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    Altered electrical coupling is a hallmark of car-
diac arrhythmia that can result from diverse 
forms of heart disease ( 1 ). Various proteins that 
form contacts between cardiomyocytes have 
been linked to arrhythmia both in human pa-
tients and in animal models. A specialized cell –
 cell contact, the gap junction, accounts for the 
majority of intercellular coupling between car-
diomyocytes ( 2 ). GAP junctions are formed 
from connexins (Cx) that assemble into two 
hemichannels for electric and metabolic cell-to-
cell signaling. Mutations of connexins or changes 
in expression or localization contribute to the 
development of arrhythmia in patients ( 3 ). Con-
nexins form gap junctions with diff erential 
gating properties, depending on the isoform 
composition ( 4 ). Thus, the KO of Cx40 leads to 
atrioventricular (AV) block and bundle branch 
block ( 5 ), whereas, conversely, connexin 30.2 
slows AV conduction in mouse heart ( 4 ). The 

activity of gap junctions is not only aff ected by 
altered expression or mutations in connexins 
but also secondary to changes of the adherens 
junction or the desmosome that can lead to mis-
localization and loss of functional gap junctions 
( 6, 7 ). Unlike gap junction, adherens junction, 
and desmosome, the tight junction as the fourth 
type of cell – cell contact at the intercalated disc 
has so far not been associated with arrhythmia. 

 The Coxsackievirus-adenovirus receptor 
(CAR) is a type I transmembrane protein of the 
tight junction ( 8 ). Its extracellular Ig domains 
mediate homotypic cell adhesion and uptake of 
adenovirus and coxsackievirus B ( 9, 10 ). The 
cytoplasmic tail is alternatively spliced and in-
teracts with various adaptor proteins that link 
to signal transduction and endocytosis ( 8, 11 – 13 ). 
CAR defi ciency results in midembryonic lethality 

CORRESPONDENCE  

 Michael Gotthardt: 

 gotthardt@mdc-berlin.de

 Abbreviations used: AV, atrio-

ventricular; CAR, Coxsackievi-

rus-adenovirus receptor; E, 

embryonic day; ECG, electro-

cardiogram; EP, electrophysiol-

ogy; HV, His-ventricle; MHC, 

myosin heavy chain. 

 U.L. and Y.S. contributed equally to this paper. 

   The online version of this article contains supplemental material.   

 The tight junction protein CAR 
regulates cardiac conduction 
and cell – cell communication 

  Ulrike   Lisewski ,  1    Yu   Shi ,  1    Uta   Wrackmeyer ,  1    Robert   Fischer ,  3   
 Chen   Chen ,  1    Alexander   Schirdewan ,  3,4    Rene   J ü ttner ,  2    Fritz   Rathjen ,  2   
 Wolfgang   Poller ,  4    Michael H.   Radke ,  1   and  Michael   Gotthardt ,  1,5   

  1 Neuromuscular and Cardiovascular Cell Biology,  2 Developmental Neurobiology, Max Delbr ü ck Center for Molecular Medicine 

(MDC), 13122 Berlin-Buch, Germany 

  3 HELIOS Kliniken GmbH, Franz-Volhard Klinik, Charit é , Humboldt University, 13125 Berlin, Germany 

  4 Department of Cardiology, Campus Benjamin Franklin, D-12200 Berlin, Germany 

  5 Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State University, Pullman, 

WA 99164   

 The Coxsackievirus-adenovirus receptor (CAR) is known for its role in virus uptake and as a 

protein of the tight junction. It is predominantly expressed in the developing brain and 

heart and reinduced upon cardiac remodeling in heart disease. So far, the physiological 

functions of CAR in the adult heart are largely unknown. We have generated a heart-

specifi c inducible CAR knockout (KO) and found impaired electrical conduction between 

atrium and ventricle that increased with progressive loss of CAR. The underlying mechanism 

relates to the cross talk of tight and gap junctions with altered expression and localization 

of connexins that affect communication between CAR KO cardiomyocytes. Our results 

indicate that CAR is not only relevant for virus uptake and cardiac remodeling but also has 

a previously unknown function in the propagation of excitation from the atrium to the 

ventricle that could explain the association of arrhythmia and Coxsackievirus infection of 

the heart. 

© 2008 Lisewski et al. This article is distributed under the terms of an Attribu-
tion–Noncommercial–Share Alike–No Mirror Sites license for the fi rst six months 
after the publication date (see http://www.jem.org/misc/terms.shtml). After six 
months it is available under a Creative Commons License (Attribution–Noncom-
mercial–Share Alike 3.0 Unported license, as described at http://creativecommons
.org/licenses/by-nc-sa/3.0/).

 
 Published September 15, 2008

 http://www.jem.org/cgi/content/full/jem.20080897/DC1
Supplemental Material can be found at: 

http://www.jem.org
http://www.jem.org/cgi/content/full/jem.20080897/DC1


2370 ARRHYTHMIA IN THE CAR KNOCKOUT MOUSE  | Lisewski et al. 

which could be documented in all KO animals from week 2 
after induction. Blocks of a higher degree were present from 
4 wk after induction of the CAR KO ( Fig. 2 F ), including 

with pericardial edema that is related to altered organization 
of myofi brils and increased proliferation of cardiomyocytes 
( 14 – 16 ). This lethality has so far precluded a loss of func-
tion analysis in the adult heart. As outlined in the subsequent 
sections, we have generated a heart-specifi c inducible CAR 
KO mouse and found a conduction defect in the AV node as 
a sign of impaired propagation of excitation from the atrium 
to the ventricle. 

  RESULTS  

 CAR is required for cardiac development 

 In this paper, we have used a conditional KO approach to in-
vestigate the role of CAR in the adult heart. The strategy 
( Fig. 1 ) involves the excision of the fl oxed CAR exon 1 and 
the tissue-specifi c expression of the cre recombinase.  The 
myosin heavy chain (MHC) cre transgene is active from 
midgestation and restricts expression of the cre recombinase 
to cardiomyocytes ( 17 ). We have reduced CAR expression to 
 < 20% of control levels at embryonic day (E) 11.5 ( Fig. 1 C ), 
which resulted in early lethality between E11.5 and 12.5 
( Table I ) and resorption from E13.5 ( Fig. 1 B ).  So far, we 
have not obtained a single KO in  > 300 off spring from breed-
ings that should produce 25% cardiac KO animals (MHCcre +  
CAR recf/wt   ×  CAR recf/recf ). To circumvent the embryonic le-
thality, we used expression of the tamoxifen-inducible mutant 
estrogen receptor fusion protein (MerCreMer; reference  18 ). 
After our 2-wk injection regimen (30 mg tamoxifen per kilo-
gram of body weight per day; fi ve injections per week) we 
achieved a reduction in CAR mRNA levels similar to that of 
the cardiac KO embryo ( Fig. 1 D ). CAR mRNA levels de-
clined to  < 10% from 1 wk after injections. After 2 wk of in-
jections the reduction in protein levels followed ( Fig. 1 D ). 

 Loss of CAR leads to impaired electrical conductance 

from atrium to ventricle 

 Despite effi  cient postnatal depletion of CAR, the cardiac-in-
ducible KO animals did not show an obvious phenotype. 
This includes the initial cardiac assessment by echocardiogra-
phy that did not show signs of reduced contractile function or 
dilation in the fi rst month after induction with tamoxifen (un-
published data). The routine monitoring of cardiac activity 
during anesthesia using the electrocardiogram (ECG) uncov-
ered an unexpected abnormality in the CAR KO hearts ( Fig. 2 ).  
Although the depolarization and repolarization of the KO 
ventricle was normal (QRS complex and QT interval), we 
found that the conduction of the electrical activity from the 
atrium to ventricle was disturbed. This is refl ected in the pro-
longed PR interval after induction of the KO ( Fig. 2, B and C ) 
and corresponds to a problem at the level of the AV node. 
The PR conduction time increased with progressive deletion 
of CAR from as early as 1.5 wk after tamoxifen induction 
(51  ±  4 vs. 39  ±  1 ms; P  <  0.05;  Fig. 2 D ) at a time when CAR 
protein levels started to decline. To exclude an eff ect of the 
anesthesia, the analysis was reproduced using telemetry on ac-
tive animals ( Fig. 2 E ). The prolongation of the PR interval is 
the hallmark of fi rst degree AV conduction block (AVB I ° ), 

  Figure 1.     Cardiac-specifi c CAR KOs.  (A) Targeting strategy. Exon 1, 

which contains the translation start, was replaced with the fl oxed exon 1 

and the FRT-fl anked neo cassette. The neo cassette was subsequently 

removed by germline expression of the FLP recombinase. We generated a 

heart-specifi c and an inducible heart-specifi c CAR KO using the MHC 

promoter to express the cre recombinase (MHCcre) or the MerCreMer 

fusion protein (MCMcre), respectively. The latter is activated by the injec-

tion of tamoxifen (30 mg per kilogram body weight per day for 2 wk with 

fi ve injections per week). Bar, 1,000 bp. (B) The heart-specifi c KO (MHC+) 

was unaffected through E11.5 with subsequent failure to thrive and death 

by day 13.5 of gestation (E13.5). Bar, 500  μ m. (C) At E11.5, CAR mRNA 

levels were reduced to 10% of WT levels (FC, fold change). (D) The tamoxi-

fen-inducible heart-specifi c CAR KO animals can be induced to excise the 

CAR exon 1. After 1 wk of tamoxifen injections, CAR mRNA expression 

dropped to  < 10% in KO animals, and protein levels, as determined by 

Western blot (CAR compared with actin), followed at 2 wk as compared 

with two sets of controls, vehicle (Vh)-injected MCM+ or Tamoxifen-

treated MCM �  animals. Error bars show SD.   
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ing was specifi c to the intercalated disc in ventricular cardio-
myocytes, AV nodal cells showed a more diff use distribution 
of CAR along the cell membrane. 

 Despite the early eff ect on the AV node with total loss of 
function from week 4, structural changes of the AV node 
were only minor. Comparisons of sections with identical ori-
entation revealed a small reduction in maximal AV node area 
in KO animals ( Fig. 4 A ).  Three dimensional reconstruction 
was used to quantify the corresponding volumes with a  < 30% 
reduction of AV node volume in KO (6.2  ±  1.9  ×  10 6   μ m 3 ) 
versus control mice (10.9  ±  1.6  ×  10 6   μ m 3 ) at 8 wk after in-
duction ( Fig. 4, B  vs.  C ). Results were reproduced in two 
independent experiments ( n  = 4). 

 Cross talk of tight and gap junction 

 In the absence of a major anatomical or structural defect, we 
used a functional approach to explore the mechanism underly-
ing the conduction block. To analyze the activity of gap junc-
tions, which have previously been implied in isolated AV 
conduction disease ( 5, 19 ), we have adapted a dye-coupling as-
say to be used on cardiac slices using carboxyfl uorescein, which 
facilitated the detection of coupling in myometrial cells as com-
pared with lucifer yellow ( 20 ). This assay enabled us to investi-
gate cell – cell communication between cardiomyocytes in situ. 
In parallel with the reduction of CAR protein levels, cellular 
exchange of the fl uorescein dye increased from weeks 2 – 4 ( Fig. 
5, A and B ).  The area covered by dye-fi lled cells after 4 min 
was used to quantify coupling effi  ciency. Although coupling 
was not signifi cantly diff erent between WT and CAR KO car-
diomyocytes at week two after initiating tamoxifen injection, 
dye spread increased signifi cantly from week 3 ( Fig. 5 B ). 

 Because the dye-coupling experiments indicated a prob-
lem in cell – cell communication, we followed the structure 
and protein composition of the intercalated discs and the ex-
pression and localization of gap junction proteins. CAR KO 
cardiomyocytes maintained intercalated discs with a normal 
ultrastructure that did not show widened gaps between cells 
or increased folding (Fig. S5, available at http://www.jem
.org/cgi/content/full/jem.20080897/DC1). 

 To determine which genes contribute to the develop-
ment of the AV block phenotype, we have obtained prelimi-
nary expression profi ling data from mouse atria that show the 
expected down-regulation of CAR ( > 10-fold down in the KO) 

partial failure of AV conduction (AVB II ° , 25%) or total dis-
sociation of atrial and ventricular rhythms (AVB III ° , 37.5%). 

 Both sinus and AV node are affected in the KO heart 

 To improve the characterization of the arrhythmia pheno-
type and to investigate the etiology of the AV conduction 
defects, we performed in vivo electrophysiological studies in 
CAR KO ( n  = 12) and control ( n  = 11) mice, 4 wk after 
tamoxifen induction. Examples of diff erent degrees of AV 
blocks in KO animals are provided in the online supplemen-
tal material (Fig. S1, available at http://www.jem.org/cgi/
content/full/jem.20080897/DC1). We found no signifi cant 
diff erence in atrial and ventricular refractory periods ( Fig. 2 F ) 
or inducibility of atrial and ventricular arrhythmias. Adrenergic 
stimulation did not aff ect AV conduction in the KO at 4 wk 
after induction (Fig. S2), but atrial pacing revealed diff erences 
in AV conduction capacity in control versus KO animals 
(Fig. S3). This was determined by the Wenckebach periodic-
ity (AVWB), the longest pacing interval where transient 
block of AV conduction occurs. In the CAR KO mice, 
Wenckebach periodicity was observed at slower heart rates. 

 Between CAR KO and controls, the lengths of P waves 
and the His-ventricle (HV) intervals ( Fig. 2 G ) were un-
changed. This indicates that CAR regulates AV conduction 
at the level of the AV node. Additionally, we were able to de-
tect accelerated junctional rhythms (originating from within 
the AV nodal region) in 50% of CAR KO mice ( Table II ).  
The presence of sinus node tachycardia (16.7%) and bradycar-
dia (33.3%) in CAR KO mice indicated an additional eff ect 
on sinus node function. Thus, CAR defi ciency resulted in 
binodal disease in 50% of CAR KO mice. To avoid sampling 
errors and potential eff ects from anesthesia, we additionally 
followed the heart rate continuously over time using telem-
etry (Fig. S4, available at http://www.jem.org/cgi/content/
full/jem.20080897/DC1). Heart rate of KO animals main-
tains a circadian rhythm even with complete AV block and is 
signifi cantly increased after induction of the KO (from 1 to 2 
wk after induction;  n  = 3 per group). 

 To fi nd a morphological correlate of the AV block and 
verify expression of CAR in AV nodal cells, we used various 
marker proteins to identify the AV node ( Fig. 3 ) and docu-
mented diff erential localization of CAR in cardiomyocytes 
versus AV nodal cells ( Fig. 3, E and F ).  Although CAR stain-

  Table I.    Embryonic lethality of the heart-specifi c CAR KO 

MHCcre � MHCcre+

Age CAR recf/wt CAR recf/recf CAR recf/wt CAR recf/recf 

E9.5 1 (20) 1 (20) 1 (20) 2 (40)

E10.5 1 (14) 3 (42) 2 (28) 1 (14)

E11.5 28 (33) 20 (23) 21 (24) 17 (20)

E12.5 16 (47) 8 (24) 9 (26) 1 (3)

E13.5-15.5 12 (48) 5 (20) 8 (32) 0

 > Postnatal day 1 95 (30) 137 (43) 85 (27) 0

Shown is the number of tested embryos, with the percentage in parentheses.
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and suggest a specifi c role of connexin 43. The expression of 
other proteins previously implied in arrhythmia (channels, 
connexins, and transcription factors) was largely unchanged 
(unpublished data). We extended the expression analysis to 
cardiac ventricle (where diff erences in coupling were docu-
mented) and found that RNA levels of both cell – cell contact 
and adaptor proteins were altered secondary to loss of CAR 
( Fig. 6 ).  This includes reduced expression of ZO-1, an adap-
tor protein that binds both CAR and connexins ( Fig. 6 A ) 
( 8, 21 ). Expression of connexins was diff erentially aff ected in 
the CAR KO heart. On the mRNA level, Cx45 expression 
was reduced only late in the development of the phenotype, 
whereas Cx37 and 40 changed only transiently ( Fig. 6, B and 
C ). The altered protein levels of Cx45 and Cx43 (both  > 40% 
reduction) in KO hearts compared with Cx40, which was 
unchanged ( Fig. 6 D ), indicate a selective eff ect of CAR on 
a subset of connexins. 

 Protein composition of the intercalated disc was analyzed 
in isolated cardiomyocytes at 8 wk after induction of the phe-
notype. Costaining with  � -actinin antibodies confi rmed the 
proper orientation of the myofi lament and connection to the 
intercalated disc ( Fig. 7 A ).  Although the structure of the in-
tercalated discs was maintained, protein composition changed 
in response to the loss of CAR. Although the expression and 
localization of the adherens junction protein N-cadherin was 
unaff ected ( Fig. 7 B ), the localization of the gap junction 
protein Connexin 43 (Cx43) was altered in KO cardiomyo-
cytes 8 wk after induction ( Fig. 7 C ). Reduced amounts of 
protein were accumulated in subdomains within the interca-
lated disc of the KO. This observation indicates a functional 
link between the tight and gap junctions, but not between 
tight and adherens junctions, that involves CAR. 

  DISCUSSION  

 To better understand the function of CAR in the adult heart, 
we generated an inducible KO. Excision of exon 1, which con-
tains the transcription and translation start, aff ects the expression 
of any CAR isoform, whereas the tight control of recombina-
tion by tamoxifen eliminates developmental eff ects that might 
arise from the embryonic loss of CAR expression. The embry-
onic lethality has been established for both the KO of CAR 
exon 1 and exon 2 ( 14, 15 ). An additional independent heart-
specifi c KO of CAR exon 2 resulted in a mild hypertrophy 
phenotype and enabled survival of  � 20% of cardiac KOs ( 16 ). 

 All CAR splice variants described so far, including the sol-
uble isoforms, contain both exons 1 and 2 ( 22, 23 ). Thus, both 
loss of the start codon and transcription start in the KO of exon 
1 ( 15 ) (our approach) versus the frameshift resulting from the 
deletion of exon 2 ( 14, 16 ) should cause similar phenotypes. 
Unexpectedly, our heart-specifi c KO of CAR exon 1 was 
100% lethal using the identical  � -MHCcre transgene that re-
sulted in 20% survival of the KO of exon 2 ( Table I ). Both dif-
ferences in the genetic background and alternative splicing that 
result in a partial rescue of the exon 2 KO could explain those 
discrepancies. As compared with our animal model, the heart-
specifi c KO of exon 2 had mild cardiac atrophy of incomplete 

  Figure 2.     Electrical conduction from atrium to ventricle is im-

paired in CAR KO hearts.  (A) Annotated ECG curve. The PR interval cor-

responds to the time between atrial and ventricular depolarization. 

(B and C) Quantifi cation of the ECG changes in KO and control animals 

before (B) and after (C) the 2-wk treatment with tamoxifen ( n  = 8 per 

group; D) revealed an increased PR interval in induced KO animals ( n  = 8 

per group). (E) This fi nding was reproduced by telemetry to exclude an 

effect of the anesthesia ( n  = 3 per group). After week 6, all KO animals 

showed a complete block so that a PR interval could not be derived. 

(F) The increased PR interval is the ECG correlate of an AV conduction 

block. Grading the conduction defect in normal AV conduction versus AV 

block I to III shows the increase in conduction defects over time with 

third degree AV blocks at week 4 after induction of the KO. (G) As deter-

mined by EPS catheter at week 4 after induction, the HV interval, AV node 

2:1 conduction capacity (AV 2:1), atrial effective refractory period (AERP), 

and ventricular effective refractory period (VERP) were unchanged be-

tween genotypes, which would exclude an affl iction downstream of the 

HIS bundle. The only signifi cant change was detected in the interval at 

which electrical propagation from atrium to ventricle was skipped for the 

fi rst time (Wenckebach Periodicity [AV-WB]) with a signifi cant increase 

in the KO heart. *, P  ≤  0.05; **, P  ≤  0.01; ***, P  ≤  0.001. Error bars show 

SEM. W, week.   
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in part indirectly through gap junctions, whose role in the car-
diac conduction system is well established. Our results indicate 
that the proper interplay of all known cell – cell contacts, includ-
ing the tight junction, determines the electrical properties of 
the adult heart. Loss of the tight junction protein CAR leads to 
severe AV block but leaves the electrical properties of the atrial 
and ventricular myocardium remarkably unaff ected. Detailed 
characterization of the electrical activity of KO hearts revealed 
no diff erence in atrial depolarization, so that we can exclude 
slowed atrial conduction as a reason for the delayed AV con-
duction (increased PR interval). Physiologically, the PR inter-
val is mainly determined by the conduction through the AV 
node followed by the His-Purkinje bundles. As the HV interval 
was equal in CAR KO and control mice, we conclude that 
CAR regulates AV conduction directly within the AV node. 
Although AV conduction is impaired, CAR KO mice showed 
a signifi cantly increased mean heart rate compared with con-
trols at week 4 after induction (Fig. S2), which was confi rmed 
by telemetry of nonanesthetized animals (Fig. S4). In the early 
stages of AV conduction disease with prolonged, but stable, 1:1 
AV conduction, the elevated heart rate results from increased 
sinus rates that determine the beating frequency. At later stages, 
accelerated junctional rhythms (originating from within the AV 
nodal region) cause the tachycardia in KO animals. 

 To exclude a basic structural problem as the basis of the 
electrical phenotype, we used histology and 3D reconstruc-
tion and compared AV nodes from CAR-KO and control 
hearts. By itself, the minor reduction in size in the absence 
of fi brosis or fatty infi ltration as compared with patients 
with AV disease could not explain the severity of the ar-
rhythmia ( 24 ). 

 Toward understanding the molecular mechanism under-
lying the AV block phenotype, we compared our KO to 
published animal models with arrhythmia that involves pro-
longed PR intervals ( Table III ).  With the severe AV block in 
the absence of atrial or ventricular arrhythmia mimicked in 
the Cx45 KO, we hypothesized that CAR (as described for 
N-cadherin; reference  6 ) aff ects electrical conduction indi-
rectly through gap junctions. Because the size of the murine 
AV node prevents functional studies of the AV nodal cells, 
we investigated gap junction activity in cardiomyocytes as a 

penetrance (ventricular thickening and underdeveloped valves). 
In our animals, there was no ventricular thickening or malfor-
mations of the valves but pericardial eff usion. Animals devel-
oped a beating heart but died with 100% penetrance. To 
effi  ciently produce surviving heart-specifi c CAR KO animals 
and generate an adult KO model without a potentially compli-
cating developmental phenotype, we restricted our analysis to 
the inducible heart-specifi c KO. 

 The intercalated disc contains four diff erent types of inter-
cellular junctions, three of which have been linked to cardiac 
arrhythmia in human and animal models: gap junctions (with 
connexins forming channels for ion transfer), adherens junc-
tions (with N-cadherin stabilizing gap junctions), and desmo-
somes (structural organization of the intercalated disc). Proteins 
of the adherens junction and the desmosome aff ect conduction, 

  Table II.    Characterization of conduction defects by EP catheter 

Control KO

Normal 11 (100) 0

AV conduction defects 0 12 (100)

   AVB I ° 0 3 (25)

   AVB II ° 0 1 (8)

    AV dissociation/AVB III ° 0 8 (67)

Sick sinus syndrome 0 6 (50)

   Sinustachycardia 0 2 (17)

   Sinusbradycardia 0 4 (33)

Accelerated JR 0 6 (50)

AVB, AV block; Accelerated JR, accelerated junctional rhythms. Percentage is shown in parentheses.

  Figure 3.     CAR expression in the AV node.  (A) The AV node was local-

ized by staining for AChE enzyme activity. (B) Trichrome staining revealed 

the fi brous body (blue), an anatomical landmark which facilitates localiza-

tion of the juxtaposed AV node. (C) The identifi cation was confi rmed in 

serial sections by anti-ChAT immunohistochemistry. Bars, 100  μ m. 

(D) Expression of CAR in the AV node was detected by staining with anti-

CAR (green) and anti-HCN4 (red) antibodies. The squares indicate the 

region that is magnifi ed in E and F. (E) CAR is localized in the intercalated 

disc (arrowheads) within the atrial septum (AS). (F) In cells of the AV node, 

CAR is distributed along the membrane (arrowheads). Bars, 25  μ m.   
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heart ( 6 ). On a molecular level, the functional interaction of 
gap and tight junction is supported by coprecipitation and 
colocalization of Cx40 and Cx43 with tight junction mole-
cules occludin, claudin-5, and ZO-1 in endothelial cells ( 25 ). 

 The increased dye coupling does not lead to altered elec-
trical properties of the atrium or ventricle in the CAR KO. 
This indicates that CAR KO cardiomyocytes, unlike AV 
nodal cells are not limited by GAP junction activity, a feature 
which could derive both from altered expression of connexins 
and diff erential localization of CAR between the cell types 
( Fig. 3 ). AV conduction is altered in various connexin KO an-
imals, such as the cardiac KO of Cx45 ( 26 ) or the KO of 
Cx40, which displays a combination of intraatrial block, ecto-
pic rhythms, and altered atrial propagation in the right atrium 
( 27 ). None of the ectopic rhythms described in the Cx40 KO 
or of the spontaneous or the inducible ventricular tachyar-
rhythmias of the Cx43 KO ( 28 ) could be detected in the CAR 
KO heart. These results indicate a residual function of Cx40 
and Cx43 in the CAR KO and further underscore the specifi c 
role of CAR in AV conduction. In part, this is refl ected in the 
diff erential expression of connexins in the KO heart: Cx40 

proof of concept. Although dye coupling is widely used to 
study gap junctions in cultivated cardiomyocytes ( 7 ), we have 
adapted the method to be used in cardiac slices, which largely 
preserves the structures required for intercellular communi-
cation. We found increased dye coupling from week 3 after 
induction of the KO, indicating cross talk of the tight and gap 
junction ( Fig. 5 ). Thus, CAR might aff ect conduction through 
altered compartmentalization of connexins. A similar depen-
dence has been shown for N-cadherin and connexins with 
decreased expression of Cx40 and 43 in the N-cadherin KO 

  Figure 4.     Reduced size of the AV node in the adult CAR KO heart.  

(A) Masson ’ s Trichrome staining of a KO and control heart at 8 wk after 

induction shows connective tissue of the valves in blue to separate the AV 

node area and ventricular septum (VS). To facilitate orientation, left and 

right atria (LA and RA, respectively) are indicated. The largest AV node 

area of a series of serial section is slightly reduced in the KO heart com-

pared with the control. (B and C) Three dimensional reconstruction of the 

AV node from control (B) and CAR KO (C) animals was used to obtain 

projections in different plains (t, top; l, left; r, right; d, dorsal; v, ventral). 

The reduced thickness of the AV node results in a volume that corre-

sponds to  � 2/3 of the volume of the control AV node ( n  = 4). The con-

tinuation of the HIS bundle is indicated by white arrows. Bars, 100  μ m.   

  Figure 5.     Altered cell – cell communication in the CAR KO heart.  

(A) After injection of fl uorescein, the dye is passed to neighboring cells. 

Representative cells from KO and control cardiac slices from weeks 2 – 4 

after induction of the KO are shown. The increased longitudinal and lat-

eral coupling is most prominent in cardiac slices at the 4-wk time point. 

(B) Quantifi cation of  > 200 injections representing 14 independent hearts 

documents the signifi cantly increased coupling from week 3 after induc-

tion of the KO. The area at the end of the 4-min injection period was used 

to compare cell – cell communication at the indicated times. For each time 

point, the number of injections and number of animals is provided (injec-

tions/animals). **, P  ≤  0.01; ***, P  ≤  0.001, Mann-Whitney test. Error bars 

show SEM. Bar, 100  μ m.   
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with the CAR KO), the expression analysis suggests that the 
eff ect of CAR is mediated by Cx45. 

 In the mouse model, it is challenging to study the AV 
node and even more diffi  cult to study the sinus node (with 
hardly any literature data available). Thus, we focused our 
molecular and morphological analysis on the AV node and 
cardiac ventricle. The documented cross talk of CAR and 

protein levels are maintained at physiological levels, whereas 
Cx45 expression is reduced in the KO heart. Together with 
the functional analysis indicating that Cx40 or Cx45 are af-
fected in the CAR KO (both share the AV block phenotype 

  Figure 6.     Altered expression of the cell – cell contact proteins in 

CAR KO hearts.  (A) Expression of the CAR and its adaptor protein ZO-1 

were reduced signifi cantly from weeks 2 and 4, respectively, after induc-

tion of the KO. (B) The composition of the GAP junction was altered as a 

result of differential expression of Cx37 (transiently reduced) and Cx40 

(transiently increased, albeit not signifi cantly). Expression of Cx43 was 

unchanged. (C) Cx45 was the only connexin with RNA levels signifi cantly 

altered late in the progression of the phenotype (reduced from  > 8 wk). 

The adherens junction protein N-cadherin was unchanged. All expression 

data were normalized to GAPDH and levels at week 0 (before induction) 

were set to 100%. Fold change is shown on the y-axis.  n  = 3 per group. 

Error bars show SD. (D) Cardiac expression of Cx40, Cx43, and Cx45 was 

confi rmed on the protein level with down-regulation of Cx43 and Cx45, 

but not Cx40, in animals at  > 8 wk after induction of the phenotype. 

GAPDH was used as a loading control. After normalization to GAPDH, 

Cx45 levels were reduced by 45% (P = 0.012), Cx 43 levels by 43% (P = 

0.015), and Cx40 levels were not changed signifi cantly ( n  = 4). *, P  ≤  0.05; 

**, P  ≤  0.01; ***, P  ≤  0.001.   

  Figure 7.     Localization of connexin 43 is dependent on CAR.  In the 

absence of CAR, intercalated discs are maintained with proper localization 

of N-cadherin but changes in expression and localization of Cx43. 

(A) Staining with anti-CAR and anti –  � -actinin antibodies shows the proper 

localization of CAR in WT cardiomyocytes and correct orientation of the 

myofi laments. In KO cells, specifi c CAR staining was reduced to  < 10% 

compared with WT cardiomyocytes. (B) Staining with anti-CAR and anti –

 N-cadherin antibodies documents the proper expression and localization 

of N-cadherin upon deletion of CAR. (C) Staining with anti-CAR and anti-

Cx43 antibodies reveals that Cx43 expression is reduced in KO cardiomyo-

cytes 8 wk after induction. Residual Cx43 protein is localized in 

subdomains within the intercalated disc. Comparable results were ob-

tained in three independent experiments. Bars, 20  μ m.   
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explain how virus proteins or autoantibodies that interact with 
tight junction proteins, such as CAR, can cause arrhythmia 
( 30 ). Shedding of virus proteins from infected cells is an im-
portant mechanism to disrupt CAR – CAR interaction at the 
tight junction and facilitate virus passing epithelial barriers 
( 31 ). In the heart, this virus-induced disruption of CAR di-
mers would be expected to produce the same eff ect as the loss 
of CAR and, thus, ultimately lead to uncoupling and electrical 
conduction defects, which can accompany viral myocarditis 
( 32 ). Autoantibodies in rheumatic women have been shown 
to cause AV block by disregulating Ca 2+  homeostasis in car-
diomyocytes ( 33 ). A similar mechanism could result from auto-
antibodies that interfere with tight junction proteins. 

 In conclusion, we have identifi ed a novel mechanism for 
cardiac arrhythmia that involves the tight junction and results 
from loss of CAR, which is required to maintain functional 
gap junctions at the intercalated disc. Although the loss of 
CAR is well compensated in the myocardium, the altered 
electrical properties of the AV node result in a progressive 
AV block. At this time, there is no genetic defect of CAR as-
sociated with human disease, but our fi ndings would suggest 
tight junction proteins as potential disease genes in genetic 
forms of isolated AV block. Furthermore, the role of CAR in 
arrhythmogenesis has implications for CVB3 infection and 
patients with heart disease resulting from antibodies against 
proteins of the tight junction, which may lead to better screen-
ing methods to identify persons at risk of potentially fatal ar-
rhythmia and possibly to novel therapies. 

 MATERIALS AND METHODS 
 Generation of constitutive and inducible heart-specifi c CAR KO 

mice.   To generate CAR-defi cient animals, the Cre – lox recombination sys-

tem was used, fl anking CAR exon 1, which contains the ATG, with lox sites 

( Fig. 1 A ). After homologous recombination, blastocyst injection of targeted 

embryonic stem cells was used to obtain KO animals. The neomycin/fl p 

connexins in ventricle is comparable to the mechanism of ac-
tion of N-cadherin in cardiac conduction defects. The docu-
mented changes in conduction could explain both the AV 
block and Sick sinus syndrome. It is important to note that 
diff erent connexins are expressed in the conduction system 
and the myocardium. Furthermore, our preliminary expres-
sion profi ling analysis indicated that the regulation of con-
nexin expression in response to the loss of CAR diff ers between 
atrium and ventricle. Thus, altered communication of con-
nexins can diff erentially aff ect the conduction system (AV block 
and Sick sinus syndrome) and the ventricle where the defect 
is compensated with no indication for electrical abnormalities 
but increased coupling. 

 Toward understanding the molecular basis of the isolated 
AV block, we would envision a mechanism where the loss of 
CAR results in an altered protein composition of the tight 
junction, as documented by our expression and immunofl uo-
rescence analysis ( Figs. 6 and 7 ). Although the tight junction as 
a whole is not aff ected with normal ultrastructure and proper 
sublocalization of N-cadherin, we see connexins specifi cally 
respond to the loss of CAR with redistribution away from the 
intercalated disc and reduced protein levels (potentially a com-
bination of reduced expression and degradation of mislocalized 
protein). The AV node shows less compartmentalization and a 
more homogenous distribution of CAR along the plasma mem-
brane ( Fig. 3 ). This would explain the isolated eff ect on the AV 
node where no predetermined structure, such as the interca-
lated disc, would facilitate proper electrical conduction. 

 Multiple diseases have been associated with the tight junc-
tion, ranging from deafness and cancer to allergies and infec-
tions (for review see reference  29 ). In this paper, we describe 
a novel role for the tight junction in arrhythmia. Not only 
does this have implications for CAR as a potential diagnostic 
marker for familial cases of AV block but it might also help 

  Table III.    Conduction phenotypes with prolonged PR interval 

Gene Protein Model Conduction defects in addition to AV block

Cacna1d L-type Ca channel KO Abnormal QRS; sinus arrhythmia ( 41 )

Egf-R EGF-Receptor KO Abnormal QRS; prolonged QT ( 42 )

EphA3 Eph receptor A3 KO Bradycardia ( 43 )

Cx40 Connexin 40 KO Prolonged P, QT; abnormal QRS ( 5, 44 )

Cx43 Connexin 43 KO Abnormal QRS ( 45, 46 )

Cx45 Connexin 45 KO  Isolated AV conduction block  ( 26, 47 )

Hadhb HAC-CoA-dehyd. ENU AV block with sudden death ( 48 )

Kcnq1 K channel Q1 KO Prolonged QT; abnormal QRS ( 49 )

LmnA Lamin A KI Abnormal QRS ( 50 )

Nkx2-5 NK2 TF related 5 KO Prolonged PR in hetero, lack of AV node in KO ( 51, 52 )

Scn5A Na channel V � KO Prolonged P; tachycardia ( 36, 53, 54 )

Tbx5 T-box5 KO AV block, abnormal QRS, ventricular tachycardia ( 55, 56 )

Agtr1a Ang II - Receptor TG Abnormal QRS ( 57 )

Tead4 TEA domain 4 TG Abnormal QRS ( 58 )

Vegfb VEGF B KO  Isolated AV block  ( fi rst degree only ) ( 59 )

Italics show animal models that show the identical phenotype to the one described in this paper. ENU, ENU Mutagenesis screen; HAC-CaA dehyd., hydroxyacyl – Coenzyme A 

dehydrogenase; KI, knockin; TG, transgenic.

  
 Published September 15, 2008

http://www.jem.org


JEM VOL. 205, September 29, 2008 

ARTICLE

2377

 For continuous ECG monitoring, ECG radiotransmitters (TA10ETA-

F20; DSI, Inc.) were implanted under isofl urane anesthesia. The body of the 

implant was placed subcutaneously at the back of the animals. The two leads 

were fi xed subcutaneously in a standard lead II position (right upper and left 

lower thorax). After surgery, the mice (WT,  n  = 3; CAR KO,  n  = 3) were 

housed individually in cages placed over radio receivers (CTR85-SA; DSI, 

Inc.). Initial ECG parameters were obtained after 1 wk of recovery from sur-

gery before the start of tamoxifen injections. 

 Histology and electron microscopy.   For histology, hearts were asepti-

cally removed and fi xed for 12 h in phosphate-buff ered (pH 7.2) 4% parafor-

maldehyde and embedded in paraffi  n. 5- μ m sections were deparaffi  nized and 

stained with Masson ’ s Trichrome (Sigma-Aldrich) to detect the fi brous body. 

AChE (acetylcholinesterase) staining to identify the AV node was performed 

on cryosections from hearts perfused with 4% paraformaldehyde, equilibrated 

with 30% sucrose, and embedded in OCT (Sakura). The staining procedure 

was adapted from El-Badawi and Schenk ( 39 ). Ultrastructural analysis was 

according to our published protocol ( 35 ). 

 Three-dimensional reconstruction of the AV node.   Serial sections 

(5  μ m) covering the complete AV node were collected and any loss of sections 

was noted. The three-dimensional reconstruction of the dataset was created 

using the Meta Imaging Series Software (MDS Analytical Technologies). 

Each image section was aligned and stacked one on top of another to create 

a three-dimensional volume calculated using the three-dimensional recon-

struction tool of MetaMorph 7.1.7. 

 Immunofl uorescence and immunohistochemistry analysis.   Cardio-

myocytes were isolated from heart ventricles as described previously ( 40 ), 

seeded to laminin-coated glass coverslips for 4 h, and fi xed with cold metha-

nol. For immunofl uorescence staining, we followed the published protocol 

( 35 ). The primary antibodies used were the following: rat anti-HCN4 (Ab-

cam) and anti-CAR (rabbit polyclonal, raised against the Fc fusion protein 

containing the CA extracellular domain), anti-CAR (rabbit polyclonal; Santa 

Cruz Biotechnology, Inc.), anti – N-cadherin (mouse monoclonal; Invitro-

gen), anti-Cx43 (mouse monoclonal; Invitrogen), and anti –  � -actinin (mouse 

monoclonal; Sigma-Aldrich). Fluorescent-conjugated secondary antibodies 

were the following: goat anti – rat Alexa Fluor 555 (Invitrogen), goat anti –

 rabbit Alexa Fluor 647 (Invitrogen), goat anti – rat Alexa Fluor 488 (Invitrogen), 

goat anti – mouse Alexa Fluor 647 (Invitrogen), and goat anti – rabbit Alexa 

Fluor 568 (Invitrogen). 

 For ChAT immunohistochemistry, paraffi  n sections were deparaffi  nized, 

demasked, and blocked before incubation with goat anti-ChAT antibody 

over night (Millipore). After incubation with donkey anti – goat biotin-conju-

gated secondary antibody (Jackson ImmunoResearch Laboratories) followed 

by the ABC Elite reagent (Vector Laboratories), sections were developed with 

DAB (Dako) and counterstained with hematoxylin (Sigma-Aldrich). 

 Preparation of cardiac muscle slices and dye-coupling studies.  

 Hearts at the indicated times were quickly removed after cervical dislocation 

under deep ether anesthesia and transferred to ice-cold oxygenated standard 

salt solution containing the following: 125 mM NaCl, 4 mM KCl, 10 mM 

glucose, 1.25 mM NaH 2 PO 4 , 25 mM NaHCO 3 , 2 mM CaCl 2 , and 1 mM 

MgCl 2 . Ventricles were longitudinally cut and embedded in 2.5% low melt-

ing temperature agarose (Biozym Scientifi c GmbH) at 30 ° C. The blocks 

were glued to the stage of a vibrating blade microtome (Leica) and 250  μ m-

slices were prepared. 

 To examine gap junctional coupling, slices were transferred into a sub-

merged recording chamber. Glass capillaries prepared by a puller (P-97; Sut-

ter Instrument Co.) were fi lled with 2% (wt/vol) 6-carboxyfl uorescein 

(Sigma-Aldrich). The pipette resistance was 30 – 40 MOhm. Pipette solution 

contained 120 mM KCl, 4 mM NaCl, 5 mM glucose, 5 mM EGTA, 10 mM 

Hepes, 0.5 mM CaCl 2 , and 4 mM MgCl 2 , pH 7.3. 

 The cardiomyocytes were selected according to the following criteria: 

fi rst, the dye diff used into the initial cell within the fi rst minute; second, the 

resistance cassette was removed by germline expression of the FLP recombi-

nase ( 34 ). Subsequently, we generated a constitutive and an inducible heart-

specifi c CAR KO with the  � -MHC promoter driving the expression of the 

nuclear-localized cre recombinase or the MerCreMer fusion protein, respec-

tively (MerCreMer transgenic mice were provided by J. Molkentin, Cincin-

nati Children ’ s Hospital Medical Center, Cincinnati, OH). Induction of 

MerCreMer with tamoxifen (30 mg per kilogram of body weight per day) 

has been described previously ( 18 ). We injected mice at 2 mo of age with 10 

 μ g/ μ l of a solution of tamoxifen in peanut oil with fi ve injections per week 

for 2 consecutive wk (10 injections; 300 mg/kg total). All experiments in-

volving animals were performed according to institutional and National In-

stitutes of Health guidelines (Using Animals in Intramural Research) and had 

been approved by the local authorities (LaGeSo Berlin). 

 Real-time PCR.   Total RNA of the mouse left ventricle was isolated with 

TRIZOL (Invitrogen) and was purifi ed using the RNeasy Mini kit (QIAGEN), 

followed by cDNA synthesis using Thermoscript First-Strand Synthesis System 

according to the manufacturer ’ s instructions (Invitrogen). Primers probe sets 

(FAM and TAMRA labels) were ordered as Taqman Gene Expression Assays 

(Applied Biosystems), except for CAR and GAPDH (BioTeZ GmbH). The 

probe sets for CAR and GAPDH are the following: CAR, AGCTGCACG-

GTTCAAAACAGA (forward), TTCCGGCTCGGTTGGA (reverse), and 

6-FAM-CTCTGACCAGTGTATGCTGCGACTAGACGT-TAMRA 

(probe); and GAPDH, GGCAAATTCAACGGCACAGT (forward), AGA-

TGGTGATGGGCTTCCC (reverse), and 6-FAM-AGGCCGAGAAT-

GGGAAGCTTGTCATC-TAMRA (probe).   Amplifi cation reaction and 

analysis has been previously described ( 35 ). 

 SDS-Page and Western blot.   Protein preparation (three hearts per group), 

SDS PAGE, and Western blot have been previously described ( 35 ). Primary 

antibodies used against CAR (rabbit polyclonal; Santa Cruz Biotechnology, 

Inc.),  � -actin (rabbit polyclonal; Sigma-Aldrich), Cx40 (rabbit polyclonal; 

Santa Cruz Biotechnology, Inc.), Cx45 (mouse monoclonal; Invitrogen), and 

GAPDH (mouse monoclonal; Affi  nity BioReagents) were used according to 

the manufacturer ’ s instructions and detected with HRP-conjugated second-

ary antibodies and chemiluminescence staining using ECL (Supersignal West 

Pico Chemiluminescent Substrate; Thermo Fisher Scientifi c). Quantifi cation 

was performed with the Image Analyzer software (v 4.19; AIDA). 

 Surface ECG and in vivo electrophysiology (EP) studies.   Each mouse 

was lightly anesthetized with isofl orane (1.6 vol% isofl orane/air), and ECG 

standard intervals were measured in six-limb leads as described previously 

( 36 ) ( n  = 16). The severity of the AV conduction defect was graded accord-

ing to standard clinical diagnostic criteria. As AV block fi rst degree is not de-

fi ned for mouse, we based our classifi cation on the distribution of PR intervals 

in our control group (mean + 2 ×  SD). Thus, PR intervals  > 48 ms were con-

sidered as prolonged. Additional intermittent block of a single AV conduc-

tion was classifi ed as AV block second degree. Third degree (complete) heart 

block was diagnosed when no atrial impulse propagated to the ventricles. 

 In vivo EP studies ( n  = 21) with programmed electrical stimulations 

were performed to assess standard parameters of atrial and ventricular con-

duction, refractoriness, and the inducibility of arrhythmia ( 37, 38 ). We used 

a digital EP laboratory (EP Tracer; CardioTek). During inhalation anesthesia 

with isofl orane at constant body temperature, an octapolar 2-French elec-

trode catheter (CIBer mouse cath; NuMed, Inc.) was placed via the right 

jugular vein into the right atrium and ventricle, guided by the morphology 

of intracardiac electrical signals. Impulses were delivered at twice diastolic 

threshold with a pulse duration of 1 ms. To test for inducibility of arrhyth-

mias, the programmed ventricular stimulation protocols included trains of 10 

basal stimuli (S1, cl 90/100/120 ms) followed by up to three extrastimuli 

(S2 – S4), delivered with a coupling interval decreasing in steps of 5 ms until 

ventricular refractoriness was reached. Additional short episodes of burst pac-

ing with cycle lengths down to 60 ms were applied. Only reproducible ar-

rhythmias up from three beats were considered. 
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rectangular shape could be recognized; third, the cell should be localized 

within a fi ber; and fourth, the fi ber displayed apparently regular contraction. 

Individual cardiomyocytes were injected with the dye by iontophoretic in-

jection for 4 min taking negative voltage pulses of 0.8 V (duration 500 ms, 

1 Hz) using EPC-9 (HEKA Elektronik). Intracellular communication was 

monitored under fl uorescence microscopy and optical images recorded by a 

charge-coupled device camera (AxioCam HRC; Carl Zeiss, Inc.). For fl uo-

rescence images, fi lter set 46 was used (Zeiss; excitation, 500/20 nm; fi ltra-

tion, 515 nm; emission, 535/30 nm). The area of dye spread was quantifi ed 

by BioVision software (BioVision, Inc.). The investigator was blinded to 

the genotype. 

 Statistics.   For statistical analysis, Prism 5.0 software (GraphPad Software, 

Inc.) was used. Results are expressed as means  ±  SEM. Statistical signifi cance 

between groups was determined using the Mann Whitney U test for hemo-

dynamic and EP data. Expression values were compared using an unpaired 

two-tailed  t  test to assess diff erences between two groups. The signifi cance 

level was chosen as P = 0.05. 

 Online supplemental material.   In vivo recordings of the cardiac elec-

trical activity by EPU and telemetry document the progression of the ar-

rhythmia, the response to isoproterenol, and changes in heart rate after 

induction of the phenotype (Figs. S1 – 4). Ultrastructure of the KO cardiac 

sarcomere and intercalated disc is not signifi cantly altered upon loss of CAR 

(Fig. S5). Online supplemental material is available at http://www.jem

.org/cgi/content/full/jem.20080897/DC1. 
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Figure S1. Progression of the AV block in CAR-deficient hearts. (A)Simultaneous recordings from 
surface ECG and intracardiac signals from right atrium (RA) and right ventricle (RV) are shown. (B) 
The earliest manifestation of the KO phenotype was a first-degree AV block. The electrical 
stimulation of the right atrium was conducted to the right ventricle with prolonged but stable PR 
intervals. The last electrical stimulus was followed by a prolonged RR interval (142 ms). The initiated 
sinus rhythm was slower than before electrical stimulation with partial recovery of AV nodal 
conduction (PR interval decreased to 80 ms). The increased heart rate (shorter RR intervals) resulted 
in a delayed AV conduction (increased PR intervals). (C) CAR deficiency did affect electrical 
conduction in both the AV and the SA node. At the beginning of the trace, an increase in the (albeit 
slow) rate of atrial excitation (PP interval decreased to 182 ms) was followed by a block of atrial 
excitation (326 ms). The followup of the PP intervals indicated sinus node bradycardia and a second 
degree sinu-atrial block (Wenckebach type). As block of atrial excitation did not alter the stable 
beating rate of the ventricles (RR), this example shows coexistence of total AV dissociation. (D) At the 
later stages of the phenotype from week 4, atria and ventricle worked independently. There was 
total dissociation between the high beating rate of the ventricles (RR) and the slower atrial rate (PP). 
Shortening of the PP interval after initiation of the electrical stimulation in the right atrium did not 
alter the stable fast rhythm of the ventricles, which originated from the junctional zone as indicated 
by the narrow R wave deflections. 



 

 

Figure S2. AV conduction is unaffected by isoproterenol in the KO heart. (A) Isoproterenol caused 
sinus tachycardia in WT mice. Atria and ventricles beat with same increased rates (PP and RR 
intervals in milliseconds). (B) In CAR KO mice, isoproterenol did not improve impaired AV conduction. 
In this example, total AV dissociation is expressed as different beating rates of atria and ventricles (PP 
and RR intervals in milliseconds). (C) Heart rate (HR) responds to isoproterenol stimulation in both 
WT and KO (week 4), although the effect is not significant in the KO. In CAR KO mice, heart rates 
were increased under baseline conditions (Ctrl) because of the presence of accelerated junctional 
rhythms. **, P ≤ 0.01. Error bars show SEM. 



 

Figure S3. Heart rate dependence on AV nodal conduction capacity. Atrial pacing revealed 
differences in AV conduction capacity in control (A) versus KO (B) animals. Wenckebach periodicity, 
which indicates the longest pacing interval where transient block of AV conduction occurs, was 
observed in CAR KO mice already at slower heart rates. The asterisk indicates the first atrial 
depolarization (P wave), which was not conducted to the ventricles. (C) First failure of AV conduction 
after gradual increase in the heart rate by atrial pacing (Wenckebach periodicity [AVWB]) occurs at 
longer pacing intervals in CAR KO mice compared with controls. Error bars show SEM. 



 

Figure S4. Heart rates in freely moving CAR KO and control animals. Representative ECG telemetry 
recordings from control (A) and CAR KO (B) show that basal heart rates (before induction with 
tamoxifen) did not differ between genotypes. 2 wk after induction, loss of CAR resulted in increased 
heart rates compared with controls. The circadian rhythm of the heart rate is maintained in KO 
animals (low frequency oscillation of the heart rate). 



 

 

Figure S5. Ultrastructural analysis of the CAR KO heart. From 1 to 12 wk after induction with 
tamoxifen, CAR KO and WT hearts did not differ with respect to the structure of the sarcomeres or 
intercalated discs. Size of mitochondria (M) was unchanged and at the lateral cell boundary, there 
was equal invasion of clathrin vesicles (C). There was no difference in membrane folding, distribution 
of desmosomes, or size of the mitochondria, all signs of a normal ultrastructure in the adult KO heart. 
Bar, 500 nm. 
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