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Abstract
Background: Regulation of gene transcription is crucial for the function and development of all
organisms. While gene prediction programs that identify protein coding sequence are used with
remarkable success in the annotation of genomes, the development of computational methods to
analyze noncoding regions and to delineate transcriptional control elements is still in its infancy.

Results: Here we present novel algorithms to detect cis-regulatory modules through genome wide
scans for clusters of transcription factor binding sites using three levels of prior information. When
binding sites for the factors are known, our statistical segmentation algorithm, Ahab, yields about
150 putative gap gene regulated modules, with no adjustable parameters other than a window size.
If one or more related modules are known, but no binding sites, repeated motifs can be found by
a customized Gibbs sampler and input to Ahab, to predict genes with similar regulation. Finally using
only the genome, we developed a third algorithm, Argos, that counts and scores clusters of
overrepresented motifs in a window of sequence. Argos recovers many of the known modules,
upstream of the segmentation genes, with no training data.

Conclusions: We have demonstrated, in the case of body patterning in the Drosophila embryo,
that our algorithms allow the genome-wide identification of regulatory modules. We believe that
Ahab overcomes many problems of recent approaches and we estimated the false positive rate to
be about 50%. Argos is the first successful attempt to predict regulatory modules using only the
genome without training data. Complete results and module predictions across the Drosophila
genome are available at  [http://uqbar.rockefeller.edu/~siggia/].

Background
In higher eukaryotes, many genes feature differential spa-
tial-temporal expression during development and

throughout the life cycle of the organism. Their complex
transcription regulation is thought to be achieved by the
combinatorial action of multiple transcription factors
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which bind to cis-regulatory DNA sequences. Here, tran-
scription factors are defined as proteins which recognize
and bind regulatory sites and have a potential to modu-
late directly or indirectly through the recruitment of cofac-
tors the activity of the basal transcriptional apparatus of
proximal genes. The number of transcription factors is a
substantial part of the total number of genes in any organ-
ism, for example about 700 out of 13,500 genes in Dro-
sophila [1].

Although combinatorial action of transcription factors
has been studied throughout the life cycle of organisms
[2], perhaps the most coherent picture has emerged in the
context of developmental processes [3,4]. Here, a great
number of experiments suggest that a major part of the
gene regulatory apparatus is organized in the form of sep-
arable cis-regulatory modules [3]. A given module defines
specific aspects of the spatio-temporal pattern of gene ex-
pression by the combinatorial action of multiple tran-
scription factors which together define the rate of
transcription. Modules thus integrate inputs from several
genes and regulate another gene to form developmental
networks. Modules seem to share several architectural fea-
tures [5]: They are typically only hundreds of nucleotides
in length and contain multiple binding sites for as many
as 4–5 different transcription factors. The frequent oc-
curence of multiple copies of the same motif as well as the
enrichment of certain combinations of motifs in a mod-
ule in comparison with the genome at large provide the
basis for our computational strategies to predict genes
which are part of the same regulatory network. Existing al-
gorithms for discovering modules [6–8] are based on
counting the number of matches of a certain minimal
strength to known motifs and thus require ad-hoc param-

eters for each motif, resulting in parameter dependent pre-
dictions. These algorithms are also bound to miss
multiple weak binding sites which are known to be
present in many modules. We demonstrate a novel algo-
rithm, Ahab, which overcomes these problems.

However, the binding sites (motifs) which reside in mod-
ules are often not known. A recent paper [9] proposed an
algorithm for identfying these sites; here we show that a
standard method is capable of identifying typically half of
the known binding sites in a module. Its entire output can
then be used as input to Ahab (Figure 1). Finally, we ask
if the redundancy of sites inside modules is strong enough
to predict modules using only genomic sequence. To our
knowledge, our algorithm Argos is the first successful at-
tempt to do this for a metazoan genome.

Our system of choice is the body patterning of the early
Drosophila embryo which is established by a multi-tiered
hierarchy of transcription factors [10]. Broadly distributed
maternal factors trigger zygotic gap gene expression in dis-
crete domains along the anterior-posterior axis of the em-
bryo. Maternal and gap gene factors together trigger pair
rule gene expression in 7 alternating stripes, which in turn
regulate segment polarity and homeotic gene expression
in 14 stripes. Many of these factors are known, their bind-
ing sites have been studied, and more than 20 modules
have been identified. For this system, we show by compar-
ing our predictions to literature results that we can predict
regulatory modules using different levels of input – bind-
ing sites, regulatory sequence identified by 'promoter
bashing'/sufficiency tests, and genomic sequence itself.
Altogether, we predict roughly 200 new modules and 7
new sequence motifs and we analyze and validate the per-
formance of each of the three algorithms.

Figure 1 summarizes the input/output levels and serves as
a reference for what follows.

Results
Using known binding sites, Ahab finds 135 significant new 
modules in the genome
There are a sufficient number of binding sites in the liter-
ature (see additional File 1 and 2) for us to construct fre-
quency weight matrices for the maternal transription
factors Bicoid (Bcd), Caudal (Cad) and Dorsal (Dl), as
well as the zygotic gap gene factors Hunchback (Hb),
Kruppel (Kr), Knirps (Kni), and Tailless (Tll), and the tor-
so response element (torRE). With the exception of giant,
which is too ill-defined to model, these are all the mater-
nal/gap genes at the top of the segmentation gene hierar-
chy.

Modules can be located by scanning the genome in win-
dows, counting the number of matches to each matrix

Figure 1
Summary of the input (dark blue) and output (white) of the
three algorithms (light blue).
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with a score better than some value, and then combining
scores and ranking [6,7]. We have designed an algorithm,
Ahab, which eliminates all parameters other than a final
rank, and, following the logic of the mobydick algorithm
[11], computes via maximum likelihood the probability
that the window sequence is made up by sampling from
the known weight matrices or background. Mobydick was
designed to find overrepresented "words" in noncoding
DNA, and applied to yeast. However, in the genomes of
higher eukaryotes, binding sites are much fuzzier than in
yeast and simple motif models are unlikely to yield mean-
ingful results. Therefore, Ahab generalizes the motif mod-
el to positional weightmatrices. Furthermore, we
introduce a local background model to cut down the
number of false positives arising from local variations in
sequence composition and degeneracy of motifs (for ex-
ample motifs that contain a poly A string). Finally, the
maximum likelihood fit has to be done separately for each
window and thus hundreds of millions of times for the ge-
nomes of higher eukaryotes, thus requiring an efficient
implementation of the numerical procedures. Ahab tallies
all possible segmentations of the sequence into binding
sites (also called parsings). Thus motif overlaps are al-
lowed and weighted according to how well they explain
the data, and multiple weak copies of a factor are all
counted [5,12]. Our background model is a Markov mod-
el fit to all triples of bases in the window and accounts for
local compositional variation which could otherwise
push up the representation of any matrix that matched

one of the high copy number base triples (eg hb matches
poly A tracts).

We used Ahab with a 500 bp window to scan the Dro-
sophila genome. As a representative/typical example we
show the hairy locus, Fig. 2, a pair-rule gene expressed in
7 stripes. Five modules driving individual stripes and
stripe pairs have been identified experimentally. Ahab
predicts four of them (stripes 1, 5, 6, 7), only the stripe
3+4 element is not recovered. Note that two modules,
stripes 1 and 7, were not used as training data. The sup-
port for each local maximum corresponds nicely to the ex-
perimentally estimated sizes of the modules. Ahab also
reports scores for putative binding sites in each window as
defined by (4). As an example, we show the even-skipped
stripe 3+7 module, one of the best studied cases in the lit-
erature (Fig. 3). Most of the known sites are recovered and
some new ones predicted.

Ahab finds 146 highly significant modules in the genome,
most located in the non-transcribed regions. 27 modules
are inside introns, only 6 overlap with exons. It recovers
the 11 modules used to construct our weight matrices and
predicts 6 other known modules with maternal/gap gene
input. Thus, 17 out of 27 known modules (see additional
File 1) are found. Three of the missing 10 modules (kni64,
snail, sog) are very high in score (< rank 100) but lost
when filtering for the presence of at least three different
factors. Three modules are lost because they contain only

Figure 2
Ahab score for the hairy locus Module score for the hairy locus (screenshot from our interactive web browser). Plotted is the
Ahab score as a function of position in the genome. Known modules are marked as "module". Four of the known modules
(stripes 1 and 5–7) have high enough scores to appear among the top 146 genome wide predictions and Ahabs predicted bind-
ing sites are mapped out in these cases. The stripe3+4 module is not recovered.
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dorsal sites (rho, twist, zen) and we do not have matrices
for the other factors known to bind (such as snail and
twist), however searching with only the dorsal weight ma-
trix does recover them. The four remaining missing mod-
ules are low in score (rank > 700), but Kruppel CD2 is
recovered for a window size of 700; the others are evident-
ly low in maternal/gap gene binding sites.

To determine whether any of the 129 novel module pre-
dictions were correct, we asked whether any of the adja-
cent genes were patterned in the blastoderm. For 15
modules patterned expression has been reported for one
of the adjacent genes; the patterns are either gap or pair
rule like. An additional 11 modules are suggestive, since
they are clustered with another, nonoverlapping predic-
tion (Table 1). Interestingly, two predicted modules are in
proximity to well studied segmentation genes (giant,
runt) but still outside known regulatory regions.

We tested the stability of Ahab against unspecific input
weight matrices by eliminating the least specific matrix in

our list (Tailless). Tailless has ~600 predicted sites in the
146 modules (Table 2), twice as much as any other factor.
However, we found that roughly 75 % of the predictions
without using tailless (but with the same significance cut-
off) were also present in the list of 146. Thus, although
Tailless is rather unspecific, it makes a contribution to the
predictions without dominating them.

We also varied the window size to 700 bp and masked out
the repeats genome wide, before running Ahab, (see web
site). Our top 150 predictions now included 11 out of the
27 known modules (see additional File 1 and 3). Lower-
ing the cutoff value in the module score did not help, only
one additional known module was recovered when in-
cluding ranks 151–250. Overall, 84 modules or 58 % of
the window 500 dataset are also among the top 200 of the
window 700 set, and thus might be accorded more signif-
icance. Although some known modules disappeared,
some very interesting new modules are predicted, in win-
dow 700 runs, including modules for key genes in the seg-
mentation process such as caudal, grainyhead, odd

Figure 3
The even-skipped stripe 3+7 module Known binding sites (in blue) and sites predicted by Ahab (in red) for the even-skipped
stripe 3+7 module. knirps sites are marked by circles, hunchback sites by boxes. The upper (lower) half depicts binding sites
for the plus (minus) strand. The height of the red symbols corresponds to the score of the sites (Eq. 4).
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This plot has been obtained using gff2ps. The most recent version of gff2ps is freely available at "http://www1.imim.es/~jabril/". Copyright      1999 by Josep F. Abril & Roderic Guigo
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skipped (odd), and sloppy paired 1,2 (slp1,2) (see addi-
tional File 3). Thus Ahab could be improved by allowing
for variable window lengths.

We estimated the false positive rate by scrambling the col-
umns (positions) in the input frequency matrices. The
new matrices are thus unlikely to be functional, but retain

Table 1: The 32 modules and nearby genes which are known to be patterned in the early blastoderm (upper block) and 11 additional 
modules (lower block) for which a pair is linked to the same gene.

Rank Score Gene Location

1 * 37.82 hairy (stripe 6) up/9.2 kb
2 * 28.29 knirps up/1.6 kb
3 * 27.24 tailless up/2.6 kb
5 * 25.32 knirps up/1.1 kb
8 20.80 runt (stripe 7) up/3.2 kb
9 19.89 optix = six3 down/11 kb
10 19.75 Dichaete down/2.3 kb
17 18.88 Tenascin-m up/110 kb
18 18. 87 giant down/14.5 kb
20 * 18.76 Kruppel up/4.1 kb
23 18.30 ken intra
24 18.29 giant (posterior) up/2.1 kb
25 18.29 hairy (stripe 1) up/4.7 kb
27 18.06 hairy (stripe 1 or 5) up/5.4 kb
34 17.36 hairy (stripe 7) up/10.4 kb
36 * 17.25 even skipped (stripe 3+7) up/3.5 kb
37 17.15 knirps-like intra
41 * 17.02 hairy (stripe 5) up/6.2 kb
43 16.94 brinker up/10.9 kb
45 16.83 pipsqueak intra
46 16.82 teashirt intra
48 * 16.80 short gastrulation intra
51 16.76 abd-A up/17 kb
54 16.65 abd-B up/15.3 kb
61 16.20 vnd intra
75 15.90 cap n' collar up/4.3 kb
76 * 15.89 even skipped (stripe 2) up/1.7 kb
91 15.69 runt (stripe 3) up/9.67
120 * 15.34 tailless (proximal torso) up/0.64 kb
124 15.32 proboscopedia intra
126 15.29 runt up/17.2 kb
129 * 15.24 hunchback (central stripe) up/3.34 kb

6 23.97 Cyp6V1 down/1.6 kb
11 19.66 CG13595? down/4.5 kb
14 19.32 Cyp6V1 up/6 kb
55 16.62 echinoid up/58 kb
58 16.34 CG2118/Acf1/faf intra
69 16.01 faf/Acf1/CG2118 intra
93 15.65 echinoid intra
105 15.51 bruno 3 up/95 kb
117 15.37 CG5060 up/31.1 kb
130 15.22 bruno 3 up/25.1 kb
132 15.18 CG5060 up/30.1 kb

Modules which were used to construct weight matrices are marked with stars. The columns give the rank of each module, the score, the gene, infor-
mation about the location of the module in respect to the gene (up/downstream or intragenic). For References and additional material see additional 
File 3.
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the same specificity. Ahab found roughly half as many
"modules" for the same score cutoff as for the original set
ie a 50% false positive rate. Note that this is a conservative
estimate because part of the consensus motif recognized
by hunchback and caudal is largely a poly T motif, and
thus preserved by scrambling. Moreover, only very few
known patterned gene are predicted by the scrambled ma-
trices.

Another perhaps more straightforward estimate of statisti-
cal significance and our true positive rate is to use the ex-
perimental result (see footnote in [6]) that less than 2% of
the genome or ~300 genes are patterned during the blast-
oderm. Since we can not tell which of two neighboring
genes is regulated by each of the 102 intergenic modules
we predict, we are obliged to label 237 genes (adding the
33 genes with intragenic modules) as potentially pat-
terned. For 237 random predictions one expects 2% or
five genes to be patterned, and the probability to get 21 or
more genes (see additional File 3) by chance (p-value) is
~10-10. It should be stressed that the true success rate of
Ahab will be much higher since the number of genes for
which blastoderm expression is demonstrated is (< 100)
or 1/3 of the total. Thus we expect an additional 50 genes
in our set to be patterned, so a 50% overall positive rate
for our module predictions.

The Gibbs sampler finds binding sites within experimental-
ly characterized modules
Binding site information for most of the transcription fac-
tors relevant to any developmental process is only rarely
available. More common are modules obtained by 'pro-
moter bashing' from several genes with similar expres-
sion. Thus it is natural to ask, in view of the site repetition
within modules, whether standard motif finders are able
to recover good weight matrices from modules and if so
can these be used as input to Ahab to find genes with sim-
ilar regulatory inputs.

We have tailored the Gibbs algorithm (see methods) to
this problem by searching for only one site at a time, and

then masking only the central 1–2 bases of each sequence
motif found before iterating. The results were thereby
much more reproducible between runs. Most important-
ly, motifs were allowed to overlap, a very common occur-
rance in modules and arguably important for their
function [3].

To gain confidence in the capabilities of the Gibbs algo-
rithm, we prepared two synthetic data sets representative
of the data we wanted to examine (eg several kb long, 30–
50% of the sequence covered by motifs, the remaining se-
quence random and 60% A/T). Data set 1 was made by
equally sampling our Hb, Cad, Kr and Tll matrices. Data
set 2 was generated from four synthetic frequency matrices
of specificity equal to the known ones. The customized
Gibbs virtually perfectly recovers all the synthetic weight
matrices from dataset 2. By contrast, only half of the nat-
ural sites were recovered from dataset 1. The sites over-
lapped and their delineation was imperfect. Thus Gibbs
detects sequence correlations among the factors we chose,
but probably exaggerates them, because it computes sig-
nificance based on single base frequencies.

We then ran the Gibbs algorithm on several modules with
extensive binding site data, Table 3. In accord with exper-
iment, Gibbs predicts that about 30–50% of the sequence
is covered by motifs. The specificity of the Gibbs motifs is
typically higher than for the experimental ones, presuma-
bly because a smaller number of sites is sampled. Even
when the majority of the sequences composing the Gibbs
motif match a single factor, there are a few other strong
factor matches generally in different positions and per-
haps the other orientation. Nevertheless the Gibbs motifs
are largely reproducible between runs. Generally, we re-
cover about half the factors known to influence the mod-
ule, and interestingly predict several new motifs. The lack
of a 1:1 correspondence between the experimental motifs
(generally composed from a wider range of data then pre-
sented to Gibbs) and those we find, points to a real ambi-
guity, we believe, in how to parse a sequence into binding
sites.

Table 2: Statistics of factor binding sites for the set of 146 modules predicted by Ahab.

bcd cd dl hb kni Kr tll torRE

sites 179 99 143 213 302 203 597 24
specific 3.3 3.3 3.6 3.4 2.6 3.6 2.8 4.3
modules 65 35 62 72 84 76 119 4

The specificity is defined as a standard error, eg 3 (4) implies a 0.14% (0.003%) probability of getting a match as good as the median data match from 
random sequence.
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Using only three modules as input, Ahab finds 63 signifi-
cant modules in the genome
Next we tested whether Gibbs derived matrices can be fed
to Ahab for a genome-wide search for modules. As sam-
ples, we used three known modules that drive expression
of the pair rule gene hairy in stripes 5, 6, and 7, which are
known to receive input from Bcd, Cad, Hb, Kni, Kr, and Tll
(see additional File 1).

Customized Gibbs finds 6 highly significant weight matri-
ces within the 2 kb composite module (see additional File
4). One matches the Kr weight matrix with high quality,
another Kni, and a third represents a mixture of Hb and
Cad, whose matrices are indeed quite similar due to a poly
T motif. The other three motifs are new. Using these 6
weight matrices as input, Ahab finds 63 highly significant
modules genome-wide (Table 4, additional File 5).

The top four modules overlap with those used in the
Gibbs sampling. In addition, 13 new modules were con-
tiguous to genes that are known to be patterned in the
blastoderm, and two fall close to a single gene of un-
known function. One of the top scoring modules is the
hunchback central stripe module, other particularly inter-
esting hits are in the intron of knirps and 18 kb upstream
of hairy outside the known regulatory region, and proxi-
mal to emc, a known transcriptional co-repressor. Com-
pared to the Ahab predictions, we find more modules near
homeotic genes (Abd-A, abd-B, Ubx, hth), due to the pres-
ence of the novel Gibbs motifs. The statistical significance
of our predictions and the inferred true positive rate are
comparable to the segmentation gene results.

Argos: prediction of regulatory modules from raw genomic 
sequence
As a final generalization, we ask whether there is enough
repetition of sequence motifs within a module for its dis-

covery using no information other than the noncoding se-
quence in the genome. To determine whether a given
motif is locally overrepresented, its frequency of occur-
rence has to be scored against some statistical model. Both
Ahab and Gibbs, use counts of short strings or single bas-
es, within the window of interest to compute the signifi-
cance of longer motifs. We attempted running Gibbs on
successive windows of sequence and scoring the resulting
motifs with Ahab, but were not able to discriminate the
known modules from the remainder of the upstream re-
gion.

We therefore devised an alternative strategy that uses the
information available in all the noncoding sequence and
thus extrinsic to the window of interest. We enumerate all
motifs in a class (a consensus of length 8 and 2 mutations
worked best), and use their frequency to assign a probabil-
ity for observing an overrepresentation of any one of them
in the window of interest. The actual binding motifs may
be longer, we only need to capture the most significant re-
gion. Typically several hundred motifs are significant for
each window. They heavily overlap so the individual mo-
tif scores can not be simply added for an overall score. Al-
though we tried using Ahab to eliminate redundant
motifs, we got better results with a greedy algorithm that
looks only at the motifs without placing them on the se-
quence. The greedy algorithm winnows the list of motifs
down by starting with the highest scoring one and elimi-
nates any motif related to it under shifts and a limited
number of mutations. The next remaining motif is re-
tained and overlaps with it are eliminated, until ~5 quasi
independent motifs are obtained whose scores can be
added (details in additional File 7).

We evaluated the results of Argos for the the modules in
additional File 1. Log probability scores > 70 were taken
as significant, since they are found very rarely using rand-

Table 3: Motifs derived by Gibbs sampling the indicated modules  (see additional File 1)

Module recovered factors (copies) novel motifs

eve stripes 2, 3+7 kni(15), bcd(9), hb/cad(9)
eve stripes 5, 4+6 hb/cad(6), RTTNSRCGSAAT(9),
h stripes 5,6,7 kni/hb/cad(12)

Kr(12), hb/cad(14) kni (7)
ATYCYGCARY/ bcd (6)
GRCNWG[T/G]TSNSA (9)

hb (both mods) Kr/tll(6), hb/cad(8) ATTTTCCNSC (9)
kni (1.1 k) Kr(7), tll(5), hb/cad(9) GWGWG [A/C] GWGYG(7)
Kr (700 bp) bcd(5), hb/cad(7) TWNTGATCCWS (6)
tll (3 mods) kni(9), cad(9), Kr(7), hb/cad(8) TCRAWSAAT/torRE (8)

The criterion for a motif to match a known factor is given in Methods; copies refers to all sequences in the Gibbs derived motif. Only the consensus 
sequences of the most prominent unclassified motifs are shown with the abbreviations (R = A/G, W = A/T, S = G/C). Matches in italics are marginal 
and names linked by / co-occur within the same Gibbs motif, possibly on opposite strands.
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omized noncoding sequence 1. With this threshold and at
least l00 bp overlap, half of the modules were recovered,
indicating a 50% false negative rate. The number of false
positives is difficult to assess, because the code looks for
any regulatory module. However for several well studied
segmentation genes (specifically even-skipped, giant,
hairy, hunchback, knirps, Kruppel, and tailless), with 15
known modules, we squarely hit 7 when looking over the
entire 10 kb upstream of translation start (gt, kni, Kr-730,
Kr-CD2, eve3-7, eve autoregulatory element, h-7), Fig. 4,
but only three predictions are outside of known modules
(one for tailless and two for hunchback). This indicates a
low false positive rate. Genome wide we are predicting
about one module per 5 kb of noncoding sequence aver-
aged over the genome (with a strong bias for noncoding
vs coding), which corresponds to roughly one module per
gene.

Discussion
We have demonstrated algorithms that exploit three very
different levels of prior information and lead to statistical-
ly highly significant predictions for early developmental
modules in the fly. The Ahab algorithm is perhaps closest
to the 'calculation' actually performed by the cell. The

weight matrix match is a surrogate for the energetic pref-
erence of a transcription factor for a particular sequence,
and Ahab models the competition of several factors and
their binding energies for a stretch of DNA (a module).
Ahab ignores distances between binding sites and the ac-
tual factor concentrations. Thus, the success of Ahab sug-
gests that just modeling the binding energies is already
predictive. It will be interesting to see how well Ahab per-
forms in situations where the concerted binding of cofac-
tors constrains the spacing of binding sites [13,14].

Finding overrepresented weight matrices is a well studied
problem for which Gibbs sampling constitutes a reasona-
ble solution if the data consists of distinct motifs separat-
ed by random bases. The difficulty we have encountered
with this algorithm in dissecting regulatory modules for
binding sites is not rare or diffuse motifs but rather too
much signal, namely the overlay of motifs of different siz-
es and specificities. The Gibbs statistical model is not
strictly correct for our data. A more adequate algorithm
would allow competition among motifs of different
lengths [15]. Irrespective of technical problems, the dis-
covery of binding motifs by site repetition is qualitatively
a more difficult task than their recognition by transcrip-
tion factors [16]. Thus our ability to recover plausible mo-
tifs for about half the known factors was not obvious in
advance and is another manifestation of the redundancy
in module design.

Reference [6] describes another approach to locating
modules from clusters of known weight matrices. They
count the number of matches of each weight matrix in an
interval with a score above some empirically defined cut-
off, and then score a 700 bp window as significant when
the total number of matches for all factors is large enough.
Information about the background is implicitly encoded
in their choice of threshold. We do not have factor specific
cutoffs, and use a locally defined background model,
which renders our algorithm more automatic and less sen-
sitive to local variation in sequence composition, eg poly
A runs.

Although we are predicting many more modules than in
[6], the positive hit rates are comparable between the two
methods (50% vs 10 positives out of 28 predictions [6]).
A more detailed comparison of both data sets reveals,
however, that the 28 modules predicted by [6], with the
exception of the giant one, do not overlap with any of the
top 137 modules predicted by Ahab, although there are 4
genes in common to our sets. More strikingly, the 10
modules for which experimental results in [6] suggest
functionality based on blastoderm expression of a neigh-
boring gene fall below 500 in our ranking with exception
of giant and one of the hairy derived modules for nub, Ta-
ble 4. Presumably due to the difference in background

Table 4: Modules predicted by Ahab from the hairy derived Gibbs 
motifs that are patterned in the early blastoderm.

Rank Score Gene Location

1 * 42.16 hairy (stripe 7 element) up/10.9 kb
2 * 36.43 hairy (stripe 6 element) up/9.2 kb
3 * 31.43 hairy (stripe 5 element) up/6.2 kb
4 * 25.08 hairy (stripe 7 element) up/10.4 kb
5 22.58 hunchback (hb central stripe) up/3.3 kb
7 21.91 abd-A (in iab-7 region) up/83.2 kb
8 20.02 homothorax intra
9 19.41 bxd (in bxd reg region) up/18.8 kb
10 18.55 frizzled 2 up/37.9 kb
16 17.76 hairy (not in known modules) up/18.9 kb
17 17.73 abd-A up/0.2 kb
21 17.43 abd-A up/35.8 kb
24 16.69 fd64A up/1.4 kb
25 16.55 nubbin up/2.6 kb
31 16.10 extra macrochaetae down/2.2 kb
37 15.90 knirps intra
46 15.90 Btk29A intra

11 18.55 CG6559 up/30 kb
39 15.72 CG6559 up/45 kb

The last two modules are distinguished by proximity to a common 
gene. Modules which were used to construct weight matrices are 
marked with stars. The format follows Table 1. For references and 
additional material see additional File 5.
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Figure 4
Argos score for the upstream regions of giant, knirps and Kruppel Argos score to observe a 500 bp module upstream of giant,
knirps and Kruppel. The bars mark known modules and translation start is at the right most base.
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model, their modules are dominated by Hb sites, while
ours are not, which contributes considerably to the diver-
gence of the predictions. Clearly, only direct experimental
validation of predicted modules through reporter gene fu-
sions will help to compare the different methods. In this
fashion, we plan to test a number of the new modules pre-
dicted for key genes in the segmentation system such as h,
run, gt, odd, prd, slpl/2 and cad.

In order to understand regulatory networks of genes, it is
useful to generalize from a few genes or modules with
common functions to new candidates. When control is
combinatoric, a purely experimental approach tends to be
more tedious than screening a modest list of candidates.
Thus a potentially important aspect of our work is the
combination of motif discovery from modules via Gibbs
sampling and generalization to the entire genome with
Ahab. We have demonstrated the feasibility of this proce-
dure when we worked from the hairy stripe 5–7 modules.
Interestingly, the candidate list of similar modules ge-
nome wide was quite small, but had little overlap with the
top scoring modules predicted from the full set of gap
gene weight matrices. Hopefully some of the new motifs
discovered by Gibbs sampling are real; perhaps they are
binding sites for corepressors. Clearly the first step is to
confirm a striped expression for some of the genes in Ta-
ble 4.

Our algorithm Argos for predicting enhancers from raw
genomic sequence works astonishingly well. It will be
most interesting to use this approach together in conjunc-
tion with the customized Gibbs sampler and Ahab in sit-
uations where nothing is known experimentally about the
transcriptional regulation of genes of interest to identify
co-regulated genes. Namely, following the hierarchical
structure in Figure 1, Argos could be used to predict mod-
ules, then the customized Gibbs sampler to predict bind-
ing sites (weight matrices) and finally Ahab to predict,
genome wide, genes in the same regulatory network.

Several recent papers [6,7,9] as well as ours have taken
only the very first steps in applying computational ap-
proaches to the the elucidation of cis-regulatory modules.
For body patterning in the fly, it is very encouraging that
such limited information as we have used works so well.
It remains to be seen if the same approaches work on sys-
tems where a single master regulatory gene initiates a de-
velopmental cascade, or where integration of
developmental cues occurs partly at the level of signal
transduction.

Conclusions
Predicting and understanding transcriptional regulation is
a fundamental problem in biology. We have designed
new algorithms for the detection of cis-regulatory mod-

ules in the genomes of higher eukaryotes which is a first
step in unraveling transcriptional regulatory networks. We
have demonstrated, in the case of body patterning in the
Drosophila embryo, that our algorithms allow the genome-
wide identification of regulatory modules when the mo-
tifs for the transcription factors are known (algorithm
Ahab), or when only related modules are known (custom-
ized Gibbs sampler in conjunction with Ahab), or when
only genomic sequence is analyzed with Argos. We believe
that Ahab overcomes many problems of recent studies
and we estimated the false positive rate to be about 50%.
Argos is the first successful attempt to predict regulatory
modules using only the genome without training data. All
our results and module predictions across the Drosophila
genome are available at  [http://uqbar.rockefeller.edu/
~siggia/]. The Ahab code is available upon request from
the authors.

Methods
Genomic data
We downloaded the Release 2 genomic sequence and an-
notation for Drosophila melanogaster from "Gadfly" (Ge-
nome Annotation Database of Drosophila, [http://
www.fruitfly.org/] (Oct 2000)). Using a map provided by
Chris Mungall (private communication) we mapped the
annotation, which was done on separate contigs, to chro-
mosomal coordinates. "Flybase"  [http://flybase.bio.Indi-
ana.edu/] provides a curated assembly of genetic and
molecular data from the existing literature. Our web sites
links this database to the Gadfly annotation using a map
provided by David Emmert (private communication).
Since our algorithms are based on searching for clusters of
common sites, microsatellites can score high, but tend not
to be functional (for an exception see [9]). We used the
Tandem Repeat Remover [17] to mask microsatellites,
with scoring parameters (2 5 5 75 20 20 500) (respective-
ly; match, mismatch, indel scores; percentage priors for
mismatch and indels; minimum score, and maximum
length) which are as promiscuous as possible yet did not
detect appreciable microsatellites in random sequences.
With these settings, ~5.7% of all non coding sequences are
masked.

We collected from the experimental literature modules
that drive blastoderm specific expression of a reporter
gene in response to several of the factors in our list. In
many cases the module was shown to be the minimal el-
ement. The modules mapped to chromosomal coordi-
nates are reported in the additional File 1.

We collected a total of 199 experimentally characterized
sites for the factors bicoid (30 sites), caudal (21), dorsal
(32), hunchback (43), knirps (27), kruppel (20), tailless
(20), and torRE (6). Giant sites are too few in number and
ill defined to be useable. Each binding site was mapped to
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the genome and padded with six bases on both sides. The
multiple alignment program WCONSENSUS [18] (op-
tions, -f -d -sl -a and background frequencies representa-
tive of noncoding sequence (60% A/T)) was used to align
and orient the sites and create a weight matrix for each fac-
tor. Results and references are in the additonal File 2.

Algorithm Ahab: fitting multiple weightmatrices to se-
quence
Ahab computes an optimal probabilistic segmentation of
a sequence S into binding sites and background for a fixed
set W of sequence motifs modelled by weight matrices.
Ahab is related to the mobydick algorithm [11], but has
several novel key features described in detail in the results
section and the additional File 6. It fits the probabilities pw
of the (fixed) matrices w and background pB, so as to max-
imize the likelihood of generating S under a certain explic-
it model. Namely, select a weight matrix or background
according to its probability pw, pB, sample according to the
predetermined frequencies, and add the resulting bases to
the sequence under construction. The fit of the model to S
is accomplished by defining the probability of a particular
segmentation T of S as

where k = 1, 2,..., N(T) labels the weight matrices (or back-
ground) which were used in segmentation T. The quality
of the match between the weight matrix wk and the subse-
quence s = (n1,...nl) is incorporated in m(s|wk) =

, where fj (n|wk) are the normalized fre-

quencies of nucleotide n at position j for weight matrix wk.

An important consequence of equation (1) is that multi-
ple binding sites with weak matches to the weight matrix

for the same factor (  large, m(s|wk) small) may make

an important contribution to P(T). In many cases these re-
dundant sites with low weight matrix scores have been ob-
served in experimentally known modules. Any algorithm
that would just count matches of sequences to a weight
matrix above a certain threshold would have to use ad-hoc
measures to incorporate these sites into the score. Note
also that the weight matrix only captures the sequence de-
pendent part of the binding energy, so 'weak' binding
could equally well be termed 'nonspecific'. We know too
little about the physical binding energies of transcription
factors, and their cofactors and protein concentrations in
vivo, to calculate whether any modules are actually occu-
pied by factors.

Ahab uses a local Markov model of order q for background
sequence, that is, a single base n at site j is segmented with
probability pBfj(n|B), where ∑nfj (n|B) = 1, and fj(n|B) is
contingent on the q preceding bases following the usual
Markov model definitions. The fj are computed by enu-
merating all q + 1 tuples of bases in S, which has the effect
of suppressing the number of copies of any w which
match frequent triples of bases, eg poly A tracts (we typi-
cally use q = 2).

The likelihood Z to observe S is then

Dynamic programming allows the calculation of Z(S) in a
time proportional to the sequence length and the number
of weight matrices. The maximization of Z(S) then deter-
mines pw,B (see additional File 6). The likelihood ZB that
S comes from background only (ie pB == 1) is trivially
computed from the Markov model. The score R that S is a
regulatory module is then in log-odds units

At each position i = 1, ..., L in S the probability Pi(w|S) to
observe the start of weight matrix w of length lw is comput-
ed by standard posterior decoding. Let Z(i, j) denote the
likelihood for the sequence S from position i up to j. (The
symbol Z(S) used above, is just Z(1,L).)

using the optimized pw's. The sum of equation (4) over all
positions is the average copy number of w in the data.
Summing over all segmentations (1) naturally allows for
overlapping sites and the 'profile' (4) quantifies the com-
petition between different factors for the same bases.

It takes a modern LINUX workstation about 2 days to run
Ahab over the entire genome with a 500 bp window
moved in 20 bp steps, fitting the gap gene weight matrices
we collected. We enumerated all local maxima in the score
R larger than 15 and eliminated those within 500 bp of a
higher scoring peak and obtained 216 disjoint regions. If
we insist that at least 3 different factors contribute to the
module with individual average copy numbers of at least
1 the number of modules reduces to 169, and eliminating
all candidates with 80 or more basepairs masked by the
Tandem Repeat Remover gave a final list of 146 modules.
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Predictions with more than 200 bases overlap with a
known module or with an overlap of at least 50% of the
length of the known module were considered to be a re-
covered known module.

Determination of motifs from modules
We ran locally the Gibbs sampler algorithm provided by
C. Lawrence's group at  [www.wadsworth.org/resnres/bio-
info/], as described in Results. We generally used a motif
length of 11 bp and allowed the algorithm to vary this by
+-2 if the data warranted, and took a prior copy number
of 7 when fitting 1–2 kb of data (again the algorithm will
adjust this number). Other parameters were taken as de-
fault, and under these conditions typically 5 distinct mo-
tifs were fit.

To decide whether Gibbs derived motifs matched known
ones we ran the known weight matrices in both orienta-
tions over the individual sequences composing the motif
plus five flanking bases and computed the position that
maximized the information score. The Gibbs motif was
deemed to match a known factor if:

1) a single known matrix was the top match to a majority
of the sequences,

2) the optimal match occurred at the same position (with
some variability allowed for factors such as hb, with poly-
A regions),

3) the information score of the match was comparable to
the score of the sequences which define the matrix to the
matrix itself and not dominated by the flanking bases.

4) the preceding conditions were met in two independent
runs (with typically 2–4 runs done for each data set).

Algorithm Argos
Argos is described in detail in the results section and addi-
tional File 7.

Genome-wide display of our results
Our webpage  [http://uqbar.rockefeller.edu/~siggia/] con-
tains all our predictions. For each module, all nearby
genes were extracted from the annotation, their position
relative to the module (ie up/down stream, intronic), and
Flybase links for gene function were collected into a table.
The number of binding sites for each factor in the module
is listed and their position and score along with known
binding sites can be viewed in graphs which were pro-
duced with "gff2ps" [19].

To view our results interactively on a larger scale together
with the current fly annotation we installed the Gbrowse
software from L. Stein's Generic Model Organism Systems

Database Project  [http://www.gmod.org]. Our modules
(predicted and experimental), binding sites, and restric-
tion sites are included in the display. A function was add-
ed that allows to plot the Ahab score (equation 3) along
the genome. Thus, the user can explore where additional
putative modules fall relative to any gene of interest.

Contributions
Authors 1, 2 and 4 carried out the computional part of this
study, author 3 annotated the Ahab results. All authors
read and approved the final manuscript.

Note
1Randomized sequence was produced by randomly pool-
ing and concatenating 100 basepair chunks from genomic
noncoding sequence
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