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Lbx1 Acts as a Selector Gene in the Fate Determination
of Somatosensory and Viscerosensory Relay Neurons

in the Hindbrain
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Distinct types of relay neurons in the hindbrain process somatosensory or viscerosensory information. How neurons choose between
these two fates is unclear. We show here that the homeobox gene Lbx1 is essential for imposing a somatosensory fate on relay neurons in
the hindbrain. In Lbx1 mutant mice, viscerosensory relay neurons are specified at the expense of somatosensory relay neurons. Thus
Lbx1 expression distinguishes between the somatosensory or viscerosensory fate of relay neurons.
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Introduction

Hindbrain neurons receive viscerosensory and somatosensory
information from the periphery and integrate and relay this in-
formation. Neurons that receive somatosensory information of
the face locate to the spinal trigeminal nucleus (SpV), whereas the
major relay station for visceral sensory information is the nucleus
of the solitary tract (NTS) (Blessing, 1997; Qian et al., 2002). The
homeodomain transcription factors Tlx3 and Lmxlb are ex-
pressed by developing sensory relay neurons of the NTS and SpV,
indicating that these two neuronal types are ontogenetically re-
lated (Qian et al., 2002). An important factor that distinguishes
the two neuronal subtypes is the paired-like homeodomain factor
Phox2b, which is expressed in viscerosensory but not somatosen-
sory relay neurons (Dauger et al., 2003).

Neurons that relay viscerosensory and somatosensory infor-
mation arise in a broad dorsal domain of the developing hind-
brain denoted as the alar plate. Phox2b is a key factor for the
specification of the viscerosensory neurons of the NTS, which do
not develop in Phox2b mutant mice (Pattyn et al., 1999, 2000;
Brunet and Pattyn, 2002). Phox2b is expressed in developing and
mature NTS neurons, and Phox2b is therefore a useful marker for
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following prospective NTS neurons during their development
and migration. The Phox2b+ viscerosensory neurons express, in
addition, TIx3 and Lmx1b and are known to require T1x3 for their
development (Qian et al., 2001, 2002; Cheng et al., 2004). These
neurons arise from a Mash1+ progenitor domain and are gener-
ated delayed and at reduced numbers in Mashl mutant mice
(Pattyn etal., 2006). Somatosensory neurons of the SpV also arise
from the Mash1+ progenitor domain and express Tlx3 as well as
Lmx1b, but not Phox2b (Qian et al., 2002).

Extensive cell migration and complex morphogenesis in the
developing hindbrain can make it difficult to follow the develop-
ment of hindbrain neurons. Recent progress in genetic fate map-
ping has helped to overcome this impediment (Landsberg et al.,
2005; Machold and Fishell, 2005; Wang et al., 2005; Farago et al.,
2006). For instance, genetic fate mapping was used to define the
neuronal subtypes that arise from the dorsal edge of the develop-
ing hindbrain and the rhombic lip and give rise to the cerebellum
and precerebellar nuclei (Landsberg et al., 2005; Machold and
Fishell, 2005; Wang et al., 2005). The homeodomain factor Lbx1
is expressed in postmitotic neurons of the hindbrain that arise in
a broad domain ventrally of the rhombic lip; we denote Lbx1+
neurons as “class B neurons.” Here we use genetic fate mapping
to define the derivatives of class B neurons in the medulla oblon-
gata. The derivatives of class B neurons settle predominately in
the dorsal and lateral medulla, and, in particular, they generate
the somatosensory relay neurons of the SpV. In LbxI mutant
mice, SpV neurons are nor correctly specified, resulting in the
absence of the SpV. At their expense, mis-specified neurons arise
that express Phox2b, migrate to the dorsal medulla, and contrib-
ute to the NTS. Consequently, the area occupied by Phox2b+
neurons in the dorsal hindbrain is enlarged considerably. Our
analysis allowed us to define changes in neuronal fates associated
with the loss of LbxI, and it shows that LbxI is an important
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Immunohistology, BrdU labeling, and micros-
copy. We used various antibodies to define
neuronal subtypes that are born in the dorsal
hindbrain. The expression of the correspond-
ing genes and the changes in neuronal specifi-
cation in LbxI mutant mice were verified by in
situ hybridization. Immunohistology was es-
sentially performed as described (Miiller et al.,
2002). In brief, embryos were fixed with 4%
paraformaldehyde in 0.1 M sodium phosphate
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Figure1.

determinant in the differentiation of somatosensory neurons in
the hindbrain.

Materials and Methods

Mouse strains. The Lbx1<"N*° mutant allele was generated by homolo-
gous recombination in embryonic stem (ES) cells; in this allele, a Cre
cDNA as well as a neomycin cassette replace the first exon of Lbx1. Mutant
ES cells were used to generate the corresponding mutant mouse strain.
The neomycin cassette was removed by crossing mice carrying the
Lbx1<7°N° allele with FLPe deleter mice (Farley et al., 2000; Rodriguez et
al., 2000). The LbxI°"" allele has been described previously (Vasyutina et
al., 2005). Tau*# (lox-STOP-lox-mGFP-IRES-NLS-LacZ-pA integrated
into the second exon of the Tau locus) reporter mice were kindly pro-
vided by S. Arber (University of Basel, Basel, Switzerland) (Hippenmeyer
et al., 2005). To perform genetic lineage tracing in a heterozygous and
homozygous LbxI mutant background, Lbx1<"*/+; Tau"** and Lbx1<"/
Lbx1°F; Tau"** mice were analyzed, respectively.

Anatomy. We identified the different rhombomeric units by using
morphological landmarks such as hindbrain nuclei and exit points of
cranial nerves. We defined rhombomere 7 as the segment caudal to the
facial nucleus and rostral to the fifth somite. Rhombomeres 4—6 were
defined as the segments caudal to the pons, including the facial nucleus;
rhombomeres 2 and 3 were defined as the segments of the pons (Marin
and Puelles, 1995; Cambronero and Puelles, 2000).
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Characterization of neuronal subtypes generated in the alar plate of rhombomere 7. 4, Schematic section through an
E11 mouse hindbrain at the level of rhombomere 7. Alar and basal plates are indicated; dark colors denote the ventricular zone
occupied by neuronal progenitors, and light colors indicate the mantle zone occupied by postmitotic neurons. Immunobhistological
analysis was performed on Lbx7 "/ mice at E11 (B—G) and E13 (I-K). B, Anti-Lbx1 (green) and anti-Pax7 (red) antibodies
reveal that the Lbx1+ neurons appear lateral to the Pax7+ progenitor domain. (-G, Immunohistological analyses using the
indicated antibodies at E11 define three Lbx1+ neuronal subtypes denoted as dB1, dB3, and dB4 that emerge in the ventral alar
plate; brackets indicate the positions along the dorsoventral axis at which these neuronal subtypes emerge. In addition, four
Lbx1— dorsal neuronal subtypes denoted as dA1— dA4 emerge in the dorsal alar plate; brackets indicate the positions along the
dorsoventral axis at which these neuronal subtypes emerge. G, dA3 neurons correspond to the most dorsal neuronal subtype that
emerges from the dorsal Mash1+ progenitor domain; dB3 is the most ventral neuronal subtype that emerges from Mash1+
progenitors. H, Summary of early-born neuronal subtypes and of the transcription factors they express. /-K, Inmunohistological
analyses using the indicated antibodies at E13 define two Lbx1+ neuronal subtypes that emerge from a broad domain in the alar plate
denoted as dBLa and dBLb; both emerge from a Mash progenitor domain in a salt-and-pepper patter. L, Summary of late-born Lbx1+
neuronal subtypes and of the transcription factors these neuronal types express. Scale bars: B, 200 .m; (~G, 100 um; /K, 100 pum.

H E10-E12 buffer, pH 7.4, equilibrated in 30% sucrose,
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dA4: Lin1lS £ ; anti-TIx3; guinea pig anti-Lbx1 (Miiller et al,,

dB1: Lbx1 Lhx1/5,Pax2 @ g . & 2002); rabbit anti-Prxxl1 (kindly provided by S.

B LR LA T T‘: Rebelo, University of Oporto, Porto, Portugal);

§ dB4: Lbxd Lhx1/5.Pax2 | goat anti-f-galactosidase (Biogenesis, Poole,
hx2/5 Lhx1/5 T nX1b Th3 MashT UK), goat anti-green fluorescent protein (GFP)
K .- apsofiies Ei3 (Abcam, Cambridge, UK); rabbit anti-tyrosine
T hydroxylase (TH) (Pel-Freeze, Rogers, AZ);
' mouse anti-Mashl (BD Biosciences Phar-

Mingen, Franklin Lakes, NJ); rabbit anti-
Phox2b (Christo Goridis and Jean-Francois
Brunet, Ecole Normale Superieure, Paris,
» France); mouse anti-Neurofilament 68 (Sigma,
g Munich, Germany); rabbit anti-Pax2 (Zymed,
San Francisco, CA); and monoclonal anti-
Lhx1/5 (Developmental Studies Hybridoma
Bank, Iowa City, IA). Guinea pig anti-Lmx1b
and rabbit anti-Lhx2/9 were obtained from
Tom Jessell and collaborators (Columbia Uni-
versity, New York, NY). Cyanine 2 (Cy2)-,
Cy3-, or Cy5-conjugated donkey-antibodies
(Dianova, Hamburg, Germany) were used for
the detection of primary antibodies. For bro-
modeoxyuridine (BrdU) labeling experiments,
BrdU (Sigma; 75 ug/g body weight) was in-
jected intraperitoneally. Incorporated BrdU
was detected with mouse (Sigma) or rat anti-
BrdU antibodies (Oxford Biotechnology,
Oxfordshire, UK). Fluorescence was visualized
with an LSM 5 PASCAL laser scanning micro-
scope (Carl Zeiss, Jena, Germany), with
PASCAL software (version 3.2). Pictures with a
resolution of 512 X 512 or 1024 X 1024 pixels were taken with either a
10X Plan-Neofluar or a 20X Plan-Apochromat lens. For the display of
larger sections, single pictures were taken with identical microscope set-
tings and subsequently merged by using Adobe Photoshop.

Results

Neuronal subtypes generated in the alar plate of

the hindbrain

The neural expression of the murine homeobox gene Lbx1 is first
detected around embryonic day 10 (E10) and can be observed in
rhombomeres 2—7 and at all axial levels of the spinal cord (Jagla et
al., 1995; Schubert et al., 2001; Gross et al., 2002; Miiller et al.,
2002). We used anti-Lbx1 antibodies and Lbx1 ™ heterozygous
mice combined with anti-GFP antibodies to characterize Lbx1+
cells in transverse sections of the hindbrain. Lbx1+ (or GFP+)
cells of heterozygous LbxI “**/+ mice lie lateral to the Pax7+
progenitor domain in the ventral alar plate of the hindbrain (Fig.
1A, B). BrdU labeling and the position of the Lbx1+ cells indicate
that they correspond to postmitotic neurons (Fig. 1B) (data not
shown). Using the nomenclature of the spinal cord, we denote
the hindbrain Lbx1+ neurons that arise in the ventral part of the
alar plate as class B dorsal neurons (cf. Miiller et al., 2002). In
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addition, Lbx1— neurons arise dorsal to class B neurons in the
alar plate of the hindbrain, and we denote these as class A.

Two phases of neurogenesis can be distinguished in the alar
plate of rhombomere 7: an early (E10-E12) and a late (E12.5—
E15) phase. By using a panel of antibodies directed against tran-
scription factors, we defined neuronal subtypes that arise in the
two phases of neurogenesis. During the early phase, three Lbx1+
class B neuronal subtypes can be defined (Fig. IC-F). The most
ventrally emerging subtype, dB4, coexpresses Lbx1, Lhx1/5, and
Pax2 (Fig. 1C,D). Dorsally abutting, dB3 neurons arise that ex-
press Lbx1, Lmx1b, and TIx3 (Fig. 1C,E,G). The most dorsally
arising class B neurons, dB1, express Lbx1, Lhx1/5, and Pax2 (Fig.
1C-E). dB3 and dB1 neurons are lateral to a progenitor domain
that expresses Mash1, indicating that they arise from the Mash1+
domain (Fig. 1G) (for a summary of the early arising dorsal neu-
ronal subtypes in rhombomere 7, see Fig. 1H). In addition, four
class A neuronal subtypes, dA1-4, are generated during the early
phase in the dorsal alar plate of rhombomere 7 (Fig. 1C-H). One
of these, the dA3 subtype, coexpresses Phox2b, T1x3, and Lmx1b
(Fig. 1 and supplemental Fig. 1, available at www.jneurosci.org as
supplemental material). dA3 neurons correspond thus to the de-
veloping viscerosensory neurons destined to form the NTS (Qian
etal.,2001; Dauger et al., 2003). During the late neurogenic phase
(E13), the domain that generates Lbx1 + neurons has expanded dor-
sally, and Lbx1+ neurons are observed lateral to the entire Mash1+
progenitor domain (Fig. 1 I-K). All neurons that arise in this domain
express Lbx1. Two late Lbx1+ neuronal subtypes, defined by the
expression of either Lhx1/5/Pax2 or Lmx1b/TIx3, appear to ariseina
salt-and-pepper pattern. We denote these two late Lbx1+ neuronal
subtypes as dBLa and dBLb (Fig. 1I-L).

In addition, we also characterized the neuronal types that
emerge in the alar plate of rhombomeres 2—6. By using a panel of
antibodies directed against Lbx1 (GFP), Lhx1/5, Lhx2/9, Pax2,
Phox2b, Lmx1b, and TIx3, we observed no obvious change in the
neuronal subtypes emerging during early and late neurogenic
phases in rhombomeres 2—6. Thus, the pronounced differences
between neuronal subtypes appearing during early and late
phases are specific for rhombomere 7. We identified distinct
numbers of neuronal subtypes of class A and class B in rhom-
bomeres 2—6; however, two units could be defined, rhom-
bomeres 4—6 and rhombomeres 2-3, in which dorsal neuronal
subtypes with similar molecular characteristics are generated
(Fig. 2A—D and supplemental Figs. 2 and 3, available at www.
jneurosci.org as supplemental material).

Derivatives of class B neurons in rhombomere 7

Genetic fate mapping was used to define the derivatives of class B
neurons. For this, we generated mice that carry an Lbx1“" allele
by homologous recombination in ES cells (Fig. 3A,B). In the
LbxI1€" allele, Cre sequences replace exon 1 of Lbx1. A neomycin
selection cassette (Neo) surrounded by two FRT (FLPe-
recombination target) sites was also inserted and removed sub-
sequently (Fig. 3A) (see Material and Methods for additional
details). Analysis of mice that carry the LbxI“" allele at E11 and
E12.5 revealed that Cre expression was confined to Lbx1+ neu-
rons (Fig. 3C,D). The Lbx1“" allele was used in mice to remove a
DNA cassette that stops translation of a LacZ reporter (Tau"
mice) (Hippenmeyer et al., 2005). The recombined LacZ gene is
subsequently inherited, and the LacZ protein product,
B-galactosidase, is detectable in cells that express Cre as well as in
their derivatives. Derivatives of class B neurons identified by
B-galactosidase expression in LbxI“"*/+; Tau"** mice settled
predominantly in the dorsal and lateral portions of the medulla
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Figure2. Characterization of neuronal subtypes generated in the alar plate of rhombomeres
2-6. A, Immunohistological analysis of thombomere 4 of Lbx7 °/+ mice at E11 with anti-
bodies against Lmx1b (red), Phox2b (green), and GFP (blue) revealed three class A and four class
B neuronal subtypes. B, Summary of the neuronal subtypes emerging in thombomeres 4 —6.
Note that immunohistological analyses using additional antibodies that either are displayed in
supplemental Figures 2 and 3 (available at www.jneurosci.org as supplemental material) or not
shown were used to define neuronal subtypes in rhombomeres 4 — 6. €, Inmunohistological
analysis of thombomere 2 of Lbx7F"/+ mice at E11 using antibodies against Lmx1b (red),
Phox2b (green), and GFP (blue). Brackets indicate the positions along the dorsoventral axis at
which the neuronal subtypes emerge. D, Summary of the neuronal subtypes emerging in rhom-
bomeres 2 and 3. Note thatimmunobhistological analyses using additional antibodies that either
are displayed in supplemental Figures 2 and 3 (available at www.jneurosci.org as supplemental
material) or not shown were used to define neuronal subtypes in thombomeres 2 and 3. Scale
bars, 100 wm.

oblongata (Fig. 3E). In particular, Lmx1b+ neurons in the SpV
derive from class B neurons (Fig. 3F). In the NTS, neurons that
derive from the class B lineage are also observed, but these do not
express Phox2b+ (Fig. 3G). Many B-galactosidase+ neurons in
the NTS coexpressed Pax2; a more detailed characterization and
the identification of the origin of Pax2+ neurons in the NTS will
be reported elsewhere.

Phox2b+ viscerosensory neurons are generated in increased
numbers in LbxI mutant mice

The future NTS neurons (dA3; Phox2b+/Lmx1b+/TIx3+) arise
dorsally during the early neurogenic phase and migrate in a ven-
tral direction (Fig. 4A,C) (Dauger et al., 2003). They settle at a
position adjacent to vagal motoneurons, which also express
Phox2b but are distinguishable from dA3/NTS neurons because
they are negative for Lmx1b (Fig. 4A,C, arrowheads point to
vagal motoneurons born in a ventral domain, and arrows point to
dA3/NTS neurons) [for a detailed description of vagal motoneu-
rons and dA3/NTS neurons, see also Dauger et al. (2003)]. In
Lbx]1 mutant mice, many ectopic neurons arose in the ventral alar
plate that express Phox2b, Lmx1b, and TIx3 and thus display the
molecular identity of dA3 neurons (Fig. 4 A-D) (data not shown).
During the early neurogenic phase, these ectopic neurons were
generated at the positions at which dB3 neurons are generated in
normal development, and they arose at the expense of dB3 neu-
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Figure3. Genetic lineage tracing defines the derivatives of the class B neurons of rhombomere 7. 4, Strategy used to generate
the Lbx77"*° allele by homologous recombination. Schematic representation of the targeting vector, the wild-type Lbx locus,
and the mutant Lbx7 alleles before (Lbx77¥"*°) and after (Lbx77¢) removal of the neomycin (Neo) cassette. The LbxT gene has two
exons (E1and E2); the first was interrupted by the insertion of a Cre-FRT-Neo-FRT cassette. Indicated are Cre (red) and FRT (green)
sequences, the neomycin resistance cassette (yellow), the sequence (5 probe) used for Southern analysis shown in B, and £coRl
restriction sites. B, FcoRI-digested DNA of ES cell clones (lanes 1and 2, wild type; lanes 3 and 4, Lbx 7%/ +) hybridized with the
sequence indicated in A (5" probe). €, D, Inmunohistological analyses of rhombomere 7 in Lbx1¢/4 mice at E11 (€) and E12.5
(D), using anti-Cre (red) and anti-Lbx1 (green) antibodies. , Lineage tracing using Lbx7“%/+; Tau"““ mice. Derivatives of the
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rons (Fig. 4A,B). In addition, ectopic
Phox2b+/Lmx1b+/TIx3+ neurons ap-
peared to arise also during the late neuro-
genic phase (Fig. 4C,D) (data not shown).
BrdU labeling experiments confirmed
that these ectopic neurons were generated
during the late phase, in contrast to the
Phox2b+ neurons (NTS neurons and va-
gal motoneurons) of control mice that
arose exclusively during the early neuro-
genic phase (Fig. 4E,F). These ectopic
late-born Phox2b+ neurons were gener-
ated at the expense of dBLb neurons (Fig.
4 D). We conclude, therefore, that dB3 and
dBLb neurons are mis-specified and de-
note the ectopic neurons that arose at their
expense as dB3* and dBLb* neurons. dB3*
and dBLb* neurons display the molecular
characteristics of dA3 neurons.

To follow the consequences of the ap-
pearance of dB3* and dBLb* neurons, the
medulla of Lbx] mutant mice was ana-
lyzed at subsequent developmental stages
(E14 and E18). At these stages, dA3/NTS
neurons have attained their final position
close to the solitary tract as a result of mor-
phogenetic movements of the hindbrain
(Fig. 5A,C,E) (Qian et al., 2001; Dauger et
al., 2003). We observed a pronounced in-
crease in the number of neurons that co-
expressed Phox2b and Lmx1Db in the LbxI
mutant compared with control mice (Fig.
5A-F, arrows). The supernumerary
Phox2b+ and Lmx1b+ neurons assem-
ble in a broad dorsal band. This indi-
cates that mis-specified dB3*/dBLb*
neurons not only assume the molecular
identity of dA3 neurons, but they also
settle like dA3 neurons in the dorsal
medulla close to the solitary tract.

<«

Lbx1+ class B neurons were identified by immunohistology
with antibodies directed against 3-galactosidase (3-gal;
green); sections of the medulla oblongata were counter-
stained with antibodies against neurofilament 68 (NF68;
blue) to ease orientation. The solitary tract (sol; arrowhead),
the spinal trigeminal tract (spV; arrow), the NTS, and the SpV
areindicated. Toimprove the visibility of neurons, a false color
was assigned to the background that appeared in black in the
original photograph. Sections in F and G show the SpV and
NTS, respectively, and correspond to the boxed areas shown
inE. F, Analysis of the SpV of Lbx77%/+; Tau"“? mice by using
antibodies directed against Lmx1b (red), 3-galactosidase
(green), and neurofilament (blue). Note that most of the
Lmx1b+ neurons coexpress 3-galactosidase. G, Analysis of
the NTS of Lbx77%/+; Tau"“? mice by using antibodies di-
rected against Phox2b (red), 3-galactosidase (green), and
neurofilament (blue). Note that most of the Phox2b+ neu-
rons do not express (3-galactosidase. Scale bars: C, D, 100
wm; E, 200 wm; F, G, 50 m.
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Figure 4.  Lbx1 s essential for the correct specification of dB3 and dBLb neurons in rhom-
bomere 7. Immunohistological analyses are shown of the alar plate of hombomere 7 of control
(A,C,E)and LbxT mutant (B, D, F) miceatE10.5 (A, B) and E13 ((—F). Arrowheads point toward
vagal motoneurons. A, B, Immunohistological analysis using anti-Phox2b (green) and anti-
Lmx1b (red) antibodies. In control embryos at E10.5, dA3 neurons coexpress Phox2b and Lmx1b
and appear yellow (indicated by bracket); vagal motoneurons (arrowhead) are Phox2b+ and
Lmx1b— and appear green; and dB3 neurons are Lmx1b+ and Phox2b— and appear red. In
LbxT mutant mice, Phox2b and Lmx1b are coexpressed in mis-specified dB3* and in dA3 neu-
rons. €, D, Immunohistological analysis using anti-Phox2b (green) and anti-Lmx1b (red) anti-
bodies. In control embryos at E13, dA3 neurons (Phox2b+/Lmx1b+-; these neurons appear
yellow and are indicated by an arrow) are positioned dorsal to the vagal motoneurons
(Phox2b+ and appearing green; indicated by arrowhead). Lmx1b+ dBLb neurons (red, indi-
cated by a bracket) emerge at this stage from a broad domain of the alar plate. In Lbx7 mutant
mice, mis-specified dBLb neurons (denoted as dBLb*) coexpress Phox2b and Lmx1b and appear
yellow. E, F, Pulse— chase experiment using BrdU. BrdU was injected at E12.5, and analysis was
performed at E13 with antibodies directed against Phox2b+ (green) and BrdU (red). In control
mice, BrdU was not incorporated into Phox2b+ neurons. In LbxT mutant mice, a number of
BrdU+/Phox2b+ neurons appear in a broad domain of the alar plate. Scale bars: A, B, 100
m; C=F, 50 wm.

The trigeminal somatosensory relay nucleus is absent in Lbx1
mutant mice

dBLb neurons, which arise in the alar plate during the late neu-
rogenic phase, have settled by E14 in the lateral medulla (Fig. 5A,
asterisk). By E18, the SpV has formed at this site and continues to
contain Lmx1b+ and TIx3+ neurons (Fig. 5C and supplemental
Fig. 4 A, available at www.jneurosci.org as supplemental mate-
rial). In Lbx] mutant mice, the Lmx1b+ and TIx3+ neurons of
the SpV cannot be discerned at E14 and E18 (Fig. 5B,D and
supplemental Fig. 4 B, available at www.jneurosci.org as supple-
mental material). The SpV of control mice at E18 contains many
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Figure 5.  Appearance of the SpV and NTS in Lbx1 mutant mice. Inmunohistological analy-
sesare shown of the medulla of control (A, €, E) and Lbx7 mutant (B, D, F) mice at E14 (4, B) and
E18 (C—F). A, B, Inmunohistological analysis using antibodies directed against anti-Phox2b
(green) and anti-Lmx1b (red). In control mice, dA3 neurons (yellow, arrow) are positioned
dorsal to vagal motoneurons (Phox2b +; green, open arrowhead) in the dorsomedial medulla
where the NTS is forming. Lmx1b+ neurons (red) form a vertical band in the lateral medulla
where the SpV is forming (asterisk). In Lbx7 mutant mice, increased numbers of neurons located
in a broad dorsal band coexpress Lmx1b+ and Phox2b, and the lateral band of Lmx1b+
neurons is absent. €, D, Immunohistological analysis using antibodies directed against Lmx1b
(red), Phox2b (green), and neurofilament (NF68, blue). The solitary tract (arrowhead) and the
NTS (arrow) are indicated. In the lateral medulla of control mice, Lmx1b -+ neurons have settled
inthe SpV (asterisk). In Lbx7 mutant mice, a broad dorsal band of neurons that coexpress Lmx1b
and Phox2b exists (yellow); Lmx1b+ neurons (red) are not observed in the lateral medulla. E,
F, Immunohistological analysis using antibodies directed against Lmx1b (red), PrrxI1 (green),
and neurofilament (NF68, blue). In control mice, many neurons in the SpV (asterisk) coexpress
Lmx1b and PrrxI1 (yellow). In LbxT mutant mice, neurons that coexpress Lmx1b and PrrxI1 are
not observed in the lateral medulla. Scale bars: 4, B, 100 pm; (=F, 200 wm.

neurons that coexpressed Lmx1b and high levels of Prrxl1 (also
known as Drgll), and such neurons were not present in the
lateral medulla of the Lbx] mutant mice (Fig. 5E,F); therefore,
we conclude that the SpV does not form in LbxI mutant mice.
To assess this further, we performed fate-mapping experi-
ments on LbxI heterozygous and homozygous mutant back-
grounds with Lbx1“ mice. Cre expression was restricted to a
similar domain in the ventral alar plate in heterozygous
(Lbx1“*/+; Tau™*%) and homozygous (LbxI<"/Lbx1°"";
Tau***) mutant mice (data not shown). In heterozygous Lbx1
mutant mice at E18, a large group of B-galactosidase+ neurons
located to the SpV in the lateral medulla, and this group was not
discernable in the homozygous mutant (Fig. 6 A, B). The absence
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Figure6.  Geneticlineage tracingin Lbx7 mutant mice. Analyses of neuronal fates in the caudal medulla of control [Lbx77%/+-;
Tau'*? (A, €, E)] and Lbx7 mutant [Lbx7*/Lbx1°7; Tau'“? (B, D, F)] mice at E18. Lineage tracing was performed by the identi-
fication of 3-galactosidase-expressing neurons. A, B, Immunohistological analysis of the dorsal medulla using antibodies directed
against 3-galactosidase ([3-gal, green) and Phox2b (red). To improve the visibility of neurons, a false color was assigned to the
background that appeared in black in the original photograph; arrowheads point toward the solitary tract. In the control (4), the
SpV (asterisk) and the NTS are outlined. In the Lbx7 mutant (B), the enlarged NTS occupied by neurons coexpressing
B-galactosidase and Phox2b is outlined. (—H, Consecutive sections of the medulla of control and Lbx T mutant mice. The area close
to the solitary tract is shown, and the position of the solitary tract is indicated by arrowheads. €, D, Inmunohistological analysis
using antibodies directed against Phox2b (red), B-galactosidase (green), and neurofilament (NF68, blue). Note that Phox2b+
neurons do not coexpress [3-galactosidase in control mice. Many neurons that coexpress 3-galactosidase and Phox2b -+ appearin
the Lbx7 mutant. E, F, Immunohistological analysis using antibodies directed against TIx3 (red) and 3-galactosidase (green). Note
that TIx3+ neurons of the NTS do not coexpress 3-galactosidase in control mice. In the Lbx7 mutant, many TIx3 + neurons of the
NTS coexpress [3-galactosidase. G, H, Immunohistological analysis using antibodies directed against TIx3 (green) and TH (red).
Note the increase in TH staining in Lbx7 mutant mice. Scale bars: 4, B, 200 wm; (~H, 50 pem.

of this large group of neurons apparently causes the abnormal
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neurons of the A2/C2 noradrenergic cen-
ter. The number of TH+ neurons was in-
creased in homozygous Lbx] mutant mice
(Fig. 6G,H ). We conclude that mis-specified
class B neurons generate the supernumerary
Phox2b+ neurons that assemble in the
dorsal medulla.

Discussion

Expression of the homeodomain tran-
scription factor Lbx1 marks a major class
of neurons (class B) that emerges in the
ventral alar plate of rhombomeres 2-7 of
the hindbrain. Our genetic fate mapping
shows that derivatives of class B neurons
generate the SpV nucleus that processes
somatosensory information. The analysis
of LbxI mutant mice revealed that the fu-
ture SpV neurons are not correctly speci-
fied and that the SpV does not form. This
is caused by a mis-specification of the neu-
rons destined to generate the SpV, and we
provide evidence that the mis-specified
neurons contribute instead to the NTS.
Lbx1 acts thus as a postmitotic determi-
nant and controls the choice between the
specification of somatosensory versus vis-
cerosensory fates of relay neurons in the
medulla oblongata.

Lbx1 and the specification of sensory
relay neurons

We used the expression of Lbx1 to distin-
guish two classes of neuronal subtypes
born in the alar plate of rhombomeres 2—7
of the hindbrain: class A (Lbxl1—) and
class B (Lbx1+). For the further charac-
terization of neuronal subtypes of the two
classes, we used a panel of antibodies di-
rected against the transcription factors
Lhx1/5, Lhx2/9, Pax2, Phox2b, Lmxl1b,
and TIx3. We found that neuronal sub-
types differ among rhombomeres; how-
ever, three units exist that possess similar
characteristics: rhombomeres 2 and 3,
rhombomeres 4-6, and rhombomere 7.
Within these three units, identical sets of
neuronal subtypes of class A and class B
are born. The three units mature into
three functional and anatomical compart-
ments of the mature hindbrain: the pons, the
anterior medulla oblongata, and the poste-
rior medulla oblongata. The three units de-
fined by the sets of emerging neuronal sub-
types coincide with pro-rhombomeric units

shape of the medulla of the mutant mice, i.e., the reduction of its
width. This was accompanied by the appearance of supernumer-
ary 3-galactosidase+ neurons in the dorsal medulla (Fig. 6 A, B).
Phox2b+ or TIx3+ neurons of the NTS did not express
B-galactosidase in heterozygous mice (Fig. 6 A, C,E). In contrast,
many dorsal Phox2b+ or TIx3+ neurons expressed
B-galactosidase in homozygous mutants (Fig. 6 B,D,F). Some
NTS neurons express TH in control mice; these correspond to

defined by early morphological analyses (Bergquist and Kallen,
1955; Vaage, 1969).

Genetic lineage tracing was used to characterize the further
developmental potential of Lbx1+ class B neurons in the me-
dulla. We observe that derivatives of class B neurons settle pre-
dominantly in the dorsolateral domain. In particular, the SpV
derives from class B neurons; this nucleus relays somatosensory
information received via the trigeminal nerve. At E18, many neu-
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Figure7.  Summary of the changes in cell fate observed in Lbx1 mutant mice. A, Schematic
drawing of the medulla oblongata of control (left) and Lbx7 (right) mutant mice. In control
mice, dBLb neurons (pink triangles) that are born during late stages of neurogenesis generate
the SpV; dA3 neurons (green open circles) are born at early stages of neurogenesis and generate
the NTS. In LbxT mutant mice, dBLb* (green triangles) and dB3* (green filled circles) neurons
are generated at the expense of dBLb and dB3 neurons. dBLb* neurons assume the molecular
characteristics of dA3 neurons and contribute to the NTS; dB3* neurons also display molecular
characteristics of dA3 neurons, and dB3* neurons might join the NTS. B, Lmx1b and Tx3 coex-
pression marks neurons that are destined to generate sensory relay neurons. In the presence of
LbxT1, these neurons assume the fate of somatosensory relay neurons and generate the SpV. In
the absence of Lbx1, these neurons assume the fate of viscerosensory relay neurons and con-
tribute to the NTS.

rons of the SpV express Lmx1b and TIx3, and frequently these
neurons coexpress Lbx1 (Fig. 5C and supplemental Fig. 4, avail-
able at www.jneurosci.org as supplemental material) (data not
shown). Birth-dating experiments indicate that the SpV is gener-
ated by neurons born after E12, i.e., during the late phase of
neurogenesis (Altman and Bayer, 1980) (M. A. Sieber and R.
Storm, unpublished observations). During the late phase of neu-
rogenesis, one large neuronal population that expresses Lmx1Db,
TIx3 and Lbx1 is generated that we denote as dBLb. These neu-
rons appear to migrate laterally and were previously proposed to
contribute to the SpV (Qian et al., 2002). We analyzed the gener-
ation of dBLb neurons in LbxI mutant mice and observed that
these neurons are not correctly specified and that the SpV is not
formed. This shows that dBLb neurons generate a major popula-
tion of SpV neurons in normal development (Fig. 7).

In LbxI mutant mice, we observed that a neuronal subtype is
born at the expense of dBLb that we denote as dBLb*. dBLb*
neurons arise during the late phase of neurogenesis and consti-
tute a large neuronal population that expresses Phox2b, Lmx1b,
and TIx3. The molecular characteristics of these neurons thus
resemble those of dA3 neurons, which are destined to form the
NTS in normal development (Dauger et al., 2003). In LbxI mu-
tant mice at E18, many supernumerary Phox2b+ neurons as-
semble in a broad dorsal band near the solitary tract. Lineage
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tracing as well as BrdU labeling experiments show that many
ectopic Phox2b neurons, which derive from cells that express
Lbx!1 in normal development, were born during a late neurogenic
phase. A subgroup of neurons in the NTS that corresponds to the
A2/C2 noradrenergic center expresses TH in control mice, and
we observed an increased number of TH+ neurons in LbxI mu-
tant mice. Together, these data indicate that the dBLb* neurons
do not only assume the molecular characteristics of dA3 neurons,
but they also settle at the dorsal position at which dA3 neurons
settle in normal development. The small population of dB3* neu-
rons also displays dA3 characteristics in Lbx] mutant mice and
might further contribute to the large group of ectopic Phox2b
neurons that assemble dorsally. We conclude that Lbx1 is essen-
tial to specify dBLb neurons that, in normal development, gener-
ate somatosensory relay neurons of the SpV. In LbxI mutant
mice, they assume the molecular characteristics of neurons that
generate a viscerosensory relay nucleus, the NTS (Fig. 7).

Molecular mechanisms of neuronal specification in the spinal
cord and hindbrain
The molecular mechanisms that control the specification of dif-
ferent neuronal subtypes along the dorsoventral axis have been
analyzed extensively in the spinal cord (for reviews, see Lee and
Jessell, 1999; Jessell, 2000; Briscoe and Ericson, 2001; Caspary and
Anderson, 2003). Frequently, neuronal subtypes with similar
molecular characteristics are generated in columns that span the
spinal cord and reach into the hindbrain, indicating that the
mechanisms of dorsoventral patterning of the developing spinal
cord and hindbrain are similar. Lbx1 is expressed in the spinal
cord and hindbrain, and our analyses show some similarities in
Lbx1 function in these two units of the developing nervous sys-
tem. In particular, two major neuronal classes (A and B) can be
defined in the alar plate of both units. In the spinal cord and in the
hindbrain of LbxI mutant mice, class B neurons assume the mo-
lecular characteristics of class A neurons. Thus, principal mech-
anisms of neuronal specification along the dorsoventral axis, as
well as the principal Lbx1 function in this process, appear to be
conserved in the spinal cord and hindbrain.

dBLb neurons of rhombomere 7 resemble dILb neurons in the
spinal cord: (1) dBLb and dILb neurons are born during the late
neurogenic phase; (2) dBLb and dILb neurons express Lbxl,
Lmxl1b, and TIx3; and (3) dBLb and dILb derivatives exhibit
functional similarity, in that they process somatosensory infor-
mation of the face and body, respectively; however, molecular
and functional characteristics of the mis-specified dBLb* and
dILb* neurons of LbxI mutants are distinct. dBLb* neurons of
rhombomere 7 express Phox2b, Lmx1b, and Tlx3 and assume the
molecular characteristics of viscerosensory relay neurons,
whereas dILb* neurons of the spinal cord express Isl1/2 and TIx3
and are thought to assume the molecular characteristics of neu-
rons that process proprioceptive information (cf. Gross et al.,
2002; Miiller et al., 2002). Thus, despite the principal similarity of
Lbx1 functions in the spinal cord and hindbrain, additional reg-
ulatory mechanisms exist that distinguish the two units. Exten-
sive studies showed differences in Hox gene expression along the
anterior—posterior axis of the nervous system and the combina-
torial function of Hox genes in the specification of anterior—pos-
terior identity. Thus, mutations or misexpression of Hox genes
can cause homeotic transformations of rhombomeres (Wilkin-
son et al., 1989; Hunt et al., 1991; Nonchev et al., 1997; Bell et al.,
1999; Barrow et al., 2000; Trainor and Krumlauf, 2000; Gaufo et
al., 2003; Kiecker and Lumsden, 2005). In addition, Hox genes
can also affect the specification of discrete neuron types. For in-
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stance, in HoxBI and HoxA3/HoxB3 mutant mice, a population
of Phox2b/Lmx1b dorsal neurons likely to correspond to viscer-
osensory relay neurons assume an aberrant fate and express Lbx1
in thombomeres 4 and 5, respectively (Gaufo et al., 2004). The
rhombomeres retained some normal characteristics in the mu-
tants, indicating that these fate changes cannot be attributed
solely to changes in rhombomere identity. Instead, these findings
point toward a direct role of Hox genes in the specification of
viscerosensory relay neurons by controlling the expression of
Lbx1 and Phox2b.
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