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Embryonic stem cell-derived cardiomyocytes<p>Microarray analysis reveals that the specific pattern of gene expression in cardiomyocytes derived from embryonic stem cells reflects the biological, physiological and functional processes occurring in mature cardiomyocytes.</p>

Abstract

Background: Characterization of gene expression signatures for cardiomyocytes derived from embryonic stem cells
will help to define their early biologic processes.

Results: A transgenic α-myosin heavy chain (MHC) embryonic stem cell lineage was generated, exhibiting puromycin
resistance and expressing enhanced green fluorescent protein (EGFP) under the control of the α-MHC promoter. A
puromycin-resistant, EGFP-positive, α-MHC-positive cardiomyocyte population was isolated with over 92% purity. RNA
was isolated after electrophysiological characterization of the cardiomyocytes. Comprehensive transcriptome analysis of
α-MHC-positive cardiomyocytes in comparison with undifferentiated α-MHC embryonic stem cells and the control
population from 15-day-old embryoid bodies led to identification of 884 upregulated probe sets and 951 downregulated
probe sets in α-MHC-positive cardiomyocytes. A subset of upregulated genes encodes cytoskeletal and voltage-
dependent channel proteins, and proteins that participate in aerobic energy metabolism. Interestingly, mitosis, apoptosis,
and Wnt signaling-associated genes were downregulated in the cardiomyocytes. In contrast, annotations for genes
upregulated in the α-MHC-positive cardiomyocytes are enriched for the following Gene Ontology (GO) categories:
enzyme-linked receptor protein signaling pathway (GO:0007167), protein kinase activity (GO:0004672), negative
regulation of Wnt receptor signaling pathway (GO:0030178), and regulation of cell size (O:0008361). They were also
enriched for the Biocarta p38 mitogen-activated protein kinase signaling pathway and Kyoto Encyclopedia of Genes and
Genomes (KEGG) calcium signaling pathway.

Conclusion: The specific pattern of gene expression in the cardiomyocytes derived from embryonic stem cells reflects
the biologic, physiologic, and functional processes that take place in mature cardiomyocytes. Identification of
cardiomyocyte-specific gene expression patterns and signaling pathways will contribute toward elucidating their roles in
intact cardiac function.
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Background
Heart failure caused by loss of functional cardiomyocytes rep-
resents one of the most common cardiovascular diseases.
Elucidation of the genetic networks and intracellular mecha-
nisms that underlie cardiomyocyte development from ES
cells is a prerequisite for future cell replacement therapies in
heart failure [1,2]. Recently, genetic strategies for differentia-
tion of stem cells and nonmuscle cells through expression of
developmental control genes that specify cardiac cell identity
have been favoured in cell replacement therapies to regener-
ate heart muscle tissue [3]. However, a prerequisite for these
strategies is identification and an understanding of cardiac
cell-specific biologic, physiologic, and molecular processes.
To this end, signaling pathways and gene signatures charac-
teristic of cardiomyocytes must be deciphered in order to
characterize the cardiomyocytes derived from embryonic
stem (ES) cells.

Mouse ES cells can proliferate indefinitely without senes-
cence in vitro in their undifferentiated state in the presence of
leukemia inhibitory factor or on a layer of mitotically inacti-
vated mouse embryonic fibroblasts (MEFs) [4]. ES cells can
be genetically manipulated with reporter and selection mark-
ers to identify and select cardiomyocytes from differentiating
ES cells [5-8]. Most often, protocols to enrich cardiomyocytes
from transgenic cardiac cell lines were optimized for ES cell
lines such as the D3 cell line cultivated on MEFs. It is well
known that several, as yet uncharacterized factors from MEFs
have an influence on the differentiation processes of ES cells,
necessitating the use of MEF-free ES cells in differentiation
studies [9]. Recently, we clearly demonstrated that the first
contact with MEFs contaminates ES cells even if they are sub-
sequently cultivated in the absence of MEFs, and the gene
expression profile of MEFs interferes with those of ES cells
and embryoid bodies (EBs). Even 9-day-old EBs are still con-
taminated by MEFs, and MEF-specific gene expression is still
detectable [9]. Therefore, consistent gene expression and
developmental studies on ES cells require MEF-free ES cells.

Although MEF-dependent, ES cell derived cardiomyocytes
have been well characterized electrophysiologically [5-8], the
cardiac-specific gene signatures and signaling cascades had
not until now been characterized in detail. Even though sev-
eral attempts have been made, a comprehensive transcrip-
tome analysis of MEF-free murine ES cell derived pure
cardiomyocytes is not yet available.

We recently reported an optimized CGR8 ES cell model that
permits consistent gene expression and facilitates studies of
the early embryonic development [9]. In order to identify all
signal transduction pathways and biologic processes in cardi-
omyocytes, we generated a transgenic cardiomyocyte-specific
cell line from CGR8 mouse ES cells and isolated pure cardio-
myocytes. Thereafter, large-scale expression studies were
performed using Affymetrix expression microarrays covering
all known transcripts. Here we report, for the first time, a

transcriptome analysis of pure cardiomyocyte preparations
from MEF-free ES cells.

Similar to findings mature cardiomyocytes, we demonstrate
that cardiomyocytes derived from ES cells strongly express
classic genes that are required to accomplish their physiologic
function. Interestingly, the genes required for cell prolifera-
tion and apoptotic processes are significantly downregulated
in ES-derived cardiomyocytes. We may conclude that the
identification of 'gene signatures' and signal transduction
pathways that are specifically expressed in the α-myosin
heavy chain (MHC)-positive cell population will significantly
contribute to an understanding of cardiomyocyte-specific
physiologic processes.

Results and discussion
Isolation of highly purified α-MHC+ cardiomyocytes 
from the transgenic α-MHC embryonic stem cell line
We first generated cardiomyocytes with high purity from a
transgenic α-MHC ES cell line. When EBs were formed using
the conventional hanging drop method (Figure 1a) during the
course of differentiation, the EGFP fluorescence increased
significantly after 7 days and the EGFP-expressing cells were
first detectable microscopically within the EBs. After 24
hours, the 8-day-old EBs were treated with 4 μg/ml puromy-
cin for a further 7 days. During puromycin treatment the non-
puromycin-resistant cells died, and beating clusters of puro-
mycin-resistant 15-day-old EGFP-expressing α-MHC+ cells
were progressively enriched (Figure 1a and Additional data
files 1 and 2).

Reverse transcription (RT)-polymerase chain reaction (PCR)
analysis indicated maximal expression of the α-MHC+ gene in
the 7-day-old EBs (Figure 1b; for RT-PCR conditions and
primers, see Additional data file 3). The purity of the cardio-
myocytes in the 15-day-old untreated EBs (hereafter referred
to as 'control EBs') and in the 15-day-old α-MHC+ cardiomy-
ocyte EBs was determined by fluorescence-activated cell sort-
ing analysis after dissociation of the cells with trypsin and
calculated to be 16.7% (Figure 1c) and 91.2% (Figure 1d),
respectively.

The ES cell derived cardiomyocytes exhibited a multi-angular
(Figure 1e subpanels a and b), more rectangular (Figure 1e,
subpanels c and d), and a triangular morphology (Figure 1e,
subpanels e and f). Detection of cardiac α-actinin by immuno-
cytochemistry (Figure 1e, subpanels b, d and f) clearly indi-
cated the Z-disc specific protein and the characteristic
striations of sarcomeric structures of the cardiac cells. The
gap junction protein connexin-43 is highly expressed in heart
and was detected by immunocytochemistry (Figure 1e, sub-
panels g and h). Connexin-43 is distributed in the cytosol and
in the outer membranes in the cell border regions (Figure 1e,
subpanels g and h).
Genome Biology 2007, 8:R56
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Enrichment of α-MHC+ cells isolated from the α-MHC+ ES cell lineage after puromycin treatmentFigure 1
Enrichment of α-MHC+ cells isolated from the α-MHC+ ES cell lineage after puromycin treatment. (a) Progressive purification of α-myosin heavy chain 
(MHC)+ cardiac cell aggregates after treatment of the 8-day-old embryoid bodies (EBs) with 4 μg/ml puromycin for 7 days. Puromycin containing medium 
was refreshed every second day. (b) Reverse transcription (RT)-polymerase chain reaction (PCR) analysis of α-MHC expression during EB differentiation 
(for RT-PCR conditions and primers, see Additional data file 3). (c,d) Cells from 15-day-old EBs and 15-day-old puromycin purified α-MHC+ aggregates 
were dissociated by trypsinization and the purity of the α-MHC+ cells in the 15-day-old EBs (panel c) and in the 15-day-old α-MHC+ aggregates (panel d) 
was examined by fluorescence-activate cell sorting analysis. (e) Characterization of ES cell derived cardiomyocytes by immunocytochemistry. α-MHC+ 

cardiomyocytes were dissociated with collagenase B and plated on fibronectin coated coverslips. (e) Enhanced green fluorescent protein (EGFP) 
expression of single α-MHC+ cells with different morphologies (subpanels a, c, and e). Detection of α-cardiac actinin (subpanels b, d, and f) and connexion-
43 (subpanels g and h) was performed using anti-cardiac actinin (1:400) and anti-connexin-43 (1:400). Secondary detection was performed with anti-
mouse-IgG1-AlexaFluor555 and anti-rabbit-Ig-AlexaFluor647. Hoechst dye was used to stain nuclei. Bars in panel e (subpanels a to f) are 50 μm; bar in 
panel e (subpanel g) is 20 μm; and bar in panel (subpanel h) is 7.5 μm.
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Electrophysiological characterisation of α-MHC+ cellsFigure 2
Electrophysiological characterisation of α-MHC+ cells. (a) Characteristic cardiac action potential (APs) of puromycin purified α-myosin heavy chain 
(MHC)+ cells. Most APs had a typical cardiac AP morphology but could not be further specified. Only few APs exhibited typical features of pacemaker-like, 
atrial-like, or ventricular-like APs. The minimal diastolic potential was -60.2 ± 1.1 mV. The maximal upstroke velocity was 22.9 ± 2.2 V/s. APD90, APD50 and 
APD20 (AP duration from maximum to 90%, 50% and 20% repolarization) were 96.4 ± 4.2 ms, 71.1 ± 3.9 ms, and 41.3 ± 2.6 ms, respectively. 
Representative recordings showing the effect of (b) carbachol (1 μmol/l) and (c) isoproterenol (1 μmol/l) on the spontaneous AP frequency. Statistical 
analysis of the effects of (d) carbachol (1 μmol/l) and (e) isoproterenol (1 μmol/l) on the spontaneous AP frequency. Carbachol caused a decrease 
whereas isoproterenol increased the spontaneous AP frequency.
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Electrophysiological characterization of the 
cardiomyocytes
Functional characterization of the α-MHC+ cardiac cells was
performed by measuring their typical spontaneous action
potentials (APs). Spontaneous APs were measured in single
α-MHC+ cardiomyocytes (n = 32) as well as in multicellular α-
MHC+ aggregates (n = 24). All APs exhibited parameters
characteristic of cardiac APs. The minimal diastolic potential
was -60.2 ± 1.1 mV; membrane potentials normally showed a
diastolic depolarization, leading to a spontaneous AP fre-
quency of 125.9 ± 8.0 min. The maximal upstroke velocity
was 22.9 ± 2.2 V/s, pointing to a contribution of voltage-acti-
vated sodium currents, which was confirmed by voltage
clamp measurements (data not shown). APD90, APD50 and
APD20 (AP duration from maximum to 90%, 50% and 20%
repolarization) were 96.4 ± 4.2 ms, 71.1 ± 3.9 ms and 41.3 ±
2.6 ms, respectively. APs exhibited a variety of morphologies,
including pacemaker-like, atrial-like, and ventricular-like
APs (Figure 2). In most cases, however, morphologic proper-
ties did not match any type of specific differentiation. These
unspecified APs mostly possessed a plateau phase, but had a
much shorter APD90 than ventricular APs, which are charac-
terized by a long APD90 of about 200 ms [7].

To characterize the hormonal regulation of α-MHC cardio-
myocytes, carbachol (an agonist of m-cholinoceptors) and
isoproterenol (an agonist of β1 adrenoceptors) were applied
(Figure 2b,c). Carbachol at 1 μmol/l decreased the AP fre-
quency significantly, to 44.8 ± 7.5% of control values (n = 20;
the frequency under control conditions was determined for
each recording and set to 100; Figure 2d). Isoproterenol at 1
μmol/l evoked a significant increase in frequency to 238.58 ±
23.7% of control values (n = 19; Figure 2e).

Intracellular recordings of spontaneous APs revealed typical
cardiac AP parameters and morphologies, confirming the car-
diac differentiation and functionality of puromycin-selected
α-MHC+ cells. Muscarinic and adrenergic regulation of the
AP frequency, which is estabished for ES cell derived cardio-
myocytes [10] as well as for native murine cardiomyocytes at
early developmental stages [11], further supports a physio-
logic cardiac differentiation of α-MHC cells. As described pre-
viously [12,13], APs at the intermediate developmental stage
exhibited diastolic depolarizations and diverse shapes. APs
with a distinct plateau phase were frequent but considered to
be unspecific rather than ventricular-like in the majority of
cases, because the APD90 was much shorter than reported for
early-stage murine ventricular cardiomyocytes as well as for
murine ES cell derived ventricular-like cardiomyocytes [7].
Because most APs had unspecific morphologic properties, a
general classification into pacemaker-like, atrial-like, and
ventricular-like APs could not be done, which accords well
with previous findings from intermediate-stage ES cell
derived cardiomyocytes [12,13]. Only few APs exhibited typi-
cal morphologic features of the respective differentiation
types.

It was recently reported that, in ES cell derived cardiomyo-
cytes expressing green fluorescent protein under control of
the α-MHC promotor, green fluorescence is restricted to
pacemaker-like and atrial-like cells [7]. Because we found
puromycin-purified α-MHC+ cardiomyocytes with a ventricu-
lar-like AP morphology in few cases, our data suggest that α-
MHC expression is not completely absent in ES cell derived
ventricular-like cardiomyocytes. This apparent discrepancy
might arise from the complex stage-dependent expression
pattern described for α-MHC in murine EBs [14] and murine
embryonic ventricles [15], because a different developmental
stage of ES cell derived cardiomyocytes was investigated in
the present study (15-day-old cardiomyocytes) as compared
with that in the study conducted by Kolossov and coworkers
[7] (9-day-old to 11-day-old cardiomyocytes).

Validation of the microarray data by quantitative real-
time PCR and semiquantitative RT-PCR analyses
RNA from α-MHC ES cells, 15-day old α-MHC+ cells, and
control EBs was used as a template for hybridizations to
Affymetrix MG 430 v2.0 oligonucleotide microarrays (RNA
was obtained from three independent experiments) (Affyme-
trix UK Ltd., High Wycombe, UK). Raw expression data
were RMA normalized [16]. We verified the Affymetrix data
by examining the expression levels of five randomly chosen
representative genes (Nanog, T Brachyury, Bmp2, Sox17,
and α-MHC) applying the quantitative real-time PCR (qPCR)
method (Figure 3a). Additionally, expression levels of ran-
domly chosen genes, such as Troponin T, Myocardin, α-
MHC, Mef2C, Nkx2.5, MLC-2v, and AFP were verified by
semiquantitative RT-PCR analysis (Figure 3b). As indicated,
the expression levels of the late cardiomyocyte markers α-
MHC and MLC2v and the early cardiac marker Nkx2.5 were
higher in the 15-day-old α-MHC+ cardiomyocytes as com-
pared with cells in the 15-day-control EBs. Not surprisingly,
expression of α-fetoprotein (a marker of cell types of endo-
dermal origin, such as liver cells) was absent in the cardiomy-
ocyte clusters but not in the 15-day-old control EBs. As
indicated in Figure 3 panels a and b, results from the Affyme-
trix analyses clearly correspond to the results obtained from
the qPCR and semiquantitative RT-PCR analyses, respec-
tively. Note that RNA used in Figure 3a for qPCR validation
was isolated from set of experiments other than that used in
Figure 3b.

Selected Gene Ontology Biologic Process annotations 
of genes differentially expressed in α-MHC+ 

cardiomyocytes
Pair-wise comparisons between experimental conditions
were performed on RMA-normalized data using Student's t-
test (unpaired, assuming unequal variance). In order to iden-
tify transcripts with an α-MHC+ cell specific expression pat-
tern, a three-condition comparative analysis of the α-MHC+

cells versus control EBs and versus α-MHC ES cells was made
(intersection of genes differentially expressed between undif-
ferentiated α-MHC ES cells and α-MHC+ EBs, as well as dif-
Genome Biology 2007, 8:R56
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Figure 3 (see legend on next page)
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ferentially expressed between 15-day-old control EBs and α-
MHC+ EBs at t-test P < 0.01, fold change >2).

Analysis of the differentially expressed genes in the α-MHC+

cells in comparison with the control EBs and undifferentiated
α-MHC ES cells resulted in identification of 1,845 differen-
tially expressed probe sets for the α-MHC+ cardiomyocytes.
Affymetrix probe set IDs were then converted to Genbank
accessions and redundancies were removed (1,573 unique
transcripts). SOURCE [17] was used to obtain Gene Ontology
(GO) annotations for the category 'biologic process'. The Gen-
esis GO browser (version 1.7.0) [18,19] was used to identify
transcripts of interest belonging to the biologic process cate-
gories adhesion, cell cycle, cell death, cell-cell signaling, cellu-
lar metabolism, development, stress response, signal
transduction, transcription, and transport. For these catego-
ries, 1,346 annotations were established for 823 transcripts.
The pie chart (Figure 4a) shows the distribution of these
annotations. The bar chart (Figure 4b) shows the number of
genes in the categories separately for upregulated and down-
regulated transcripts. Most strikingly, transcripts in the cate-
gory cell cycle are almost exclusively downregulated.

Gene Ontology enrichment analysis of the genes 
upregulated in α-MHC+ cardiomyocytes
To identify GO categories and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways specifically enriched among
transcripts upregulated in α-MHC+ cells, we identified 884
probe sets that are upregulated at least twofold (t-test P <
0.01) in the α-MHC+ cardiomyocytes as compared with the
control EBs (consisting of various somatic cells, including an
α-MHC+ subpopulation) and compared with the undifferenti-
ated α-MHC ES cells.

Probe sets belonging to non-annotated RIKEN clones and
expressed sequence tag sequences were removed. The
remaining 652 probe sets were clustered hierarchically (Fig-
ure 5). Expression patterns are characteristic of cardiomyo-
cytes (last three lanes), showing high expression levels as
compared with undifferentiated α-MHC ES cells (first three
lanes) and compared with the cells from the control EBs. The
gene names correlated to relative expression level are given in
Additional data file 4.

Two subclusters were identified. Subcluster A (196 genes)
includes genes with low expression level in undifferentiated
cells, moderate expression in the control EBs, and high

expression levels in the α-MHC+ cardiomyocytes. Cluster B
(455 genes) includes genes with low expression in both con-
trol EBs and undifferentiated ES cells but with higher expres-
sion in α-MHC+ cells. Interestingly, the expression level of a
subset of genes (highlighted in Figure 5b) was higher in undif-
ferentiated cells as compared with control EBs but lower than
that in α-MHC+ cells.

Validation of Affymetrix data by quantitative real-time PCR and semi-quantitative PCR analysesFigure 3 (see previous page)
Validation of Affymetrix data by quantitative real-time PCR and semi-quantitative PCR analyses. (a) Validation of Affymetrix data by quantitative real-time 

polymerase chain reaction (PCR) analyses. The fold change was calculated by using the following formula: fold-change = . ΔCt of 
the gene in the sample in which it is expressed lowest is taken as ΔCt gene2 to calculate the fold change using the above formula. The resulting fold change 
is expressed as percentage of the maximum fold change (= 100%) for that particular gene in every assay. Values are expressed as mean ± standard 
deviation (n = 3; technical replicates). (b) Additional validation of Affymetrix data by semi-quantitative reverse transcription (RT)-PCR analyses. Randomly 
chosen candidate genes to validate Affymetrix data by semi-quantitiative RT-PCR analyses and their relative expression values expressed as percentage of 
maximum expression for every gene, as obtained from Affymetrix profiling, are given in the table.

2 1 2− −( )Δ ΔC gene C genet t

Selected GO annotations of genes differentially expressed in α-MHC+ cellsFigure 4
Selected GO annotations of genes differentially expressed in α-MHC+ 

cells. Shown are selected Gene Ontology (GO) annotations (biologic 
process [BP]) of genes that are differentially expressed in α-MHC+ cells as 
compared with the 15-day-old embryoid bodies (EBs) and compared with 
the α-MHC embryonic stem (ES) cells. A total of 1,845 probe set IDs, 
which were differentially expressed in α-MHC+ cells, were converted to 
Genbank accessions and redundancies were removed. SOURCE was used 
to obtain GO BP annotations. Genesis was used to visualize and identify 
GO BP categories of interest and extract corresponding lists of 
transcripts. (a) The pie chart shows the distribution of these annotations. 
(b) The bar chart shows the number of genes in the categories adhesion, 
cell cycle, cell death, cell-cell signalling, cellular metabolism, development, 
stress response, signal transduction, transcription, and transport 
separately for upregulated and downregulated transcripts.
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Figure 5 (see legend on next page)
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The DAVID (Database for Annotation, Visualization, and
Integrated Discovery) tools were used to identify functional
annotation terms in the categories of GO (level 5), KEGG
pathway, and Biocarta pathway that are enriched in the lists
of upregulated and downregulated transcripts. Table 1 indi-
cates the KEGG and GO terms that are enriched in the 884
probe sets over-expressed in the α-MHC+ cardiomyocytes.
We identified two KEGG pathways (oxidative phosphoryla-
tion and calcium signaling) and a Biocarta pathway (p38
MAPK [mitogen-activated protein kinase] signaling path-
way). Among the GO categories of 'biologic process'
(GOTERM_BP), 'molecular function' (GOTERM_MF), and
'cellular component' (COTERM_CC), several categories asso-
ciated with aerobic energy production (for instance, mito-
chondrion, hydrogen ion transporter activity, cytochrome c
oxidase activity, and oxidative phosphorylation) were found
to be enriched in probe sets that were over-expressed in the α-
MHC+ cardiomyocytes. In addition, several classic 'cardiomy-
ocyte' cytoskeleton GO categories (for example, myofibril,
cytoskeleton, myosin, and actin cytoskeleton) and the 'volt-
age-gated ion channel activity' GO category were found to be
enriched in the cardiac population. All of these genes are nec-
essary for intact cardiomyocyte function. Additional data file
5 (part a) lists the genes that belong to the GO categories stri-
ated muscle thin filament and myosin. As indicated, all car-
diac-specific cytoskeletal genes are highly upregulated in ES
cell derived cardiomyocytes. As shown in Additional data file
5 (part b), several voltage-gated channels such as the sodium
channels, the calcium voltage-dependent channels, and the
potassium channels are among the probe sets upregulated in
the ES derived cardiomyocytes participating in the AP shape
of the cardiac cells. These findings clearly indicate that the α-
MHC+ cardiomyocytes express classical cardiomyocyte genes,
emphasizing the relevance and consistency of the gene signa-
tures characteristic of the ES derived cardiomyocytes.

The 'oxidative phosphorylation' KEGG pathway is associated
with aerobic energy production (also see below) whereas cal-
cium is the second messenger regulating several physiologic
processes such as contractility in cardiomyocytes [20].
Additional data file 6 (part a) shows the gene expression level
changes of transcripts belonging to the oxidative phosphor-
ylation KEGG pathway and the corresponding signal trans-
duction scheme. Additional data file 6 (part b) shows the
upregulated probe sets of the GO categories that participate
in aerobic energy production and their increase in expression
level. In general, the dependence of cardiac homeostasis on
mitochondria is primarily attributed to the ATP derived from
oxidative phosphorylation for maintaining myocardial con-

tractility [21]. Genes in these categories are 'classical' for car-
diomyocytes and essential for aerobic oxygen dependent
energy production for intact heart function. Mammalian
heart muscle cells fail to produce enough energy under anaer-
obic conditions to maintain essential cellular processes.
Because the mammalian heart is an obligate aerobic organ
that consumes oxygen intensively [22], a constant supply of
oxygen is indispensable for sustaining cardiac function and
viability. This notion is well elucidated by our analysis, indi-
cating that genes involved in aerobic energy production are
upregulated in the α-MHC+ cardiomyocytes.

We also found the fatty acid metabolism GO category to be
enriched in the genes over-expressed in the α-MHC+ cardio-
myocytes (Additional data file 6 [part c]). These findings are
consistent with the fact that β-oxidation of fatty acids in mito-
chondria accounts for the vast majority of ATP generation
and therefore is the preferred substrate in the adult myocar-
dium, which supplies about 70% of total ATP (for review, see
Huss and Kelly [23]). Defects in mitochondrial fatty acid
transport and fatty acid oxidation result in sudden cardiac
death, bioenergetic dysfunction, cardiac arrhythmias, and
cardiomyopathy [21].

Genes that are specifically expressed in α-MHC+ cells partici-
pate in multiple signal transduction pathways. Additional
data file 7 (parts a and b) show that the genes belonging to the
'enzyme linked receptor protein signaling pathway' and to
'protein kinase activity' categories are over-expressed in ES
cell derived cardiomyocytes. Among these genes, the phos-
phatidylinositol 3-kinase (Additional data file 7 [part a]) and
the Wnt inhibitory factor 1 (Additional data file 7 [part b]) and
several other kinases participate in key biologic signal trans-
duction pathways.

Interestingly, five genes belonging to the category 'negative
regulation of Wnt receptor signaling pathway' and four genes
belonging to 'p38 mitogen-activated protein kinase signaling'
were found to be upregulated in the α-MHC+ cells (see Addi-
tional data file 7 [parts c and d]). In recent years, regulation of
Wnt signal transduction has been discussed as an important
event that initiates cardiac development (for review, see
Eisenberg and Eisenberg [24]). It has been demonstrated that
the Wnt inhibitors Dkk1 and crescent induce cardiogenesis,
suggesting that Wnts actively inhibit cardiogenesis.

Hierarchical clustering of probe sets identified as upregulated in α-MHC+ cellsFigure 5 (see previous page)
Hierarchical clustering of probe sets identified as upregulated in α-MHC+ cells. Shown is a visualization of the hierarchical clustering of probe sets identified 
as upregulated in the α-myosin heavy chain (MHC)+ cells with an expression level at least twofold higher than in 15-day-old EBs and in α-MHC embryonic 
stem cells. Each probe set is represented by a single row of colored boxes; each array is represented by a single column. Rectangles corresponding to 
intermediately expressed probe sets are colored black, upregulated probe sets are indicated with red of increasing intensity, and weakly expressed probe 
sets with green of increasing intensity. The dendrogram on the left of the figure represents the similarity matrix of probe sets.
Genome Biology 2007, 8:R56
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Table 1

Functional annotations enriched among transcripts that are upregulated in α-MHC positive cells

Category Term Count P value

GOTERM_MF_5 Hydrogen ion transporter activity 30 9.49 × e-17

GOTERM_MF_5 NADH dehydrogenase (quinone) activity 17 6.70 × e-14

GOTERM_MF_5 NADH dehydrogenase (ubiquinone) activity 17 6.70 × e-14

GOTERM_MF_5 Sodium ion transporter activity 17 6.70 × e-14

KEGG_PATHWAY Oxidative phosphorylation (Mus musculus) 25 8.59 × e-12

GOTERM_CC_5 Myofibril 16 1.36 × e-10

GOTERM_CC_5 Mitochondrion 61 7.52 × e-09

GOTERM_CC_5 Striated muscle thin filament 8 4.12 × e-07

GOTERM_BP_5 Cation transport 30 7.59 × e-06

GOTERM_CC_5 Mitochondrial membrane 21 2.91 × e-05

GOTERM_CC_5 Mitochondrial inner membrane 18 1.21 × e-04

GOTERM_MF_5 Voltage-gated ion channel activity 14 1.75 × e-04

GOTERM_BP_5 Coenzyme metabolism 13 2.59 × e-04

GOTERM_BP_5 Ion transport 35 3.21 × e-04

GOTERM_CC_5 Mitochondrial electron transport chain 10 3.40 × e-04

GOTERM_BP_5 Cytoskeleton organization and biogenesis 24 5.84 × e-04

GOTERM_CC_5 Actin cytoskeleton 19 5.85 × e-04

GOTERM_BP_5 Electron transport 23 1.41 × e-03

GOTERM_CC_5 Cytoskeleton 44 1.46 × e-03

GOTERM_MF_5 ATPase activity, coupled to transmembrane movement of ions, phosphorylative mechanism 9 1.70 × e-03

GOTERM_CC_5 Sodium 4 2.39 × e-03

KEGG_PATHWAY Calcium signaling pathway (Mus musculus) 17 2.42 × e-03

GOTERM_BP_5 Proton transport 7 2.92 × e-03

GOTERM_MF_5 Sodium 4 5.26 × e-03

GOTERM_BP_5 Phosphate metabolism 33 7.20 × e-03

GOTERM_BP_5 Oxidative phosphorylation 7 7.63 × e-03

GOTERM_BP_5 Vesicle-mediated transport 16 7.96 × e-03

GOTERM_BP_5 Hydrogen transport 7 8.19 × e-03

GOTERM_MF_5 Cytochrome c oxidase activity 5 9.38 × e-03

GOTERM_MF_5 ATPase activity, coupled to transmembrane movement of substances 10 1.24 × e-02

GOTERM_BP_5 Negative regulation of signal transduction 5 1.55 × e-02

GOTERM_BP_5 Negative regulation of cell organization and biogenesis 4 1.56 × e-02

GOTERM_BP_5 Co-factor biosynthesis 8 1.62 × e-02
Genome Biology 2007, 8:R56
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GOTERM_CC_5 Myosin 7 1.75 × e-02

GOTERM_BP_5 Cell growth 7 2.03 × e-02

GOTERM_BP_5 Regulation of cell size 7 2.36 × e-02

GOTERM_BP_5 Negative regulation of Wnt receptor signaling pathway 3 2.55 × e-02

GOTERM_MF_5 Calcium 3 2.69 × e-02

GOTERM_BP_5 Enzyme-linked receptor protein signaling pathway 11 3.03 × e-02

GOTERM_BP_5 Nucleotide biosynthesis 8 3.53 × e-02

GOTERM_MF_5 Protein kinase activity 25 3.66 × e-02

GOTERM_BP_5 Cellular protein metabolism 89 3.88 × e-02

GOTERM_BP_5 Negative regulation of nucleobase, nucleoside, nucleotide, and nucleic acid metabolism 9 4.10 × e-02

GOTERM_BP_5 Fatty acid metabolism 8 4.71 × e-02

GOTERM_BP_5 Intracellular receptor-mediated signaling pathway 3 5.47 × e-02

GOTERM_MF_5 Protein phosphatase inhibitor activity 3 5.77 × e-02

GOTERM_BP_5 Regulation of Wnt receptor signaling pathway 3 6.15 × e-02

GOTERM_BP_5 Response to temperature 4 6.33 × e-02

GOTERM_BP_5 Gas transport 3 6.86 × e-02

GOTERM_BP_5 Oxygen transport 3 6.86 × e-02

BIOCARTA P38 MAPK signaling pathway (Mus musculus) 5 7.68 × e-02

GOTERM_MF_5 Arsenate reductase (glutaredoxin) activity 2 7.68 × e-02

GOTERM_MF_5 Hydrogen-exporting ATPase activity, phosphorylative mechanism 4 7.72 × e-02

GOTERM_MF_5 Microtubule binding 4 7.72 × e-02

GOTERM_BP_5 Apoptosis 17 7.90 × e-02

GOTERM_MF_5 Transcription coactivator activity 5 8.72 × e-02

GOTERM_BP_5 Endocytosis 8 8.94 × e-02

GOTERM_BP_5 Nucleotide metabolism 9 9.01 × e-02

GOTERM_BP_5 Secretory pathway 7 9.20 × e-02

GOTERM_BP_5 Cellular lipid metabolism 15 9.71 × e-02

GOTERM_MF_5 Transcription corepressor activity 4 9.75 × e-02

GOTERM_CC_5 Adherens junction 5 9.84 × e-02

GOTERM_BP_5 Second messenger mediated signaling 6 9.87 × e-02

Functional annotations that are enriched among transcripts upregulated in α-myosin heavy chain (MHC) positive cells (intersection of upregulation in 
the 15-day-old α-MHC+ cardiomyocytes [twofold, Student's t-test P value < 0.01] as compared with the control cells in the 15-day-old embryoid 
bodies and compared with the undifferentiated α-MHC embryonic stem cells). 'Count' refers to the number of transcripts in the respective category; 
the 'P value' column shows the value of Fisher's exact t-test, as used by DAVID to measure the enrichment in annotation terms. GO, Gene Ontology; 
KEGG, Kyoto Encyclopedia of Genes and Genomes; MAPK, mitogen-activated protein kinase.

Table 1 (Continued)

Functional annotations enriched among transcripts that are upregulated in α-MHC positive cells
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A number of genes belonging to the KEGG signaling pathway
'calcium signaling' were upregulated in α-MHC+ cells. Apart
from classic genes for cardiomyocytes (those encoding ryano-
dine receptor 2, phospholamban, calcium channel voltage
dependent L-type, adrenergic receptor β1, troponin C, and
Atp2a2), additional genes were identified as being over-
expressed in the α-MHC+ cells (Cacna1c and Cacna1h,
Nfatc2, and Gnal; Additional data file 7 [part e]). Seven genes
belonging to the GO category 'regulation of cell size" are
upregulated in the ES cell derived cardiomyocytes (Addi-
tional data file 7 [part f]). Notably, among the 'regulation of
cell size' genes, the myocardin gene was highly upregulated
(10-fold) in the cardiac population. Myocardin is the found-
ing member of a class of muscle transcription factors that is
involved in the process of cardiomyogenesis [25]. Moreover,
the estrogen receptor α, a member of the superfamily of ster-
oid hormone receptors, is strongly upregulated (ninefold) in
the cardiomyocytes. Estrogen receptors are activated by
estrogen binding and by growth factors in the absence of
estrogen (for review, see Mendelsohn and Karas [26]).

Gene Ontology enrichment analysis of the 
downregulated genes in α-MHC+ cardiomyocytes
In order to identify transcripts that are specifically downreg-
ulated in α-MHC+ cells, a three-condition comparative analy-
sis of the α-MHC+ cells versus control EBs and versus α-MHC
ES cells was made (intersection of genes differentially
expressed between undifferentiated α-MHC ES cells and α-
MHC+ EBs as well as differentially expressed between 15-day-
old control EBs and α-MHC+ EBs at t-test P < 0.01, fold
change <2 for both comparisons).

Downregulated genes are grouped into three main subclus-
ters. In all subclusters the gene expression level is lower in α-
MHC+ cells (last three lanes) compared with those in the
other two cell populations. Subcluster A contains probe sets
with a higher expression level in undifferentiated ES cells
compared with the control EBs, whereas cluster C shows the
genes with a similar expression level in the two cell popula-
tions (Figure 6; gene names are given in Additional data file
8). Only a small cluster contains genes with a higher expres-
sion level in control EBs compared with the undifferentiated
ES cells (Figure 6b).

Table 2 shows the GO categories, and the KEGG and Biocarta
pathways that are enriched among the probe sets
downregulated in the α-MHC+ cardiac cell population com-
pared with the control EBs and compared with the undiffer-
entiated α-MHC ES cells. Genes belonging to eight KEGG and

10 Biocarta pathways were identified as being downregulated
in the ES cell derived cardiomyocytes (Table 2). Of particular
interest are the genes that are associated with cell prolifera-
tion belonging to the KEGG pathway 'cell cycle' (32 genes)
and to the 10 Biocarta pathways, as well as genes belonging to
the GO category 'positive regulation of programmed cell
death', because both the proliferation and apoptosis process
are of great physiologic relevance. In accordance with the
findings from the KEGG and Biocarta pathways, the GO cate-
gory 'regulation of cell cycle' (also includes genes of the
mitotic cell cycle and the M-phase GO categories) is enriched
among the transcripts downregulated in the ES derived cardi-
omyocytes. This category contains genes that are involved in
regulating cell proliferation.

Additional data file 9 (part a) indicates the downregulated
genes that belong to the KEGG pathway 'cell cycle' and to the
GO category 'cell cycle'. As indicated several cyclins (cyclin A1,
cyclin A2, cyclin B1, cyclin B2, cyclin D1, cyclin D2, and cyclin
E1) are downregulated in the ES cell derived cardiomyocytes.
Fully differentiated cardiac myocytes are postmitotic cells,
and regulation of cell size is their main mechanism of adapta-
tion to variations in workload in the heart [27]. Increase in
cell size of the cardiomyocytes due to increased protein syn-
thesis without cell division is a characteristic phenomenon for
cardiac cells and is referred as myocyte hypertrophy. These
findings are consistent with the finding that 'cell growth'
genes are upregulated in the cardiac cell population (Addi-
tional data file 7 [part f]). In agreement with these cardiac cell
specific mechanisms, we found that - compared with the
mixed cell population - genes belonging to the 'positive regu-
lation of programmed cell death' (apoptosis) and to the 'apop-
tosis' GO categories are downregulated in the cardiac cell
population (Additional data file 9 [part c]). Markedly, the
expression level of the apoptosis-inducing gene (mainly in
cancer cells) breast cancer 1 [28] was 13-fold lower in α-
MHC+ cardiomyocytes than in the mixed cell population of
control EBs. In addition, it is well known that cardiac myo-
cytes have developed remarkable mechanisms of cytoprotec-
tion and cell survival, also because of the absence of cell
division [27].

To determine whether the identified gene signatures are spe-
cific to α-MHC+ cardiomyocytes and are not due to puromy-
cin treatment, we generated a transgenic β-actin ES cell line
expressing both puromycin resistance and EGFP cassettes
under the control of the β-actin promoter. After application of
the differentiation protocol used for isolation of the α-MHC+

cardiomyocytes (Figure 1), RNA was isolated from 15-day-old

Hierarchical clustering of probe sets identified as downregulated in α-MHC+ cellsFigure 6 (see previous page)
Hierarchical clustering of probe sets identified as downregulated in α-MHC+ cells. Shown is a visualization of the hierarchical clustering of probe sets 
identified as downregulated in the α-MHC+ cells with an expression level at least twofold lower than in 15-day-old EBs and in α-MHC embryonic stem 
cells. Each probe set is represented by a single row of colored boxes; each array is represented by a single column. Rectangles corresponding to 
intermediately expressed probe sets are colored black, upregulated probe sets are indicated with red of increasing intensity, and weakly expressed probe 
sets with green of increasing intensity. The dendrogram on the left of the figure represents the similarity matrix of probe sets.
Genome Biology 2007, 8:R56
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Table 2

Functional annotations enriched among transcripts that are downregulated in α-MHC positive cells

Category Term Count P value

GOTERM_BP_5 DNA metabolism 76 3.17 × e-24

GOTERM_BP_5 M phase 41 1.79 × e-23

GOTERM_BP_5 DNA replication 35 2.91 × e-19

GOTERM_BP_5 Mitotic cell cycle 35 1.92 × e-17

KEGG_PATHWAY Cell cycle 32 7.70 × e-17

GOTERM_MF_5 ATP binding 101 3.13 × e-15

GOTERM_CC_5 Chromosome 46 9.39 × e-13

GOTERM_BP_5 DNA repair 27 2.88 × e-10

GOTERM_BP_5 Regulation of cell cycle 40 7.18 × e-10

GOTERM_CC_5 Chromosome, pericentric region 15 2.39 × e-09

GOTERM_BP_5 RNA processing 32 5.21 × e-09

GOTERM_BP_5 mRNA metabolism 24 1.28 × e-08

GOTERM_BP_5 RNA metabolism 37 1.29 × e-08

GOTERM_CC_5 Nucleus 229 2.04 × e-07

GOTERM_MF_5 Exonuclease activity 12 9.96 × e-07

GOTERM_CC_5 Kinetochore 9 1.68 × e-06

GOTERM_CC_5 Replication fork 9 1.68 × e-06

GOTERM_CC_5 Condensed chromosome 12 3.78 × e-06

GOTERM_CC_5 Replisome 8 8.86 × e-06

GOTERM_MF_5 Pyrophosphatase activity 40 1.85 × e-05

GOTERM_BP_5 Regulation of DNA metabolism 6 4.69 × e-05

KEGG_PATHWAY Pyrimidine metabolism 14 4.94 × e-05

GOTERM_CC_5 Spindle 13 8.62 × e-05

GOTERM_BP_5 DNA recombination 11 1.44 × e-04

GOTERM_BP_5 DNA damage response, signal transduction 6 3.13 × e-04

GOTERM_BP_5 Coenzyme metabolism 15 8.57 × e-04

GOTERM_BP_5 Carboxylic acid metabolism 27 1.04 × e-03

GOTERM_BP_5 Nuclear transport 11 1.07 × e-03

GOTERM_CC_5 Nucleolus 16 1.22 × e-03

GOTERM_BP_5 Amine biosynthesis 9 1.23 × e-03

GOTERM_BP_5 Amino acid metabolism 16 2.25 × e-03

GOTERM_CC_5 Microtubule cytoskeleton 24 3.62 × e-03

GOTERM_BP_5 Folic acid and derivative metabolism 4 3.75 × e-03

GOTERM_BP_5 Nucleocytoplasmic transport 11 4.02 × e-03

GOTERM_BP_5 Cellular protein metabolism 135 4.25 × e-03

GOTERM_BP_5 Cytoskeleton organization and biogenesis 28 5.66 × e-03

KEGG_PATHWAY Purine metabolism 14 6.33 × e-03

KEGG_PATHWAY Glycine, serine and threonine metabolism 7 1.01 × e-02

KEGG_PATHWAY DNA polymerase 6 1.10 × e-02

GOTERM_BP_5 Dna packaging 15 1.16 × e-02

GOTERM_CC_5 Nuclear chromosome 8 1.17 × e-02

GOTERM_CC_5 Spindle pole 8 1.17 × e-02

GOTERM_MF_5 S-adenosylmethionine-dependent methyltransferase activity 9 1.24 × e-02

BIOCARTA Cell cycle: G2/M checkpoint 7 1.33 × e-02

GOTERM_BP_5 Chromosome organization and biogenesis 19 1.36 × e-02

BIOCARTA Cell cycle: G1/S check point 7 1.59 × e-02
Genome Biology 2007, 8:R56
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GOTERM_CC_5 Delta DNA polymerase complex 3 1.59 × e-02

BIOCARTA Role of Ran in mitotic spindle regulation 5 1.60 × e-02

GOTERM_BP_5 DNA modification 6 1.64 × e-02

GOTERM_BP_5 Phosphate metabolism 43 1.65 × e-02

GOTERM_BP_5 Determination of left/right symmetry 4 1.72 × e-02

GOTERM_BP_5 Sulfur amino acid metabolism 4 1.72 × e-02

GOTERM_BP_5 Ribosome biogenesis and assembly 9 1.87 × e-02

BIOCARTA Role of BRCA1 6 1.89 × e-02

GOTERM_BP_5 Response to radiation 6 1.99 × e-02

KEGG_PATHWAY Methionine metabolism 4 2.03 × e-02

BIOCARTA CDK regulation of DNA replication 4 2.15 × e-02

BIOCARTA RB tumor suppressor/checkpoint signaling in response to DNA damage 4 2.15 × e-02

GOTERM_BP_5 Cellular carbohydrate metabolism 16 2.21 × e-02

GOTERM_BP_5 rRNA metabolism 5 2.50 × e-02

GOTERM_BP_5 Nucleic acid transport 5 2.78 × e-02

GOTERM_BP_5 RNA transport 5 2.78 × e-02

GOTERM_CC_5 Centrosome 6 2.94 × e-02

BIOCARTA E2F1 destruction pathway 4 2.96 × e-02

BIOCARTA Sonic Hedgehog (SHH) receptor Ptc1 regulates cell cycle 4 2.96 × e-02

GOTERM_MF_5 Amino acid permease activity 3 3.17 × e-02

KEGG_PATHWAY One carbon pool by folate 4 3.24 × e-02

GOTERM_CC_5 Nuclear pore 6 3.30 × e-02

GOTERM_BP_5 Heparan sulfate proteoglycan metabolism 3 3.40 × e-02

GOTERM_BP_5 Nucleotide metabolism 13 3.93 × e-02

GOTERM_MF_5 Glycine hydroxymethyltransferase activity 3 3.97 × e-02

GOTERM_MF_5 Protein kinase activity 32 4.12 × e-02

GOTERM_BP_5 Nucleobase, nucleoside, nucleotide and nucleic acid transport 5 4.51 × e-02

GOTERM_BP_5 Positive regulation of programmed cell death 10 4.61 × e-02

GOTERM_MF_5 DNA-directed DNA polymerase activity 4 4.87 × e-02

BIOCARTA Activation of Src by protein-tyrosine phosphatase alpha 3 5.41 × e-02

BIOCARTA Cyclins and cell cycle regulation 6 5.41 × e-02

GOTERM_BP_5 Steroid metabolism 9 5.54 × e-02

GOTERM_MF_5 Pre-mRNA splicing factor activity 5 6.43 × e-02

GOTERM_MF_5 Methylene-tetrahydrofolate dehydrogenase activity 2 7.11 × e-02

GOTERM_BP_5 Regulation of cell migration 5 7.20 × e-02

BIOCARTA Cdc25 and chk1 regulatory pathway in response to DNA damage 3 7.55 × e-02

GOTERM_CC_5 Chromatin 13 8.01 × e-02

GOTERM_BP_5 Regulation of apoptosis 16 8.13 × e-02

GOTERM_CC_5 Nuclear membrane 9 8.33 × e-02

GOTERM_BP_5 Nucleotide biosynthesis 9 8.59 × e-02

GOTERM_CC_5 Nuclear body 4 8.81 × e-02

GOTERM_BP_5 Regulation of programmed cell death 16 8.95 × e-02

KEGG_PATHWAY Urea cycle and metabolism of amino groups 4 9.73 × e-02

BIOCARTA Regulation of p27 phosphorylation during cell cycle progression 4 9.84 × e-02

GOTERM_CC_5 Heterochromatin 4 9.89 × e-02

Functional annotations that are enriched among transcripts downregulated in myosin heavy chain (MHC) positive cells (intersection of down-regulation in the 15-day-old α-
MHC+ cardiomyocytes [twofold, Student's t-test P value < 0.01] compared with the control cells in the 15-day-old embryoid bodies and compared with the undifferentiated α-
MHC embryonic stem cells). 'Count' refers to the number of transcripts in the respective category; the 'P value' column shows the value of Fisher's exact t-test, as used by 
DAVID to measure the enrichment in annotation terms. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; MAPK, mitogen-activated protein kinase

Table 2 (Continued)

Functional annotations enriched among transcripts that are downregulated in α-MHC positive cells
Genome Biology 2007, 8:R56
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EBs either in the presence or in the absence of puromycin.
Because β-actin is constitutively highly expressed in all cell
types, the β-actin EBs were resistant to puromycin. Accord-
ingly, no morphologic alterations were observed compared
with 15-day-old control untreated EBs.

Analysis of the differentially expressed genes in the 15-day-
old β-actin EBs in the absence of puromycin in comparison
with the 15-day-old β-actin EBs treated with 4 μg/ml puromy-
cin resulted in 554 differentially expressed probe sets (at t-
test P < 0.01, fold change >2). Among the 554 probe sets, 31
are found also to be differentially expressed in the α-MHC+

cardiomyocytes. Interestingly, all of the 31 probe sets are
downregulated in the 15-day-old β-actin EBs (Additional data
file 10). Although 20 of these probe sets are downregulated in
the 15-day-old β-actin EBs because of puromycin treatment,
they are upregulated in the α-MHC+ cardiomyocytes enriched
by puromycin treatment. Therefore, these 20 genes can be
considered to be cardiomyocyte specific.

A group of 11 probe sets corresponding to 10 genes is down-
regulated in puromycin treated β-actin EBs and in
cardiomyocytes. However, in comparison with 1,845 probe
sets specifically regulated in cardiomyocytes, 10 genes
account for a negligible fraction. Hence, our expression pro-
filing remains of importance within the context of defining
the cardiomyocyte specific transcriptome.

Conclusion
After the completion of several mammalian genome sequenc-
ing projects, the next challenge will be to identify the com-
plete cell specific transcriptome. Identification of the
complete transcriptome of the ES cell derived somatic cells
will contribute to our understanding of the developmental
processes that lead from undifferentiated ES cells to tissue-
specific cells. Here, we identified all α-MHC+ cardiomyocyte
specific gene expression signatures, including signal trans-
duction pathways that are characteristic for cardiomyocytes.
From our results, we conclude that - similar to mature cardi-
omyocytes - cardiomyocytes derived from ES cells strongly
express genes required for regulation of respiratory energy
metabolism, cytoskeleton, and ion channels; these genes are
required for cardiomyocytes to fulfil their physiologic
function. Interestingly, as in postmitotic adult cardiomyo-
cytes, genes required for cell proliferation are significantly
downregulated, whereas genes involved in the process of cell
growth were significantly upregulated in the ES cell derived
cardiomyocytes. Moreover, genes that are involved in the
process of apoptosis were significantly downregulated in the
ES cell derived cardiomyocytes. Finally, identification of the
gene signatures and signal transduction pathways that are
specifically expressed in the α-MHC+ cell population will con-
tribute to establishment of a gene expression atlas for
cardiomyocytes and will be useful for further studies to eluci-
date their role during developmental processes.

Materials and methods
Embryonic stem cell culture and differentiation of 
embryoid bodies
CGR8 ES cells (ECACC 95011018) were cultured without
feeder cells in Glasgow minimum essential medium (GMEM)
supplemented with 10% fetal bovine serum, 2 mmol/l L-
glutamine, 100 units/ml leukemia inhibitory factor, and 50
μmol/l β-mercaptoethanol (ME) in 0.2% gelatine coated
flasks, as described previously [9]. The cells were passaged
every other day and care was taken to maintain the conflu-
ency below 70%. The cells were passaged at least four times
before use in the experiments to attain a stable gene expres-
sion profile. To induce differentiation, the hanging drop pro-
tocol was used, as described previously [9]. Briefly, an ES cell
suspension of 2.5 × 104 cells/ml was prepared in Iscove's
modified Dulbecco's Medium (IMDM) supplemented with
20% fetal calf serum, 1% non-essential amino acids (vol/vol),
2 mmol/l L-glutamine, and 100 μmol/l β-ME. Of this ES cell
suspension, 20 μl was spotted on the inside of the upper lid of
a 10 cm bacteriologic dish and then covered over its bottom
dish containing 5 ml phosphate-buffered saline. On day 2, the
formed multicellular aggregates (EBs) were transferred to
suspension in a new dish with 20 ml IMDM supplemented
with 20% fetal calf serum, 1% non-essential amino acids (vol/
vol), 2 mmol/l L-glutamine, and 100 μmol/l β-ME. On day 8,
contracting clusters were observed. At this stage, cultures
were either treated with puromycin (4 μg/ml) or left without
treatment for 7 days with a medium change on every other
day. On day 15, the beating clusters were trypsinized and used
for fluorescence-activated cell sorting analysis or for RNA
extraction.

Vector constructs and cell line generation
pIRES2 EGFP was purchased from Clontech (Heidelberg,
Germany). The human cytomegalovirus (CMV) immediate
early promoter and enhancer were removed by a double
digestion with NheI and AseI and then subsequently blunt
end ligated to obtain pIRES2 EGFP Δ CMV. Puromycin N-
acetyl transferase cDNA was flanked on both ends by BamHI
restriction sites, which was PCR-amplified from pIRESPuro3
by Pfu DNA polymerase (Promega, Germany) and inserted at
the SmaI site of the pIRES2 EGFP Δ CMV construct to obtain
pPuro IRES2 EGFP. The 5.5 kilobase α-MHC promoter con-
struct was a kind gift from Dr J Robbins (Cincinnati, OH,
USA) [29]. The promoter was klenowed on one end and the
other end digested with SacI. The resulting product was
ligated to the vector pPuro IRES2 EGFP processed in the
same way to generate p α-MHCp Puro IRES2 EGFP. This α-
MHCp reporter construct drives the expression of both
puromycin resistance and EGFP under the control of α-MHC
promoter by the use of IRES sequence. To generate the α-
MHC ES line, the construct was electroporated in CGR8 cells
with 500 μF and 240 V in a Bio-Rad Gene Pulser™ (Bio-Rad,
Hercules, CA, USA). The transfected clones were selected by
400 μg/ml neomycin, and after selection the clones were
Genome Biology 2007, 8:R56
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maintained with 200 μg/ml neomycin. During EB genera-
tion, the neomycin selection was discontinued.

To generate pβactinp Puro IRES2 EGFP, the 1.7 kilobase β-
actin promoter was excised from pCAGGS plasmid (kindly
provided by Dr Miyazaki, Tohoku University, Tohoku, Japan)
with EcoRI and SalI and blunt-end ligated to EcoRI-digested,
klenowed, and 5'-dephosphorylated pPuro IRES2 EGFP.
Generation of the transgenic β-actin+ ES cell line expressing
both puromycin resistance and EGFP was performed as
described for the α-MHC ES lineage using the linearized
pβactinp Puro IRES2 EGFP.

Immunohistochemistry
EBs were plated on 6-well format tissue culture dishes. From
day 8 the cells were treated with 4 μg/ml puromycin for the
subsequent 7 days. Afterward, cells were dissociated with 1
mg/ml collagenase B (Roche, Mannheim, Germany) for 30
min. Dissociated cells were plated on fibronectin (Sigma,
Taufkirchen, Germany) coated coverslips for 3 days. Fixation
was done with 4% paraformaldehyde for 30 min. Samples
were permeabilized with 0.5% Triton-X100 (Sigma) and 0.5
M ammonium chloride. Blocking was performed in 5%
bovine serum albumin (Sigma). Incubations with the primary
antibodies anti-α-actinin (Sigma; clone EA-53; 1:400) and
anti-connexin 43 (Sigma; clone CXN-6; 1:400) were per-
formed overnight at 4°C in 1% bovine serum albumin. After
extensive washing, secondary detection was performed for 2
hours at room temperature. Anti-mouse IgG1-AlexaFluor555
and anti-rabbit-Ig-AlexaFluor647 were purchased from
Molecular Probes (Invitrogen GmbH, Karlsruhe, Germany).
Hoechst dye was used to stain nuclei. Samples were mounted
using ProLong Gold Mounting medium (Molecular Probes)
and observed with a Zeiss Axiovert 200 fluorescence
microscope.

Patch clamp and sharp electrode electrophysiological 
studies
AP recordings were performed in single α-MHC cardiomyo-
cytes and in multicellular α-MHC+ cell aggregates at days 11 to
16. Single cardiomyocytes were obtained by dissociating
puromycin-purified α-MHC+ cell aggregates using a protocol
described previously [30] and incubated in Dulbecco's modi-
fied Eagle medium plus 20% fetal calf serum at 37°C and 5%
carbon dioxide for 24 to 36 hours before measurements were
taken. APs of spontaneously beating single α-MHC+ cardio-
myocytes were measured by means of the whole-cell current-
clamp technique using an EPC-9 amplifier and the PULSE
software package (Heka Elektronik, Lambrecht, Germany).
Patch clamp electrodes had a resistance of 3-4 MΩ when filled
with intracellular solution containing (in mmol/l) 50 KCl, 80
KAspartate, 1 MgCl2, 3 MgATP, 10 EGTA and 10 HEPES (pH
7.4).

Spontaneous electrical activity of cardiomyocytes within
plated α-MHC+ cell aggregates was assessed by conventional

microelectrode recordings. The resistance of the sharp elec-
trodes, which were filled with 3 M KCl, was 20 to 50 MΩ. Sig-
nals were acquired by a SEC-10LX amplifier (Npi Electronic,
Tamm, Germany) connected to the PULSE software via the
interface of the EPC-9.

All experiments were performed at 37°C in standard extracel-
lular solution containing (in mmol/l) 140 NaCl, 5.4 KCl, 1.8
CaCl2, 1 MgCl2, 10 HEPES and 10 glucose, or 136 NaCl, 5.4
KCl, 0.33 NaH2PO4, 1 MgCl2, 10 glucose, 5 HEPES and 1.8
CaCl2 (pH 7.4, adjusted with NaOH). All electrophysiologic
data were analyzed off-line with custom made analysis soft-
ware (kindly provided by Philipp Sasse).

Semiquantitative RT-PCR analysis
Total RNA was extracted using RNeasy Mini Kit with on-col-
umn DNase I digestion, in accordance with the manufac-
turer's instructions (Qiagen, Hilden, Germany). Total RNA 5
μg was reverse transcribed using SuperScript II Reverse tran-
scriptase with random primers, in accordance with the man-
ufacturer's recommended protocol (Invitrogen GmbH,
Karlsruhe, Germany). PCR amplification was done with RED-
Taq ReadyMix (Sigma) with 0.4 μmol/l each primer. GAPDH
was used as an internal control. The following conditions
were used: an initial denaturation at 95°C for 2 min, followed
by 22 to 35 cycles of 30 s denaturation at 95°C, 30 s annealing
at 60°C, and 60 s of elongation at 72°C. A final extension at
72°C for 5 min was included. Electrophorectic separation of
PCR products was carried out on 2% agarose gels with
0.001% ethidium bromide. The primer sequences are listed in
the Additional data file 3.

Quantitative real-time PCR
Validation of the Affymetrix data was performed by qPCR

analysis with the ABI Prism 7900HT Sequence Detection Sys-

tem (Applied Biosystems, Foster City, CA, USA). A total of

100 ng RNA of α-MHC ES cells, 15-day-old control Ebs, and

α-MHC+ cells were reverse transcribed with ThermoScript™

Reverse Transcriptase (Invitrogen). Then, real-time PCR was

perfomed in triplicates for every sample using TaqMan Gene

Expression Assays (Applied Biosystems). The Gene Expres-

sion Assays used for validation were Brachyury (T)

(Mm00436877_m1), Sox17 (Mm00488363_m1), α-MHC

(Mm00440354_m1), Bmp2 (Mm01340178_m1), GAPDH

(Mm99999915_g1), and Nanog (Mm02019550_s1). Aver-

aged Ct values of each qPCR reaction from the target gene

were normalized with the average Ct values of the

housekeeping gene GAPDH, which ran in the same reaction

plate to obtain the ΔCt value. The fold change was calculated

as follows: fold change = . Because the

genes included are not expressed in at least one of the three

conditions (α-MHC ES cells, 15-day-old control Ebs, or α-

MHC+), the ΔCt of the gene in the sample with the lowest

2 1 2− −( )Δ ΔC gene C genet t
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expression is used as ΔCt gene2 to calculate the fold change

using the above formula. The resulting fold change is

expressed as percentage of the maximum fold change.

Flow cytometry
A single cell suspension was prepared by trypsinization. Cell
clumps were removed by passing through cell strainer cap of
a round bottom tube from Falcon® (Becton Dickinson GmbH,
Heidelberg,, Germany). Propidium iodide (PI) staining
(Sigma) was included to exclude dead cells. Acquisition of
10,000 live (PI-negative) cells was made with FACscan (BD
Biosciences) and the data were analyzed using the CellQuest
software (BD Biosciences). The respective wild-type EBs on
the same day as the sample EBs were used as controls.

Affymetrix analysis
Total RNA was extracted from undifferentiated ES cells and
EBs using the RNeasy total RNA isolation kit (Qiagen GmbH,
Hilden, Germany). The preparation quality was assessed by
agarose-formaldehyde gel electrophoresis. Three independ-
ent total RNA preparations, each 1 μg from the α-MHC+ cells,
from the mixed cell population and from the undifferentiated
ES cells, were labelled with the One-Cycle Target Labeling
and Control Reagent package (Affymetrix), as described in
the manufacturer's instructions. Briefly, double-stranded
cDNA was synthesized using the one-cycle cDNA synthesis
module. Biotinylated cRNA was synthesized using the IVT
labeling kit and cleaned up using the sample cleanup module.

After fragmenting of the cRNA for target preparation using
the standard Affymetrix protocol, 15 μg fragmented cRNA
was hybridized for 16 hours at 45°C to Mouse Genome 430
2.0 arrays, which carry probes representing 45,101 probe sets.
Following hybridization, arrays were washed and stained
with streptavidin-phycoerythrin in the Affymetrix Fluidics
Station 450 and further scanned using the Affymetrix Gene-
Chip Scanner 3000 7G. The image data were analyzed with
GCOS 1.4 using Affymetrix default analysis settings. After
RMA normalization [31], three pair-wise comparisons were
performed using Student's t-test (unpaired, assuming une-
qual variances). A Student's t-test P value < 10-2 and a fold
change >2 between two conditions was used to define differ-
ential expression. An intersection of upregulation in α-MHC+

cardiomyocytes (twofold; t-test P value < 0.01) compared
with control cells in the 15-day-old EBs (d15) and compared
with undifferentiated α-MHC ES cells (d0) was used to iden-
tify transcripts upregulated in α-MHC+ cardiomyocytes. For
downregulation, an intersection of downregulation in α-
MHC+ cardiomyocytes (twofold, t-test P value < 0.01) com-
pared with control cells in the 15 day control EBs (d15) and
compared with undifferentiated α-MHC ES cells (d0) was
used.

Hierarchical clustering was done using Cluster version 3.0
[32,33] applying mean centering and normalization of genes

before average linkage clustering with uncentered
correlation.

Functional annotation
Differentially expressed genes were analyzed according to
predefined pathways and functional categories annotated by
KEGG [34], Biocarta [35], and GO [36] using the DAVID bio-
informatic resource [37]. For an over-represented GO or
KEGG pathway, a cutoff P value of 0.01 has been selected. In
general, it should be noted that one gene can participate in
more than one KEGG or Biocarta pathway and GO category.

Additional data files
The following additional data are available with the online
version of this paper. Additional data file 1 provides a video
clip showing the 15-day-old untreated EBs. Additional data
file 2 provides a video clip showing the 15-day-old puromycin
treated EBs. Additional data file 3 provides the RT-PCR con-
ditions and primers used in the RT-PCR experiments. Addi-
tional data file 4 provides the lists of probe sets used for the
subclusters A and B, as identified in the hierarchical cluster-
ing of probe sets upregulated in α-MHC+ cells (Figure 5).
Additional data file 5 summarizes genes of various GO catego-
ries that are upregulated in the α-MHC+ cardiomyocytes com-
pared with control cells in the 15-day-old EBs and compared
with undifferentiated α-MHC ES cells. Additional data file 6
summarizes genes belonging to the KEGG pathway 'oxidative
phosphorylation' and various GO categories that are upregu-
lated in α-MHC+ cardiomyocytes as compared with control
cells in the 15-day-old EBs and compaed with undifferenti-
ated α-MHC ES cells; also provided is a schematic of the
KEGG oxidative phosphorylation pathway. Additional data
file 7 summarizes genes belonging to various GO categories
and the Biocarta pathway 'p38 mitogen-activated protein
kinase signaling' that are upregulated in the α-MHC+ cardio-
myocytes compared with control cells in the 15-day-old EBs
and compared with undifferentiated α-MHC ES cells. Addi-
tional data file 8 provides lists of probe sets for the
subclusters A, B, and C, as identified in the hierarchical clus-
tering of probe sets downregulated in α-MHC+ cells (Figure
6). Additional data file 9 summarizes genes belonging to the
KEGG pathway 'cell cycle', various GO categories, and Bio-
carta Pathways 'G1/S checkpoint' and 'G2/M checkpoint' that
are downregulated in α-MHC+ cardiomyocytes compared
with control cells in the 15-day-old control EBs and compared
with undifferentiated α-MHC ES cells. Additional data file 10
lists probe sets both differentially regulated by puromycin
treatment in 15-day-old β-actin EBs and transcripts upregu-
lated in α-MHC+ cells compared with the control cells in the
15-day-old EBs and compared with undifferentiated α-MHC
ES cells. Additional data file 11 lists probe sets differentially
regulated in the puromycin-treated 15-day-old β-actin+ EBs.
Additional data file 12 provides raw data for the α-MHC
experiments (part 1). Additional data file 13 provides raw data
Genome Biology 2007, 8:R56
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for the α-MHC experiments (part 2). Additional data file 14
provides raw data for the β-actin control experiments.
Additional data file 1A video clip showing the 15-day-old untreated EBsProvided is a video clip showing the 15-day-old untreated EBs.Click here for fileAdditional data file 2A video clip showing the 15-day-old puromycin treated EBsProvided is a video clip showing the 15-day-old puromycin treated EBs.Click here for fileAdditional data file 3RT-PCR conditions and primers used in the RT-PCR experimentsSummarized are the RT-PCR conditions and primers used for the RT-PCR experiments.Click here for fileAdditional data file 4Probe sets used for the subclusters A and B, as identified in the hierarchical clustering of probe sets upregulated in α-MHC+ cellsProvided are lists of probe sets for the subclusters A and B, as iden-tified in the hierarchical clustering of probe sets upregulated in α-MHC+ cells (Figure 5).Click here for fileAdditional data file 5Genes of various GO categories that are upregulated in the α-MHC+ cardiomyocytes compared with control cells in the 15-day-old EBs and compared with undifferentiated α-MHC ES cellsPart a provides the genes belonging to the GOTERM_CC categories 'myofibril, striated muscle thin filament, actin cytoskeleton', 'cytoskeleton' and 'myosin', and GOTERM_BP category 'cytoskele-ton organization and biogenesis' that are upregulated in the α-MHC+ cardiomyocytes (intersection of upregulation in α-MHC+ cardiomyocytes [twofold, t-test P value < 0.01] compared with con-trol cells in the 15-day-old EBs and compared with undifferentiated α-MHC ES cells). Part b provides the genes belonging to the GOTERM_MF categories 'voltage-gated ion channel activity' that are upregulated in the α-MHC+ cardiomyocytes (intersection of upregulation in α-MHC+ cardiomyocytes [twofold, t-test P value < 0.01] compared with control cells in the 15-day-old EBs and com-pared with undifferentiated α-MHC ES cells).Click here for fileAdditional data file 6Genes belonging to the KEGG pathway 'oxidative phosphorylation' and various GO categories that are upregulated in α-MHC+ cardio-myocytes as compared with control cells in the 15-day-old EBs and compaed with undifferentiated α-MHC ES cellsPart a provides genes belonging to the KEGG pathway 'oxidative phosphorylation' that are upregulated in α-MHC+ cardiomyocytes (intersection of upregulation in α-MHC+ cardiomyocytes [twofold, t-test P value < 0.01] compared with control cells in the 15-day-old EBs and compared with undifferentiated α-MHC ES cells) and a schematic of the KEGG oxidative phosphorylation pathway. Part b provides the genes belonging to the GOTERM_CC_5 categories 'mitochondrion', 'mitochondrial membrane' and 'mitochondrial electron transport chain', and GOTERM_MF_5 categories 'hydro-gen ion transporter activity', 'NADH dehydrogenase (quinone) activity' and 'sodium ion transporter activity' that are upregulated in α-MHC+ cardiomyocytes (intersection of upregulation in α-MHC+ cardiomyocytes [twofold, t-test P value < 0.01] compared with control cells in the 15-day-old EBs and compared with undif-ferentiated α-MHC ES cells). Part c provides genes belonging to the GOTERM_CC category "fatty acid metabolism" that are upregu-lated in the α-MHC+ cardiomyocytes (intersection of upregulation in α-MHC+ cardiomyocytes [twofold, t-test P value < 0.01] com-pared with control cells in the 15-day-old EBs and compared with undifferentiated α-MHC ES cells).Click here for fileAdditional data file 7Genes belonging to various GO categories, the Biocarta pathway 'p38 mitogen-activated protein kinase signaling' and the KEGG pathway 'Calcium Signalling' that are upregulated in the α-MHC+ cardiomyocytes compared with control cells in the 15-day-old EBs and compared with undifferentiated α-MHC ES cellsPart a provides genes belonging to the GOTERM_BP_5 category 'enzyme linked receptor protein signaling pathway' that are upreg-ulated in the α-MHC+ cardiomyocytes (intersection of upregulation in α-MHC+ cardiomyocytes [twofold, t-test P value < 0.01] com-pared with control cells in the 15-day-old EBs and compared with undifferentiated α-MHC ES cells). Part b provides genes that belong to the GOTERM_MF_5 category 'protein kinase activity' that are upregulated in α-MHC+ cardiomyocytes (intersection of upregulation in α-MHC+ cardiomyocytes [twofold, t-test P value < 0.01] compared with control cells in the 15-day-old EBs and com-pared with undifferentiated α-MHC ES cells). Part c provides genes belonging to the GOTERM_BP_5 categories 'negative regulation of Wnt receptor signaling pathway' and 'negative regulation of signal transduction' that are upregulated in α-MHC+ cardiomyocytes (intersection of upregulation in α-MHC+ cardiomyocytes [twofold, t-test P value < 0.01] compared with control cells in the 15-day-old EBs and compared with undifferentiated α-MHC ES cells). Part d provides genes belonging to the Biocarta pathway 'p38 mitogen-activated protein kinase signaling" that are upregulated in α-MHC+ cardiomyocytes (intersection of upregulation in α-MHC+ cardio-myocytes [twofold, t-test P value < 0.01] compared with control cells in the 15-day-old EBs and compared with undifferentiated α-MHC ES cells). Part e provides genes belonging to the KEGG path-way 'Calcium Signalling' that are upregulated in α-MHC+ cardio-myocytes (intersection of upregulation in α-MHC+ cardiomyocytes [twofold, t-test P value < 0.01] compared with control cells in the 15-day-old EBs and compared with undifferentiated α-MHC ES cells). Part f provides genes belonging to the GOTERM_BP_5 'Reg-ulation of cell size' that are upregulated in α-MHC+ cardiomyocytes (intersection of upregulation in α-MHC+ cardiomyocytes [twofold, t-test P value < 0.01] compared with control cells in the 15-day-old EBs and compared with undifferentiated α-MHC ES cells).Click here for fileAdditional data file 8Probe sets for the subclusters A, B, and C, as identified in the hier-archical clustering of probe sets downregulated in α-MHC+ cellsProvided are lists of probe sets for the subclusters A, B, and C, as identified in the hierarchical clustering of probe sets downregu-lated in α-MHC+ cells (Figure 6). Probe sets are listed with the cor-responding gene symbol and gene title.Click here for fileAdditional data file 9Genes belonging to the KEGG pathway 'cell cycle', various GO cat-egories, and Biocarta Pathways 'G1/S checkpoint' and 'G2/M checkpoint' that are downregulated in α-MHC+ cardiomyocytes compared with control cells in the 15-day-old control EBs and com-pared with undifferentiated α-MHC ES cellsPart a provides genes belonging to the KEGG pathway 'cell cycle' as well as to the GO BP terms 'M-phase', 'mitotic cell cycle', and 'reg-ulation of cell cycle' that are downregulated in α-MHC+ cardiomy-ocytes (intersection of downregulation in α-MHC+ cardiomyocytes [twofold, t-test P value < 0.01] compared with control cells in the 15-day-old control EBs and compared with undifferentiated α-MHC ES cells). It also provides a schematic of the KEGG cell cycle pathway, indicating the downregulated genes. Part b provides genes belonging to the BIOCARTA pathways 'G1/S checkpoint' and 'G2/M checkpoint' that are downregulated in α-MHC+ cardiomyo-cytes (intersection of downregulation in α-MHC+ cardiomyocytes [twofold, t-test P value < 0.01) compared with control cells in the 15-day-old control EBs and compared with undifferentiated α-MHC ES cells). Part c provides genes belonging to the GOTERM_BP_5 categories 'positive regulation of programmed cell death' that are downregulated in α-MHC+ cardiomyocytes (intersection of downregulation in α-MHC+ cardiomyocytes [two-fold, t-test P value < 0.01] compared with control cells in the 15-day-old control EBs and compared with undifferentiated α-MHC ES cells).Click here for fileAdditional data file 10Probe sets both differentially regulated by puromycin treatment in 15-day-old β-actin EBs and transcripts upregulated in α-MHC+ cells compared with the control cells in the 15-day-old EBs and compared with undifferentiated α-MHC ES cellsProvided are probe sets both differentially regulated by puromycin treatment in 15-day-old β-actin EBs (twofold, Student's t-test P value < 0.01) and transcripts upregulated in α-MHC+ cells (inter-section of upregulation in the α-MHC+ cardiomyocytes [twofold, Student's t-test P value < 0.01] compared with the control cells in the 15-day-old EBs and in the undifferentiated α-MHC ES cells).Click here for fileAdditional data file 11Probe sets differentially regulated in the puromycin-treated 15-day-old β-actin+ EBsProvides is a list of probe sets differentially regulated in the puro-mycin treated 15-day-old β-actin+ EBs.Click here for fileAdditional data file 12Raw data for the α-MHC experiments (part 1)Provided is the raw data for the α-MHC experiments.Click here for fileAdditional data file 13Raw data for the α-MHC experiments (part 2)Provided is the raw data for the α-MHC experiments.Click here for fileAdditional data file 14Raw data for the β-actin control experimentsProvided is the raw data for the β-actin control experiments.Click here for file
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