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Abstract 

X-ray small- and medium-angle scattering of partially 
ordered or semicrystalline materials is composed of 
background scattering from the form scattering of the 
components and from the amorphous phase and of 
peaks from the scattering of the crystallites. By the slit 
geometry of X-ray diffractometers constructed for 
registration of small- and medium-angle X-ray scat- 
tering, the diffuse scattering and the peaks are dis- 
torted and the peak positions and half-widths are 
changed. A program module based on the Akima 
interpolation [Akima (1970). J. Assoc. Comput. Math. 
17, 589-602] is proposed for calculation of the first 
derivative of the complete smeared scattering curve, 
which is then explicitly used in direct collimation- 
correction procedures. The desmearing of scattering 
curves from semicrystalline starch samples proves the 
convenience of the method for low-noise conditions 
and exhibits a significant gain of measuring time in 
comparison with data of comparable accuracy but 
measured with SoUer-slit collimation systems or de- 
smeared with direct methods using frequency filtering. 

1. Introduction 

In small-angle X-ray scattering experiments, for rea- 
sons of intensity, slit-collimation systems are often 
used instead of pinholes. The slit geometry provides 
higher intensity but the measured scattered intensity 
is distorted (smeared). To correct the smearing, a large 
number of direct and indirect algorithms have been 
developed (for a review, see Glatter & Kratky, 1982). 

In general, band-limited scattering curves with a 
defined upper-limit frequency or correlation length L 
in the sample (Damaschun, Miiller & P/irschel, 
1968; Luzzati & Taupin, 1986) can be corrected with 
sufficient accuracy despite the quantum noise overlaid 
on the smeared scattering data (Glatter, 1977; Gerber, 
Walter & Schmidt, 1991; Miiller & Hansen, 1994). 
In principle, the small- and wide-angle scattering 
curves of partially ordered systems are also band 
limited and can be handled with direct and indirect 
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methods for desmearing. If the maximum diameter of 
the ordered regions is roughly known, the scattered 
intensity has to be measured at least at the sampling 
points st= ir~/L to avoid loss of information 
(Goldman, 1954). For tightly packed systems, such as 
powders, or other partially ordered materials, L is 
unknown but the band width of the diffractometer 
transfer channel Lo (Damaschun, 1968) restricts the 
spatial frequencies contained in the scattering curve. 
The direct smoothing and desmearing method of 
Gerber, Walter & Schmidt (1991) is based on that 
sampling theorem of the :information theory and is a 
powerful direct method. It works without any stability 
problems for scattering curves measured with 
relatively large redundancy [that is, measured at 
points si = irc/(5L)]. Only in the special case of a 
strongly scattering material can a scattering curve up 
to s --- 40 nm- 1 be measured with such a step width in 
a finite convenient time. For ordered regions with an 
approximate diameter L of 20 nm, the sampling-point 
distance would be 0.157 nm -1 and 1300 measuring 
points would result therefrom. 

The required measuring time is unacceptably long. 
For the special handling of small-angle scattering 
curves from semicrystalline substances, some efforts 
have been made up to now that use an iterative 
numerical procedure (Strobl, 1970) as well as 
hardware (Hendricks, 1972). But, of course, the 
hardware solution, which uses Soller slits to reduce 
the width of the effective slit-length weighting function 
to avoid numerical desmearing, reduces the detected 
intensity remarkably. The reduction factor depends on 
the quality of the Soller slits and on the geometrical 
data of the collimation equipment and is usually of 
the order of 0.2 (Hendricks, 1972). The measuring time 
is correspondingly prolonged. 

Here, we present a program module that has been 
introduced in the direct-desmearing program of 
Gerber, Walter & Schmidt (1991), called here the 
GWS method, and that can be inserted in all 
programs that need an explicit first derivative of the 
smeared scattered intensity, especially in algorithms 
using so-called slit functions for slit-length correc- 
tions. In the test examples, the step width used for the 
measuring points was of the order of the sampling- 
point distance. 
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2. Theory 

The slit-length-corrected scattering curve is calculated 
by solution of the integral equation 

oo 
l(s) = (-- 1/n) ~ [J'(s 2 + tz)l/2/(s2 + tz)l/2]H(t) dt 

0 
(1) 

with H(t) being the slit function calculated by a 
Laplace inversion (Kratky, Porod & Kahovec, 1951; 
Deutsch & Luban, 1978; Schmidt & Fedorov, 1978). 
The length of the scattering vector s is given by 
s = 4n sin 0/2, where 20 is the scattering angle and 2 
is the wavelength. J '  is the first derivative of the 
slit-smeared experimental scattering curve. 

The first derivative of the experimental scattered 
intensity has to be calculated for arguments different 
from the experimental measured points. In direct 
methods and for frequency-limited scattering curves, 
the differentiation has been performed by a Fourier 
representation (GWS method). For flat scattering 
curves without strong features, spline functions have 
been used (Walter, Kranold, Mfiller & Damaschun, 
1976). These methods are in general not applicable to 
small- and medium-angle scattering curves containing 
maxima caused by ordered regions or microcrystals 
of dimensions larger than 10 nm because of the high 
spatial frequencies needed or because of the 
unflexibility of the splines. In this case, the scattering 
curve must be represented and possibly smoothed by 
local very restricted functions and the first derivative 
has to be calculated with high precision in the limited 
region of a peak. This can be done by using the Akima 
polynomials (Akima, 1970): 

J ~ ( s )  = a i -4- b i ( s  - si) a t- c i ( s  - si) 2 -4- d i ( s  - si) 3. (2) 

The coefficients of the cubic polynomial are defined 
in the interval (s~, si+ 1) by the conditions 

Y*(si) = d(si) (3) 

J ~ ( S i +  1) = J ( s i +  1). (4) 

With this definition, the polynomial fits the scattering 
data exactly at the experimental data points. The 
gradient of J*(s) is defined by 

J * ' ( s i )  = ( ] m i  + 1 - -  m i l m i -  1 + I m i -  1 - -  m i -  2 l m i )  

x (]m i+1 - -  mi[  + [ m i - i  - -  m i - 2 [ ) - I  (5) 

J*'(si+ 1)= (Imi+ 2 - m i + l  [mi + ]mi--mi- llmi+ 1) 
X ( [ m  i + 2 - -  m i  + 11 + [mi  - -  m i -  11)- 1 (6) 

at the scattering points. In these equations, 

m i  = [ J ( s i  + 1) -- J ( s i ) ] / ( s i  + 1 - -  s i ) .  (7) 

From (2)-(7), with the Hermite interpolation, the 
coefficients of the cubic polynomial in the ith interval 

(Si,  Si + 1) are  
ai  = J ( s i ) ,  (8) 

bi = J*'(si), (9) 

Ci = [ m i  - -  2 J * ' ( s i )  - -  J * ' ( s i +  1 ) ] / ( s i+  i - s i ) ,  (10) 

di  = [ J * ' ( s i )  + J * ' ( s i +  1 ) -  2 m i ] / ( s i + 1  - si) 2.  (11) 

An automatic smoothing procedure included before 
the differentiation presented here is very modest and 
locally restricted. Three points on both sides of a 
sampling point are included and are weighted by a 
parabolic declining function (Hilberg, 1989). The 
weighting factor for the intensities in the surroundings 
of the point i is 

Gj = 1 - [2(sj - s i ) / ( s i +  3 - s i _ 3 ) ]  2 .  (12) 

j runs between i - 3  and i +  3. The smoothed 
scattered intensity is then 

i+3 / i+3 
J*(s,)= ~ GjJ*(sj) ~ Gj. (13) 

j = i - 3  j = i - 3  

A stronger smoothing deforms the peaks if the 
smoothing goes from the small-angle peak wing over 
the top to the large-angle wing, but additional local 
smoothing of the curve between the maxima can be 
done (e.g. with spline functions) before the calculation 
of the first derivative J*'(s). 

Because (1) is solved by semi-analytical integration 
containing an automatic convergence criterion that 
regulates a step width At, the theoretically calculated 
slit function H(t) also has to be interpolated. For 
smooth slit-length profiles (for an overview see 
Gerber, Walter & Schmidt, 1991) of Gaussian type, 
the function H(t) also is smooth and has been 
approximated by bell splines (Bok, 1978) with high 
precision. To interpolate the step-slit function H(t) for 
a rectangular function P(t), the Akima polynomials 
are used with no smoothing procedure. 

3. Results 

The Akima interpolation has been used in connection 
with the GWS desmearing method originally devel- 
oped for frequency-limited scattering curves. It is 
integrated in the Fortran program package SAXS for 
a PC (Miiller, 1992). Fig. 1 shows a test scattering 
curve. A Gaussian peak at the position So = 3.5 nm-  1 
and of half-width S1/2 = 0.5 nm-~ has been smeared 
by a Gaussian slit-length profile 

P(t) = c exp (--C2t2)/7C, (14) 

with c = 0.25 nm for values si = i x  0.1 x sl/2. The 
position of the peak is shifted by the smearing 
operation to 2.53 nm-  1 and the half-width is enlarged 
to 0.82 n m -  1. Without an overlaid random noise, the 
peak can be desmeared exactly. The peak position 
after the correction procedure is So = 3.51 nm-1,  the 
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half-width Sl] 2 = 0.5 "}- 0.005 nm-x  (not shown here). 
For the same model with a 2% random noise added 
to the smeared intensity values, the error propagation 
by the desmearing procedure has been demonstrated 
in Fig. 1. 2% random noise has been added to the 
theoretical Gaussian peak for point collimation. The 
result of the desmearing procedure lies within these 
error limits, the numerical differentiation has not 
enhanced the error level remarkably. The peak 
position after desmearing was calculated to be 
So = 3.49 nm -1 and the half-width sl[ 2 = 0.499 (5) 
nm -1. Nearly the same result has been obtained 
when using a doubled step width for data points 
As  = 0.2 x sl/2.  The peak position is now deter- 
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Fig. 1. Slit-length smearing and desmearing of a Gaussian peak at 
So = 3.5 n m -  I with added random noise of 2%. - -  Pin-hole- 
collimated scattering of the peak, half-width s~/2 = 0.5 nm -~, 
without random noise. • • • Pin-hole-collimated scattering of 
the peak; 2% constant relative noise added. ,,m., Slit-length- 
smeared scattering data; 2% constant relative noise added. 
[]  []  [] Numerically desmeared intensities obtained using Akima 
interpolation. - . . . .  Gaussian slit-length profile P(t); c = 0.25 nm. 
r.u. = relative units. 

mined to be 3.52nm -1 and the half-width is 
0.525 (5) nm-1.  

Experimental scattering curves were mesured with 
an URD65 diffractometer (Seifert & Co. GmbH 
Freiberger Pr~izisionsmechanik, Freiberg, Germany), 
using a slit-collimation system as shown in Fig. 
2. Only the slits that are essential for slit-length 
(slit-height) collimation are depicted. Two effective 
slit-length profiles have been calculated for the 
diffractometer with and without a Soller-slit system 
(SS) by using an algorithm originally developed by 
Hendricks & Schmidt (1967) and Hendricks (1972). 

The first sample is an amylose maize starch gel that 
contains crystallites (Gidley, 1989) of about 10 nm 
diameter. In Fig. 3, the small-angle part of the smeared 
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Fig. 2. Effective slit-length profiles P(t) and diffractometer slit 
configuration for the slit-length collimation. F focal spot. VB 
collimation slit on the focal side. S sample plane. SS Soller slit 
system: 32 slits; thickness of the lamellas 0.06 mm; distances 
between lamellas 0.5 mm. B4 collimation slit on the detector side. 
D detector slit. - -  Effective slit-length profile for the collimation 
system without Soller slits. - D - D - D -  Effective slit-length profile 
for the collimation system with Soller slits in the position shown. 

'-'2. 

¢-  

t'- 

t , _  

o (/) 

4E+O0 

4E-01 

4E-02 

4E-03 
0 

='•'• 0.02 

" - . _% ooo . . . . . . . . . .  

, I ~ I ~ I ~ I ~ , I 

1 2 3 4 5 6 
s [1/nm] 

Fig. 3. Experimental and slit-length- 
corrected scattering curves of an 
amylose maize starch gel measured 
without the Soller-slit system. 
• • • Smeared experimental curve. 
For clarity only each second point is 
shown. Slit-length-corrected 
data when using Akima polyno- 
mials. Only every second point of the 
smeared data shown is used in the 
desmearing procedure. + + + Slit- 
length-corrected data when the GWS 
method is used. Insert: enlarged 
region around the 100 reflection of 
the amylose B-form crystallites. 
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scattering curve is depicted. The slit-length profile of 
the primary beam used for these measurements 
corresponds to the profile shown in Fig. 2 for 
collimation without Soller slits. It was possible to 
measure the sample scattering at scattering vectors a 
quarter of the sampling-point distance. The original 
GWS method could then be used for comparison with 
the result reached when using the Akima polynomials 
in the desmearing procedure. The two methods 
provide equivalent results in the small-angle region as 
well as in the region of the 100 reflection of the starch 
B-form crystallites at s = 3.9 nm-  ' (Imberty & Perez, 
1988). The advantage of the Akima interpolation is 
that it requires only a quarter of the measured points 
necessary for the corrections with the GWS method 
without spurious oscillations. 

The second sample was a starch powder from 
potatoes prepared as described by Gernat, Radosta, 
Damaschun & Schierbaum (1990) that contains 
semicrystalline starch granules of the B form. The 
upper limit frequency of about 50 nm is set by the 
diffractometer transfer function for this sample. For 
this limit, the measuring time would be unreasonably 
long for the original GWS method. In Fig. 4 (upper 
squares), the experimental scattering curve is drawn. 
This curve was measured in the 20  angular region 
from 0.3 to 56 ° with the collimation system using the 
Soller slits in front of the detector for smearing 
reduction as shown in Fig. 2. The noise level is less 
than 2%. Neither additional interactive smoothing 
nor an extrapolation to zero scattering angle was done 
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Fig. 4. Experimental and slit-length-corrected scattering curves of 
a potato starch powder measured with and without  the Soller- 
slit system. Upper two curves: f--If--l[--1 Experimental data  
measured with Soller slit system that is shown in Fig. 2; 
- - -  slit-length-corrected data  when Akima polynomials are used. 
Middle two curves: []  []  []  measured with Soller slit system in 
the position shown in Fig. 2; • • •  measured without Soller 
slits. Both curves are fitted by a least-squares routine for 
s > 20 n m -  ~. Lower two curves: - -  Slit-length-corrected curve 
for data  measured without  the Soller-slit system, - -  slit-length- 
corrected curve for data  measured with the Soller-slit system. 
Both curves are fitted by a least-squares routine for s > 20 nm - 1 
All groups of curves are shifted vertically by an arbitrary value 
for clarity. 

before the desmearing procedure was carried out. By 
comparison of the experimental scattering curve with 
the result of the desmearing procedure, a significant 
shift to larger scattering angles can be detected for all 
features with s < 20 nm -t .  This result proves the 
necessity for a desmearing also for use of the Soller 
slits shown in Fig. 2. No instabilities or numerical 
difficulties disturbed the desmearing process for low 
noise levels. That has been proven for theoretical 
scattering curves that were calculated for B-form 
amylose nanocrystallites with an overlaid relative 
noise of 1-3%. The errors in the desmeared curve, 
caused by the noise, are then not larger than the 
experimental noise level. An additional smoothing in 
the regions between the reflections is necessary for 
higher quantum noise. After removal of the Soller-slit 
system, the half-width of the effective slit-length profile 
is enlarged by the factor 2.4 (Fig. 2) and the integral 
scattered intensity increases by a factor of about 3.5. 
The measuring time can then be reduced to maintain 
the same statistical exactness as before. In Fig. 4, both 
smeared experimental curves (middle two curves) are 
also depicted. The stronger distorted curve (full 
squares) was measured without the Soller slits with 
the same statistical error but in a quarter of the time. 
After numerical desmearing using the corresponding 
slit functions and the Akima polynomials for 
calculation of the first derivative of the scattering 
curve, the two collimation-corrected curves are 
identical within the experimental error limit of 2% 
(Fig. 4, lower two curves). Peak positions, half-widths 
and the integral intensities are identical in the two 
cases. The only precondition for calculation of a 
correct first derivative under low-noise conditions is 
that the step width between measured points should 
be chosen in such a way that at least ten points are 
positioned at very narrow peaks (e.9. the peaks at 
s -- 3.9 and 12 nm-  1 in Fig. 4). 

4. Concluding remarks 

When the Akima interpolation is adapted to 
small- and wide-angle scattering curves from semi- 
crystalline substances, there is a new simple but 
suitable tool for differentiation. In comparison with 
frequency-filtering methods, a quarter of the measur- 
ing points are needed and no equidistant measured 
points and extrapolation to zero angle are necessary. 
Instead of a divergence and intensity reduction by 
Soller slits for reduction of smearing effects in the 
scattering curves, now the high intensity of a primary 
beam with a large height can be used when measuring 
scattering curves from partially ordered systems that 
contain sharp maxima. The direct numerical desmear- 
ing procedure does not enhance statistical errors if the 
noise level is below 2% in the experimental scattering 
curve, and it can be used by itself or for comparison 
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with results from indirect methods. For the collima- 
tion geometry used, the elimination of the Soller slits 
resulted in an effective reduction in the measuring time 
by a factor of about four or five. 

We thank C. GSrgens, Technical University, 
Dresden, for suggestions about the Akima poly- 
nomials and P. W. Schmidt, University of Missouri, 
for helpful discussions. The work was supported by 
grants from Deutsche Forschungsgemeinschaft (Mu 
989/1-1), f rom Seifert & Co. GmbH Freiberger 
Prfizisionsmechanik and from the Bundesministerium 
fiir Forschung und Technologie (0319549 B). 

Note added in proof  Glatter & Gruber (1993) have 
recently published a new indirect transformation in 
reciprocal space (ITS) for handling data from partially 
ordered systems. Their algorithm is completely 
different from that proposed above. 
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