was determined by in-situ b-galactosidase staining. Stable clones obtained after the
RMCE selection procedure were induced with 200 ng/ml dox for 2 days before they were fixed and b-galactosidase activity was visualized by staining
with X-Gal. More than 50% of the clones derived by RMCE from master target cell line EM2-11ht show successful targeting. (C) The master cell
line HeLa EM2-11ht retargeted by the original luc/egfp reporter (construct A-2) recovers original induction characteristics of the parental
EM2-11 line. Luciferase activity (measured in cell lysates and normalized to the total protein content) was induced in the original clone EM2-11
and RMCE derived daughter lines (EM2-11.2, 4, 5, 6 and 7) with 200 ng/ml of dox for 16 h. The bars represent the mean values and the standard
deviations of three independent measurements. (D) Histogram plots of EGFP expression in clones measured in C. The expression of EGFP was
measured in the absence (light gray) and the presence of 200 ng/ml of dox after 16 (dark gray) and 24 h (black). Each plot represents 10 000 cells.
(E) Coexpression of both fluorescent proteins d1gfp and mcherry in individual cells of a given clone (construct A-3) was detected by fluorescence
microscopy.
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Upon insertion of the miRNA sequence in the exchange
vector, lamin-specific miRNA was co-regulated with
destabilized d1GFP (Figure 6A). HeLa-EM2-11ht cells
were co-transfected with the respective plasmids, and
clones were selected as described earlier. Several stable
clones were cultured in the presence of dox to induce the
miRNA as well as the synthesis of d1GFP. In all 19 exam-
ined clones, we observed a strong knock-down of endo-
genous lamin by immunofluorescence with lamin A/C
specific monoclonal antibody (19) (data not shown). One
of the clones was analyzed in more detail. It was expanded
in the presence of dox, and cells were harvested after 24,
48, 72 and 96 h. Cell extracts were analyzed for lamin A/C
and d1GFP by Western blots and as shown in Figure 6B,
lamin begins to disappear after 48 h and is hardly visible
after 96 h. In parallel, d1GFP is induced demonstrating
its coexpression with the lamin-specific miRNA. A dose-
response experiment shows that above 50 ng/ml of dox,
the production of both, miRNA and d1GFP, are effec-
tively induced.
To track the shutdown of lamin A/C synthesis and the

induction of d1GFP at the cellular level, we monitored the
cells by immunofluorescence with a lamin-specific anti-
body and by GFP fluorescence, respectively. As shown
in Figure 7, lamin becomes almost undetectable within
96 h while d1GFP can be observed. Removal of dox
leads to full recovery of lamin staining after a period of
72 h. Note the uniformity in changes of lamin concentra-
tion in response to dox-mediated miRNA regulation.
Similar results were obtained with several other clones
(data not shown), underscoring the high degree of predict-
ability of this experimental approach. In a series of

continuative experiments, we were able to reduce the
weak, but still detectable lamin expression by the simulta-
neous expression of multiple miRNAs directed against
different positions in the lamin mRNA. In these

Figure 7. Fast and efficient reversal of the lamin A/C knock-down.
Conditional knock-down of lamin A/C is demonstrated by immuno-
fluorescence staining of stable HeLa EM2-11 cells harboring a single-
copy miRNA expression cassette. Cells were seeded on cover slips and
induced with 200 ng/ml of dox for 96 h. Subsequently, dox was removed
from the growth medium, and cells were imaged at the time points
indicated on the left side. Anti-Pom121 staining served as a positive
control visualizing nuclear pore complexes within the nuclear envelope.
Scale bar 20 mm.

Figure 6. Conditional downregulation of endogenous lamin A/C by tet-
racycline controlled expression of miRNA. (A) Schematic repre-
sentation of the Tet-regulated microRNA (miRNA) construct
pd1gfpPtetmiR after site-directed genomic integration via RMCE.
The bidirectional expression cassette contains a lamin A/C specific
miRNA and a destabilized green fluorescent protein (d1gfp). (B)
Western blot analysis of the lamin A/C knock-down after miRNA
expression over time. Clonal miRNA harboring cells derived from the
master cell line EM2-11ht by RMCE were induced with 200 ng/ml dox
for the time indicated. Tubulin expression served as a loading control.
After 96 h, lamin A/C expression is undetectable (C) Dose response
analysis of lamin A/C knock-down in stable pd1gfpPtetmiR containing
HeLa EM2-11 cells. Cells were cultured with increasing concentrations
of dox for 96 h before collection. The expression of miRNA is mirrored
by the appearance of the coexpressed reporter protein d1gfp. Significant
reduction of lamin expression is visible with 20 ng/ml of dox.
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experiments, the knock-down of lamin A/C could be sig-
nificantly enhanced by the additive action of two and four
miRNAs, respectively, arrayed in a tandem configuration
(Supplementary Figure S3). Additionally, we elucidated
the possibility of the simultaneous inactivation of two
genes by constructing a tandem array with miRNAs direc-
ted against lamin A/C and Pom121 (20), both proteins
located at the inner membrane of the nuclear envelope.
Here, we demonstrate that the combination of two differ-
ent miRNAs in a polycistronic cluster is as effective as the
single-expression constructs (Supplementary Figure S4).

DISCUSSION

The generation of cultured cells capable of expressing
transgenes of interest stably and in a well defined and
comparable manner is generally marred by a considerable
clone-to-clone variability both in absolute expression
levels and expression characteristics of the transgene.
Copy number and spatial arrangement of the transgenes
as well as its epigenetic modifications can be responsible
for these unpredictable effects. The latter can result in
partial or complete gene silencing, which usually strongly
depends on the chromosomal integration site. The devel-
opment of the recombinase-mediated cassette exchange,
RMCE, was a major advance in handling these so-called
position effects (28). Targeting pre-defined genomic loci
has been shown to significantly reduce and simplify pro-
cedures for identifying a desired cell line and, importantly,
it facilitates comparative analyses of different transgenes
expressed in an otherwise identical genetic background
(29–31). Our goal was to utilize this method for further
expanding the scope of application for the tetracycline
controlled gene expression technology including inducible
and reversible gene suppression by RNAi.

To this end, we set out to identify genomic loci that are
optimal recipients of Tet-responsive transcription units, in
the sense that they qualify as s/a loci (7–9): transcription-
ally silent under non-induced conditions but highly active
upon induction. Once identified, these loci can be retar-
geted by suitably engineered exchange vectors. Others
have recently succeeded in combining Tet regulation and
site-specific recombinases for the same purpose. While
achieving a comparable stringency of transgene regulation
as shown by us (about 104-fold), their strategies are tech-
nically more complex, inherently increasing the risk of
failure. Brough and colleagues (32) require two recombi-
nation steps to transfer efficient inducibility to the trans-
gene of choice, while Wong et al. (33) had to include an
additional trans-acting silencer in their experimental
design. We could avoid these complications by using a
strategy of identifying s/a loci, which relies exclusively
on quantitative expression characteristics of the Tet-
controlled reporter genes introduced. Additionally, this
screening procedure allowed us to omit the introduction
of an antibiotic resistance gene for the generation of stable
clones, a procedure which has been previously validated
(34). Our results show that this approach of stable cell line
generation can be used for the identification of genomic
loci, which not only support uniform, persistent and

bidirectional expression of two transgenes in the presence
of dox, but also do not affect minimal promoters such as
Ptet in the ‘off’ state, i.e. in the absence of dox. Thus, the s/
a loci identified are well suitable recipients for transgenes
of choice by RMCE.
To fully test the capacity of s/a loci to support the

desired expression parameters, we exchanged the reporter
used for clone isolation by a positive/negative selection
marker, solely to facilitate selection and monitoring of
subsequent exchange reactions. The potential of the result-
ing master clones has been scrutinized in two different
experimental setups.
First, we re-introduced the original reporter genes to

examine the reproducibility of expression features between
independently isolated but completely isogenic cell lines.
We could show that there is very little clone-to-clone
variability, an essential step in making transgene expres-
sion in stable cell lines more predictable and ensuring
better comparability of cell lines in which different trans-
genes are to be analyzed in parallel. In addition, these
clones showed quantitative parameters of transgene con-
trol closely resembling, if not identical, to the parental
clone in which the respective s/a locus was identified.
These experiments were not only carried out with HeLa
EM-11 clone, described here in detail, but also with clones
HeLa EM-17 (data not shown) and HeLa EM-22
(Supplementary Figure S2). With all three clones, we
obtained fully comparable results, which indicate to us
that the loci identified are epigenetically stable over time.
Second, we introduced Ptet-controlled miRNA

directed against endogenous cellular targets. Wang et al.
(35) recently published another approach allowing the
recombinase-mediated integration of inducible miRNA
transcription units in a predetermined chromosomal
locus. It remains unclear, though, how effectively this
locus will support regulated transcription in quantitative
terms, as it relied on a pre-existing recipient cell line. In
our example, lamin A/C and Pom121 could be reversibly
knocked down close to the detection limits, a process
which occurred synchronously throughout the entire cell
population. By experience, the performance of newly
established, regulatable miRNA constructs is largely
empirical and problems with inefficient and poorly con-
trollable knock-down phenotypes are frequently encoun-
tered. These may either be due to insufficient control over
the miRNA transcription unit or the poor efficacy of the
miRNA/target sequence interaction. With the latter still
difficult to predict, it is even more important to rely on
predetermined integration sites, for which Polymerase II
transcription control parameters have been established
beforehand.
In addition, we could also limit miRNA interference to

a defined time window, shown by the complete reversibil-
ity of dox-dependent knock-down of target genes, and we
succeeded to combine miRNAs in a polycistronic config-
uration, which enabled the knock-down of two different
proteins at the same time. Furthermore, the controlled
expression of miRNA in incremental steps as implemented
here by properly adjusting the dox concentration may
allow for the precise adjustment of protein concentrations
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and the controlled perturbation of equilibria in complex
biological systems.
Taken together, the features of the conditional RNA

interference system introduced here will greatly increase
the flexibility of the experimental design in knock-down
experiments and strengthen the confidence in the interpre-
tation of resulting phenotypes in cell based experimental
systems.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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