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Abstract

Background: Environments and their organic content are generally not static and isolated, but in a constant state of
exchange and interaction with each other. Through physical or biological processes, organisms, especially microbes, may be
transferred between environments whose characteristics may be quite different. The transferred microbes may not survive
in their new environment, but their DNA will be deposited. In this study, we compare two environmental sequencing
projects to find molecular evidence of transfer of microbes over vast geographical distances.

Methodology: By studying synonymous nucleotide composition, oligomer frequency and orthology between predicted
genes in metagenomics data from two environments, terrestrial and aquatic, and by correlating with phylogenetic
mappings, we find that both environments are likely to contain trace amounts of microbes which have been far removed
from their original habitat. We also suggest a bias in direction from soil to sea, which is consistent with the cycles of
planetary wind and water.

Conclusions: Our findings support the Baas-Becking hypothesis formulated in 1934, which states that due to dispersion and
population sizes, microbes are likely to be found in widely disparate environments. Furthermore, the availability of genetic
material from distant environments is a possible font of novel gene functions for lateral gene transfer.

Citation: Hooper SD, Raes J, Foerstner KU, Harrington ED, Dalevi D, et al. (2008) A Molecular Study of Microbe Transfer between Distant Environments. PLoS
ONE 3(7): e2607. doi:10.1371/journal.pone.0002607

Editor: Dawn Field, NERC Centre for Ecology and Hydrology, United Kingdom

Received March 19, 2008; Accepted May 28, 2008; Published July 9, 2008

Copyright: � 2008 Hooper et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the EU 6th Framework Programme, Contract Nrs LSHG-CT-2004-503567 (GeneFun) and LSHG-CT-2003-503265
(BioSapiens). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: bork@embl.de

Introduction

The advances of environmental sequencing projects, or

metagenomes, have brought methods and concepts from molecular

biology and comparative genomics to the field of microbial

ecology. Many of the same tools that are used in the analysis of

isolate genomes can now be applied to whole communities of

organisms [1]. In this work, we perform what can be described as

comparative metagenomics, where we attempt to identify genetic

material that originated from outside the environment, possibly

transported by physical processes such as wind or water. For

instance, dust clouds may carry microbes over vast distances [2],

and carrier organisms such as birds and humans [3] are potential

vehicles for transporting microbes. In other cases, drainage from

cultured soils may pollute water [4], and it is conceivable that

microbes may be transferred in the process.

The motility and sheer numbers of microbes form the basis for

the Baas-Becking hypothesis formulated in 1934 [5]. It can be

summed up as follows; everything is everywhere and the

environment selects. For instance, the hypothesis implies that

there is a good chance of finding trace amounts of a wide range of

bacterial species wherever we look, but this does not mean that the

species will grow or even survive in its new environment. Even if

the transported microbe is inert, it would still contribute its

genome (and DNA) to the new environment. Thus, the

transported DNA may remain packaged within an inert host,

within a surviving host, or may be free as the result of a ruptured

or digested cell. Free-form DNA has been observed in for instance

ocean sediments [6], where it comprises up to 90% of all DNA.

Regardless of the fate of the specific microbe, its DNA can be

captured and detected at the time of a metagenomic sampling.

Depending on the frequency of the DNA, reads will assemble into

contigs or appear as single-reads, and can then be analysed

computationally. In this work, we examine two such metagen-

omes: the Minnesota farm soil [7] data set and the Sargasso sea [8]

data set, and attempt to evaluate the interchange, if any, of

microbes between them using DNA sequences as proxies. Thus,

we will evaluate the Baas-Becking hypothesis by examining the

proportion of sequences that i) appear very different from other

reads in its set and ii) appear more similar to reads in the other set.

We will then study those sequences to which are potentially results

of a microbe transfer across environments.

This comparative process is conceptually very similar to the

study of lateral transfer genes (LGT) in isolate genomes. There is

an extensive literature describing this approach, from early but

seminal studies using atypical nucleotide composition as indicators
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of LGT [9–11] to extensive phylogenetic studies covering

hundreds of genomes [12]. All approaches require a careful

choice of characteristics to use as discriminators of whether a

sequence appears to be typical or not for its genome. We will

substitute genomes for metagenomes in this study, so special

attention must be given to the choice of discriminators.

We chose three distinct characteristics as discriminators; two

nucleotide composition measures and one protein orthology measure.

The first measure is based on the guanine/cytosine (GC) content of

the sequence. GC content has been found to vary not only between

species but also between environments [13]. For the farm soil and

Sargasso sea data sets (hereafter referred to as soil and sea), we observe

clear differences in the overall GC content. Soil has a high GC

content at 61%, compared to only 34% in sea [13]. This difference is

even more pronounced when comparing only the synonymous third

codon position of genes (hereafter GC3s%) which avoids selection on

the protein level. The more pronounced differences in GC3s% than

GC suggest a mutational pressure on the choice of base exerted by

exogenic factors, as previously described [13].

The second measure is based on oligomer frequency patterns

(OFPs; [14–16]). For instance, the OFP of the oligomer TTATA,

relative to the occurrences of T and A respectively, differs widely

between organisms.One of the first systematic studies reported

showed that the composition of dimers is conserved within

genomes but different between genomes [17]. Since then many

different methods have been developed to capture the genomic

signature of bacteria and they have been use widely for either

binning of metagenomic data [18] or the identification of lateral

gene transfer [19].

Superficially, it could be assumed that GC3s% could be included

in this measure, but the level of information is distinctly different in

three aspects. Whereas GC3s% directly measures the mutational

pressure, the OFP measures the effect of mutational context biases.

Since OFPs are also normalized by nucleotide content, this measure

is largely independent of GC3s%. Finally, since we study more than

one base, OFPs are a more sensitive discriminator.

The third measure is based on protein similarity between

translated open reading frames in both data sets. The rationale is

that if a gene in e.g. soil has a substantially higher level of

orthology to proteins in sea, compared to the rest of the proteins in

soil, then it is less likely to be a common fixture of soil. If the two

environments never interchange material, then we would expect

high levels of orthology only for genes coding for highly conserved

and ubiquitous functions, such as cell machinery. However, if a

transfer of microbes occasionally occurs between soil and sea, we

would expect to find non-ubiquitous yet highly orthologous genes.

For each of these discriminators individually, criticisms can be

raised. For instance, bacteria which are parasites within soil

eukaryotic cells may essentially live in a mini-environment similar

to that of sea microbes, possibly resulting in similarities in GC3s%.

Furthermore, organisms that are only distantly related but have

similar DNA repair mechanisms could appear similar in OFPs.

Orthology may also be spurious due to strict conservation of

amino acid sequences of proteins, or by random chance.

Despite individual concerns such as those listed above, it

becomes increasingly difficult to regard these open reading frames

as false positives when all three discriminators are fulfilled.

In this work, we apply the three discriminators to predicted

genes in the soil and sea sets in order to find genes that are

consistent with an interchange of microbes between environments.

This transfer of microbes did not specifically occur from the

Minnesota farm soil to the Sargasso sea or vice versa, but from

environments which share features with either the farm soil or

Sargasso sea data. As both GC content and protein composition

correlate with the similarity of environments [7,13], it is

reasonable to assume that our three discriminators also account

for transfers from environments that are at least geographically

close to the sampling points or are of similar consistency [20,21].

Results

Starting with 184,000 genes in the soil set [7] and 700,000 genes in

samples 2–4 from the sea set [8], we identified 1,216 genes that have

a closer hit in the foreign environment than their own. These genes,

together with their match in the foreign environment, formed pairs

which allowed us to compare their features. To classify whether the

GC content of these candidate gene pairs is endogenous in one but

atypical in the other environment, we used the average of the two

environmental GC3s% averages (48%) as a breakpoint (Fig. 1).

Of the 1216 ORF pairs, 284 sea genes had atypical GC3s%

values (.48%); a strong over-representation both in absolute

terms and in significance (p,10213), when compared to the

expected number of 109 (based on the proportion of all sea genes

with atypical GC3%s values). Conversely, the over-representation

of soil genes with GC3s%,48% is not as strong, yet significant:

221 compared to an expected 174 (p,1023).

Quadrant A (Fig. 1) thus represents gene pairs where the soil

genes have typical GC3s% values and the sea genes have GC3s%

values much higher than the sea average. Accordingly, quadrant B

has lower than average soil GC3s% and typical sea GC3s%.

Overall, quadrant A has 170% as many pairs as expected and B

127%. However, since sample sizes are unequal, we subsampled

the sea set 10 times into random subsamples of a size roughly

equal to soil (Table 1). The degrees of over-representation

remained at 165% and 123% respectively. Details of quadrants

A–D are provided as supplementary Tables S1–S4.

At this point, we have created three classes of genes using

orthology and GC3s% as discriminators. These classes represent

genes that may have been transferred into a new environment

(quadrants A and B) or simply conserved genes (quadrant C). If all

three classes are actually false positives, we would expect OFPs to

be distributed according to random expectation, i.e. soil genes

would have OFPs similar to the soil set in large, and analogously

for sea genes. Out of 16,450 random soil genes, 14,040 map to soil

(85.3%). For sea, 14,257 of 16,476 map correctly to sea (86.5%).

Thus, we expect that of the 284 soil genes in A, 242 should map to

soil. However, we observe that only 53 soil genes map better to soil

than sea. This is a strong under-representation (p,102137). In

quadrant B, we expect that 191 of the 221 sea genes would map to

sea, but observe only 13 (p,102161). The OFPs of quadrants A

and B, compared to soil and sea sets are visualized as chaos game

representations ([22]; see methods) in Fig. 2.

Finally, as an additional control, we study genes in quadrant C,

which we do not believe to be transferred. Here, we find 674 of

678 unique sea genes and 579 of 663 unique soil genes mapped to

their own environments. The sea mappings are actually signifi-

cantly over-represented (p,10214), and soil genes map to soil

about as often as expected.

The results strongly imply that genes in quadrants A and B are

not only atypical in their current environments, but also highly

similar to the external and internal mutational pressures in the

other environment.

Amino acid identity is a measure of the similarity between the

amino acid translations of genes, and as such focuses on the non-

synonymous bases. A further comparison would be to measure the

synonymous substitution rate Ks [23] of a gene pair, since this rate

quickly becomes saturated over time. A Ks value of over 2.0

suggests that each base has on average been substituted at least

Environmental Microbe Transfer
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once; changes are therefore saturated. However, values of less than

2.0 suggest a higher level of similarity than evident from amino

acid identities. Finding such unsaturated pairs in the quadrants

would further suggest a shared recent history. In quadrant A we

find 87 such pairs, and in B 31. Again, this is not what we expect if

we consider the gene pairs to simply be ancient homologs. In

quadrant C for instance, which we consider to be composed

mainly of ancient homologs, we find only 8 unsaturated pairs out

of 667. None score lower than 1.2. Thus, unsaturated gene pairs

are significantly overrepresented in quadrants A and B (both at

p,10214). Furthermore, the ratios (87 to 31) again suggest a bias

in directionality from soil to sea. This also holds when the datasets

are resampled (Table 1), suggesting that it is not an effect of sample

sizes.

If genes in quadrants A and B are the results of microbes, alive

or not, traversing large distances between soil and sea, then it

would be interesting to know which species they come from.

Determining which taxa are included in a metagenome is referred

to as binning, and is not a straight-forward task. Since the focus of

this paper is not on binning Minnesota farm soil and Sargasso, we

employ a simple best hit approach and record the species for each

gene. The results were then mapped onto the Interactive Tree of

Life [24] and are available as supplementary figures (Fig. S1–S3).

Figure 1. GC3s distribution of orthologous Genes. Distributions of GC3s for each of 1216 ORF pairs with closer similarity in the foreign
environment. Using GC3s% = 48% as a separator (dotted lines), the ORF pairs are classified based on the GC content of its two members. Category A
(upper right) is the quadrant where we expect to find possible transfer events from soil to sea, since these pairs have high GC3%s values for both
members. Pairs in category B (lower left) have low GC3%s scores for both Genes, which could suggest a transfer from a sea-like environment to soil.
Category C (lower right) has typical GC3s% values for both members of ORF pairs. These pairs are likely to be ancient conserved sequences. Finally,
Category D (upper left) has atypical values for both Genes, close to the expected given the shape of the GC3% distribution (28 observed, 24
expected). Unsaturated Ks values are green, and pairs with Kn/Ks.1 are red.
doi:10.1371/journal.pone.0002607.g001

Table 1. Resampling of sea set.

S nA (74) nB (117) aA aB sA sB sA/sB

1 123 139 5 0 34 17 2.00

2 123 133 2 1 26 15 1.73

3 120 143 4 1 32 16 2.00

4 137 140 3 1 33 20 1.65

5 126 147 4 0 27 19 1.42

6 107 151 2 1 23 19 1.21

7 111 147 4 2 35 23 1.52

8 114 140 3 0 39 21 1.86

9 131 142 7 0 29 13 2.23

10 130 162 4 0 38 21 1.81

Full set 284 221 8 1 87 31 2.81

Distributions of genes in quadrants A and B. Key: S: sample number, nA; number
of gene pairs in A, with the average expected number in parenthesis, nB; number
of gene pairs in B, also with expected in parenthesis, aA; number of gene pairs in
A with Kn/Ks.1, aB; number of gene pairs in B with Kn/Ks.1, sA; number of gene
pairs in A with Ks,2, sB; number of gene pairs in B with Ks,2.
doi:10.1371/journal.pone.0002607.t001
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For quadrant A, which should represent transfer from soil to sea,

we find a relatively even contribution from a wide range of phyla and

a considerable (,25%) contribution from the Rhizobium/Bradyr-

hizobium clades. Both of these families are predominantly terrestial

bacteria, which is consistent with our findings.

Similarly, in quadrant B, we also observe an even contribution

from a wide range, with a stronger representation from the

bacteroides genus. Bacteroides are not predominantly soil

bacteria, but can be found in the guts of farm animals. It is hence

not subject to the mutational pressures of soil but is readily and

consistently transferred from animals to soil. It is therefore not

inconceivable that the contribution of bacteroides may be via

animal waste to soil, and then to sea. This does not weaken our

results, but rather strengthens the conclusion that transfer is

predominantly from soil to sea rather than vice versa, and

underlines the interaction of diverse environments other than the

two we have studied.

For comparison, we include best hit binnings for the whole soil

and sea sets (Fig. S4–S5). Noteworthy is the huge dominance of

Candidatus pelagibacter (e.g. [25]) in the full sea set, but which is

largely absent in quadrant A. Furthermore, our simplistic binning

approach suggests that there is no strong contribution from any

potential lab contaminant.

Protein function
The null hypothesis is that the transferred DNA is selected

randomly, and therefore codes for random products. Supplemen-

tary Table S5 illustrates the distribution of protein functions by

Cluster of Orthologous Gene categories [26]. Generally, quad-

rants A, B and C are consistent with a random selection of

functions drawn from the distributions of the whole metagenome

sets, but some differences nonetheless stand out. Quadrant B has

lower numbers of ORFs coding for energy production and

conversion and general function prediction (COG category C and

R) than quadrants A and C, but higher numbers of ORFs coding

for translation, replication and repair.

Fate of transfers
Based on our studies, quadrants A and B are consistent with a

transfer effect. But what of the fate of these transported genes or

DNA fragments? Most likely they will simply be degraded, but

there is also a possibility of incorporation into indigenous genomes,

constituting a true LGT. We can first study the GC content of the

flanking DNA or neighboring gene, if any, and see if it is different

or similar. Of the 505 candidates, the majority of flanking DNA

has similar GC values. This suggests that large regions (likely entire

genomes, plasmids or chromosomes) have been transferred but not

assimilated. In quadrant A however, 31 of 284 sea genes have one

or more neighbors with a GC3s%,48%, which may suggest that

some genes are occasionally integrated into indigenous genomes.

In this case, the ability to assemble contigs with several genes also

suggests that these genes may have been incorporated into

abundant species. Furthermore, we studied transfer candidates

that seem to be under positive selection, as this would indicate an

adaptation to the new environment and therefore LGT. We find 8

ORF pairs that suggest an accelerated evolution (Kn/Ks.1): 7 in

quadrant A and 1 in B. The annotated functions [26] of these

ORFs in the process of adaptation are diverse (Tables S1–S2).

However, the function that is under selection is not necessarily the

same as the annotated function [27] so we cannot exclude a

Figure 2. Chaos Game Representation (CGR) plot of oligomer frequencies of A and B vs soil and sea patterns. Note the similarities
between A and soil, and B and sea respectively. Figure intensities have been normalized for clarity. CGR plots are a way of visualizing chain processes,
such as oligomer patterns. See methods for details.
doi:10.1371/journal.pone.0002607.g002
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common functional theme due to the process of adaptive radiation

[28]. Unfortunately, only 2 of the 7 ORFs have neighbors – both

with similar GCs% values. This would suggest that these adapting

ORFs may have been incorporated along with other genes which

are not under selection in the new environment. Moreover, given

the high rate of amelioration at the synonymous base, it is likely

that many such ORFs would have Kn/Ks,1 despite adaptation.

These 8 ORFs are therefore a conservative estimate.

Discussion

Microbe transfer
Through several different comparisons, we have found a set of

genes, however small, for which the simplest explanation is microbe

transfer. Specifically, we seem to detect a transfer of genetic material

in the Sargasso samples from an environment very similar to

Minnesota soil and vice versa. Given the prodigious population sizes

and motility of e.g. bacteria, it should not be a surprising conclusion.

However, detecting it is not as intuitive, and we believe we are the

first to address this question using computational methods.

Our data is for natural reasons limited; other oceanic and soil

samples may contain other transfer candidates, and the total transfer

to the Atlantic Ocean from environments similar to Minnesota farm

soil must be considerably larger. However, we believe it is an

informative snapshot given the current data. With more large-scale

sequencing projects, the picture will undoubtedly improve.

We also suggest a bias in transfer from soil to sea, in line with the

generally accepted flow of water from land to oceans. Furthermore,

the presence of bacteriodiales in quadrant B further tilts the scale in

favor of transfer from soil to sea, since they are likely to have

originated in a third environment – animal gut. Assessing the total

proportion of foreign DNA in a metagenome is a difficult task at best.

In this study, we focused on sets with quite different nucleotide

compositions, which simplify detection of foreign DNA. Other

sources of transfer may be more similar to the receiving environment,

and detection is therefore more complicated. In addition, rare foreign

DNA may be present in low numbers and is likely to evade detection

by normal shotgun sequencing. Thus, in the case of transfers between

soil and sea, the amount of transferred DNA seems to be abundant

enough to be detectable by shotgun sequencing, even though it is only

a fraction of the amount of indigenous DNA.

This study therefore suggests that the species abundance

distributions of metagenomes which are not physically isolated

may have exceedingly long ‘tails’ composed of rare organisms. It is

therefore unlikely that sequencing projects of this type will reach

full coverage in the near future.

Consequences for LGT
While little data is available on genes which have been

incorporated into new hosts, our findings suggest that it is possible.

Furthermore, it has been found that the extent of LGT in

metagenome samples is comparable to that of isolate genomes

[29], suggesting that LGT is an active process also within the soil

and sea microbiomes. Combined with our findings, we suggest

that the impact of LGT could be more far-reaching than

previously thought, since functions need not be acquired from

the immediate vicinity but from entirely different environments.

This would also include non-microbial donors, such as genetically

modified plants.

Materials and Methods

Our approach employs three basic discriminators to assess

microbe transfer and is based on the study of lateral gene transfer.

First, we test genes for their orthology against the other

environment. If a gene in either set has a higher (20% better)

homology score to an gene in the foreign environment than to its

own, we select that gene pair for further investigation. Further-

more, all orthology must fulfil at least 80% protein similarity over

at least 90% of the shortest gene. Genes under 100 base pairs in

length were ignored. As a second measure, we calculated the GC

content at the synonymous base (GC3s%). Using the GC3s%

values of each member of a pair, we then classified pairs into three

major categories depending on if one or no member had GC3s%

values atypical for their environment. GC3s% was calculated using

codonw (http://codonw.sourceforge.net/). As a third measure,

oligomer frequencies were calculated using softPSTk-Classifier

[15]. To further stress that the genomic signature of oligomers is

not simply a result of the difference in GC between the two

environments, we decided to also show the visualization using

chaos game representations (CGR) plots [22]. The points in these

graphs can easily be calculated recursively using the relation,

ri~
1
2

riz1zuið Þ
r0~ 0:5,0:5ð Þ

(

where

ui

0,0ð Þ if i : th position is Aj
1,0ð Þ if i : th position is Cj
1,1ð Þ if i : th position is Gj
0,1ð Þ if i : th position is Tj

8>>><
>>>:

DNA with different composition will end up with different

coordinates in the plot depending on the symbols. All points are

bound to the unit square. Plot intensities have been normalized for

clarity. Note that no conclusions have been drawn directly on the

figure itself, rather from significance tests of the distributions in the

quadrants. The figure is included for visualization purposes only.

Environmental data
We used the same data from Sargasso and Minnesota as were

used previously by Tringe and co-workers [7]. Note that this data

set does not include sample 1 from Sargasso, due to recent

criticism [30].

Gene predictions were performed by the original authors,

resulting in roughly 700 000 and 184 000 ORFs respectively.

Estimation of synonymous (Ks) and nonsynonymous
substitution rates (Kn)

Nucleotide sequences were pairwise aligned by ClustalW [31]

using the corresponding protein sequences as an alignment guide.

Gaps and adjacent divergent positions in the alignments were

removed. KS estimates were obtained with the Codeml [23]

algorithm in the PAML package (F3x4 model, gamma shape

parameter and transition-transversion ratio estimated from the

data [32]). Calculations were repeated five times to avoid incorrect

Ks estimations due to suboptimal local maxima.

Supporting Information

Table S1 ORF pairs belonging to category A. Sea: Sargasso ORF.

Soil: Minnesota ORF. ID: protein identity. Pos: protein positive

similarity. Length: Overlap length of overlapping sequence. GC_sea:

GC3s% of Sargasso ORF. GC_soil: GC3s% of Minnesota ORF.
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Diff: GC3s% difference. KaKs: substitution ratio of synonymous to

non-synonymous base. Ka: synonymous base substitution rate. Ks:

non-synonymous substitution rate. COG: COG assignment. Func:

COG functional category. Annotation: predicted function.

Found at: doi:10.1371/journal.pone.0002607.s001 (0.04 MB CSV)

Table S2 ORF pairs belonging to category B. Sea: Sargasso

ORF. Soil: Minnesota ORF. ID: protein identity. Pos: protein

positive similarity. Length: Overlap length of overlapping

sequence. GC_sea: GC3s% of Sargasso ORF. GC_soil: GC3s%

of Minnesota ORF. Diff: GC3s% difference. KaKs: substitution

ratio of synonymous to non-synonymous base. Ka: synonymous

base substitution rate. Ks: non-synonymous substitution rate.

COG: COG assignment. Func: COG functional category.

Annotation: predicted function.

Found at: doi:10.1371/journal.pone.0002607.s002 (0.03 MB CSV)

Table S3 ORF pairs belonging to category C. Sea: Sargasso

ORF. Soil: Minnesota ORF. ID: protein identity. Pos: protein

positive similarity. Length: Overlap length of overlapping

sequence. GC_sea: GC3s% of Sargasso ORF. GC_soil: GC3s%

of Minnesota ORF. Diff: GC3s% difference. KaKs: substitution

ratio of synonymous to non-synonymous base. Ka: synonymous

base substitution rate. Ks: non-synonymous substitution rate.

COG: COG assignment. Func: COG functional category.

Annotation: predicted function.

Found at: doi:10.1371/journal.pone.0002607.s003 (0.10 MB CSV)

Table S4 ORF pairs belonging to category D. Sea: Sargasso

ORF. Soil: Minnesota ORF. ID: protein identity. Pos: protein

positive similarity. Length: Overlap length of overlapping

sequence. GC_sea: GC3s% of Sargasso ORF. GC_soil: GC3s%

of Minnesota ORF. Diff: GC3s% difference. KaKs: substitution

ratio of synonymous to non-synonymous base. Ka: synonymous

base substitution rate. Ks: non-synonymous substitution rate.

COG: COG assignment. Func: COG functional category.

Annotation: predicted function.

Found at: doi:10.1371/journal.pone.0002607.s004 (0.00 MB CSV)

Table S5 A breakdown of COG categories by quadrant. The

‘expected’ occurence is based on the classification of the full soil

and sea sets Cat: COG category. A,B,C: quadrants. Expected:

expected number given random occurrence.

Found at: doi:10.1371/journal.pone.0002607.s005 (0.00 MB CSV)

Figure S1 Phylogenic distribution of category A.

Found at: doi:10.1371/journal.pone.0002607.s006 (18.08 MB TIF)

Figure S2 Phylogenic distribution of category B.

Found at: doi:10.1371/journal.pone.0002607.s007 (18.08 MB TIF)

Figure S3 Phylogenic distribution of category C.

Found at: doi:10.1371/journal.pone.0002607.s008 (18.08 MB TIF)

Figure S4 Full phylogenic distribution of the Sargasso set.

Found at: doi:10.1371/journal.pone.0002607.s009 (18.08 MB TIF)

Figure S5 Full phylogenic distribution of the soil set.

Found at: doi:10.1371/journal.pone.0002607.s010 (18.08 MB TIF)
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