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The identification and classification of genes and pseudogenes in duplicated regions still constitutes a challenge for
standard automated genome annotation procedures. Using an integrated homology and orthology analysis
independent of current gene annotation, we have identified 9,484 and 9,017 gene duplicates in human and mouse,
respectively. On the basis of the integrity of their coding regions, we have classified them into functional and inactive
duplicates, allowing us to define the first consistent and comprehensive collection of 1,811 human and 1,581 mouse
unprocessed pseudogenes. Furthermore, of the total of 14,172 human and mouse duplicates predicted to be functional
genes, as many as 420 are not included in current reference gene databases and therefore correspond to likely novel
mammalian genes. Some of these correspond to partial duplicates with less than half of the length of the original
source genes, yet they are conserved and syntenic among different mammalian lineages. The genes and unprocessed
pseudogenes obtained here will enable further studies on the mechanisms involved in gene duplication as well as of
the fate of duplicated genes.
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Introduction

Gene duplication is the major source of biological
innovation and diversity as it provides the necessary
conditions for the appearance of new or more specialized
protein functions [1]. In eukaryotic genomes, there are two
major mechanisms through which coding gene regions
duplicate: retrotransposition and non-homologous recombi-
nation. Whereas retrotransposition can lead in rare occasions
to a functional mRNA copy [2], it usually results in processed
pseudogenes. The present study focuses on gene copies that,
on the other hand, arose through non-homologous recombi-
nation, which produces intact (unspliced) genes copies. It is
generally agreed that after such gene duplications, there is a
period of functional redundancy and, consequently, a partial
relaxation of their associated selective constraints (for review
see [3,4]). This allows each copy to accept a higher level of
sequence modification and, therefore, explore new or more
specialized roles as long as the basic ancestral function is not
compromised. Although this situation can eventually lead to
the formation of novel genes, it is generally believed that it
normally ends with the silencing of one of the copies by the
accumulation of lethal mutations, and the preservation of the
other with the same (or eventually enhanced) basic ancestral
function [5]. Non-functional paralogs are then expected to
accumulate mutations at a neutral rate and degenerate as
unprocessed pseudogenes. Similarly, apart from duplicated
exons that lead to alternatively spliced isoforms [6], incom-
plete duplications of genes that can neither be transcribed
nor translated into complete and functional proteins are also
expected to undergo neutral degeneration right after their
formation, as occurs with the vast majority of processed
pseudogenes.

Currently the silencing of genes after duplication is poorly
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understood. Its frequency has been indirectly inferred either
through theoretical approaches [7,8] or from the study of
functional genes exclusively [5], without taking into account
the population of dead gene copies, probably due to the lack
of consistent annotation for these regions in public databases.
Not only the identification of unprocessed pseudogenes, but
also the overall identification and classification of independ-
ent gene copies within regions that underwent several rounds
of tandem duplications, are not completely solved, as
exemplified in a detailed analysis of a particular region of
human Chromosome 2 [9]. Previous global analyses of dead
gene copies in mammals have focused mainly on retrotrans-
posed (processed) pseudogenes [10-13], which appear to be
far more abundant and easier to detect than unprocessed
pseudogenes. We have already attempted to define collections
of unprocessed pseudogenes in the context of a genome-wide
identification of intergenic pseudogenes from several se-
quenced genomes [10,12-15]. The estimated number of these
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regions fluctuated significantly within mammals: between

3,000 and 4,500 per genome. However, on the basis of our
recent and more detailed analysis of the finished human
Chromosomes 2 and 4 [16], we estimate that the human
genome might actually contain no more than 2,000 unpro-
cessed pseudogenes, because previous sets were somewhat
inflated by misclassified retrotranscribed (processed) pseu-
dogenes. In addition to these large-scale approximations,
several hundred unprocessed pseudogenes also have been
identified during the annotation of single human chromo-
somes (available from VEGA database, [17]) and from detailed
studies focused on particular gene families or genomic
regions (e.g., [12,13,18-21]). Despite all these efforts, a
considerable fraction of human and mouse unprocessed
pseudogenes is likely to be unannotated or incorrectly
classified owing to the difficulties in analyzing complex
regions with multiple copies of genes.

Using filtering procedures performed on the available
assemblies of the human and mouse genomes, we have carried
out a consistent and comprehensive search for gene
duplicates independent of previous gene annotations. We
have distinguished the potentially active from the non-
functional copies in order to construct the first reliable set
of unprocessed pseudogenes.

Results

Identification of Human and Mouse Duplicates with
Coding Potential

For the detection and prediction of gene duplicates in
human and mouse, we first identified all regions with coding
potential (i.e., protein coding genes and derived copies). To
obtain a reliable set, we required the presence of a homolog
in existing sequence databases. The respective search
methodology had been previously applied to the identifica-
tion of non-functional gene duplicates between annotated
functional genes of different metazoan genomes [10,12-16].
In contrast to the previous procedure that took for granted
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the available annotation of the gene sets, we performed de
novo gene predictions independent of current gene annota-
tions. Using the comparison of all known protein sequences
against the entire human and mouse repeat-masked genomes,
we identified and reconstructed the putative coding sequence
of 43,247 and 43,715 regions in each organism respectively
(see Materials and Methods), which are likely to correspond
mainly to genes and to the two fundamental types of
pseudogenes: retrotransposed (processed) and duplicated
(unprocessed). We next assessed the completeness of these
sequence collections and, in turn, the overall sensitivity of
our underlying search protocol in the context of existing
genome annotations. For this we compared our sequence
collections with the most widely used genomic databases,
which, despite their differing methods, are expected to cover
practically all human and mouse genes, and a fraction of
human pseudogenes (Table 1, first column). From these
comparisons, we first concluded that our method identified
nearly all of the human and mouse coding genes, as we found
overlap with 96% and 94% of the human functional regions
included in the RefSeq [22], and ENSEMBL [23], ENCODE
[18], and VEGA [17] databases, and with the 87% and 94% of
the ENSEMBL and RefSeq mouse genes, respectively. Our
coverage of pseudogenes was similarly high, our human
predictions detecting between 80% and 94% of all processed
and unprocessed human pseudogenes annotated in the
ENCODE, VEGA, and “YALE” [11] databases.

We also assessed the accuracy of our predictions by
focusing on three aspects of the predicted genomic structure
that are of particular relevance for the subsequent analysis of
the data: (1) the accuracy with which we distinguish each
independent (pseudo)gene, i.e., the amount of fragmentation
and fusion, which could be particularly frequent in complex
regions with multiple gene copies; (2) the coverage of the
coding region; and (3) the level of artificial insertion of
truncations (in-frame stop codons or frameshifts). This also
reflects the accuracy at which intron-exon boundaries are
defined, since usually, incorrectly predicted splice sites give
rise to artefactual truncations downstream. As the quality of
any homology-based prediction of genes and pseudogenes
depends strongly on the degree of similarity between the
known protein sequence used as a template and the target
genomic region, we performed this test by carrying out a
second and completely independent round of predictions (a
jackknife test) considering only genes coding for reviewed
RefSeq cDNAs, taking care not to use their corresponding
protein products as a reference (see Materials and Methods
for details). In this test, each of the predictions was then
directly compared with the real RefSeq protein product of
that gene. The results of this test were overall satisfactory: (1)
Only 6% of the predictions were either fragmented or fused
to a neighboring gene (please note that in order to avoid the
overestimation of duplicated (pseudo)genes, our procedure
deliberately fuses terminal duplicated exons to the preceding
complete gene, as these are frequent in the human genome
[6] and can be involved in the formation of alternatively
spliced isoforms rather than constituting independent and
incomplete gene copies); (2) we also found that as many as
90% of our predictions of RefSeq genes covered more than
90% of the known coding regions; and (3) no more than 4%
of them contained artefactual stop codons or frameshifts.

Therefore, from the comparison of all our predictions with

0628 June 2006 | Volume 2 | Issue 6 | e76



Duplicated Genes and Pseudogenes

Table 1. Assessment of the Identification and Classification Procedures

Reference Database Sensitivity

Specificity

All Hs Predictions (43,247)

Hs Processed
Pseudogenes (18,700)

Hs Unprocessed
Pseudogenes (1,811)

Hs Genes® (22,736)

RefSeq genes (17,533)° 9
ENSEMBL genes (21,579)¢ 94
VEGA genes (10,587)° 94
ENCODE genes (434) 94
VEGA unprocessed pseudogenes (704) 89
ENCODE unprocessed pseudogenes (71) 80
ENCODE processed pseudogenes (125) 90

VEGA processed pseudogenes (3,168) 91
YALE processed pseudogenes (6,543)

7 3)° 1 (0.1)¢ 92 (96)°
14 2 83

9 2 88

5 2 87

45 17 34

15 42 25

82 4 5

78 7 6

82 6 6

Reference databases are displayed on the left of the table, whereas the different collections defined in this study are displayed across the top. Total number of sequences is shown in
parentheses. All values indicate the fraction (percentage) of each of the reference gene and pseudogene databases that overlap with regions predicted in this study. Due to the limited
number of similar databases available for mouse, we restricted this evaluation to human collections only.

“Comprises singleton and duplicated genes.
PInclude “reviewed” and “provisional” categories.

“Numbers in parentheses denote the percentage of overlap with the “reviewed” category of the RefSeq database only, which contains 6,542 sequences after excluding splice variants.

dComprise coding genes only. ENSEMBL release 36.
DOI: 10.1371/journal.pcbi.0020076.t001

available and representative gene and pseudogene collec-
tions, and the independent evaluation of their (pseudo)cod-
ing regions, we conclude that the overall performance of the
identification and prediction procedures is sufficiently high
to use the resulting data as a basis for the identification and
analysis of duplicated genes.

Assignment of Orthology and Exclusion of Processed
Pseudogenes

A next step in defining duplicates, in particular those that
have emerged after the human-mouse split, is to assign
orthology between the 43,247 human and 43,715 mouse
candidate genes and pseudogenes. These sets should at this
stage consist of a mixture of processed pseudogenes, single
functional genes, and both functional and pseudogenic gene
duplicates. To distinguish between these, we performed a
series of sequence comparisons of all the candidates, both
between and within each of the species (Figure 1). By
evaluating human-mouse reciprocal sequence similarity and
genomic context, we could identify orthologous relations for
22,629 human and 21,908 mouse gene predictions. Of these
relations, 16,890 arose directly by human-mouse best
reciprocal matches mostly in syntenic regions, i.e., that
correspond to 1:1 orthologs. Interestingly, the fact that
among these clear orthologs, only 300 (1.7%) appear to be
truncated in human, and of those, only 65 were also found
truncated in mouse, confirms that practically no pseudogenes
formed in the human-mouse ancestor are still conserved at
the level of sensitivity used in this and other studies. The
remaining “non-1:17 orthologs represent more complex
orthologous relationships, most likely involving gene families
that underwent expansions in one or both of the lineages. On
the other hand, 20,618 human and 21,807 mouse predictions
did not show any sign of orthology and were initially assumed
to correspond mostly to non-functional retrotransposed gene
copies, i.e., processed pseudogenes, which are expected to be
located far from their parental genes. These sets are also
expected to include genes that either have been translocated
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in one of the genomes after the human-mouse split, and a few
whose corresponding ortholog was lost completely from the
other genome. A fraction of these genes was detected by
analyzing the intron-exon composition of all predictions
with no assigned orthology. This was achieved by selecting
those sequences that were predicted with two or more introns
and are subsequently incompatible with a retrotransposi-
tional origin. Please note that allowing the presence of an
intron for processed pseudogenes might be a restricted
criterion, but it is also a conservative one because real
processed pseudogenes might often contain insertions of
foreign DNA that can be interpreted as introns during the
final steps of our prediction pipeline (i.e., by GENEWISE). A
total of 1,918 human and 1,447 mouse predictions with no
detectable orthology were found to present two or more
introns and were therefore reclassified as potential genes or
unprocessed pseudogenes. By extrapolating the portion of
functional genes (from RefSeq) that have fewer than two
introns, we finally estimated that around 300 genes and
unprocessed pseudogenes (that were recently translocated or
that lost their corresponding ortholog) remained undetected
and hence misclassified as processed pseudogenes. Although
the total number of human processed pseudogenes defined
here is consistent with previous estimations of around 20,000
made by independent studies [11], it is considerably larger
than in early studies (around 14,000 [10]). This difference
could be partially explained by a slight increase of sensitivity
during the present homology search (i.e., the number of
annotated known proteins in databases has increased since
then), or by the fact that this study did not rely on gene sets
(e.g., ENSEMBL) that have varied dramatically in the past
years and were known to include a significant number of
processed pseudogenes [12,13,24]. But, above all, the refine-
ment in the detection of orthology and the consequent
improvement in the classification of pseudogenes, rather
than the identification of new regions, is what largely explains
this increase in the number of processed pseudogenes.
Taken together, using orthology and exon composition, we
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Figure 1. Schematic Representation of the Procedure Employed to
Classify the Three Major Types of Genes and Derived Sequences
Identified in Human and Mouse According to Their Origin between
and within Each Species

Dashed boxes denote key action steps in the procedure. See text for
details.
DOI: 10.1371/journal.pcbi.0020076.g001

could classify all 43,247 human and 43,715 mouse predictions,
into 24,547 and 23,355 genes or gene duplicates, and 18,700
and 20,360 into processed pseudogenes, respectively. In order
to assess the discriminatory power of the criteria used for this
first step of our classification procedure, we again compared
each of the resulting human collections with the available
gene and pseudogene collections. In support of our method,
we first observed that a low fraction of genes have been here
misclassified as processed pseudogenes, as 1% of all of our
18,700 retrotransposed regions overlap in the genome with
only 3% of the nearly 7,000 reviewed RefSeq genes (Table 1,
second column). Despite remaining similarly low, this amount
of overlap appears to be higher when considering other gene
databases. This could be partially explained by the different
levels of misannotated processed pseudogenes within these
databases, since we observe that the degree of overlap tends
to be higher in databases with lower levels of confidence: 5%
of the ENCODE coding genes overlap with our processed
pseudogenes, as do 7% of all (including non-reviewed) RefSeq
regions, 9% of the VEGA coding genes, and 14% of the same
type of ENSEMBL genes. We next observed that, as with the
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misclassification of genes as retrotransposed regions, the
opposite events appear to be also infrequent, as 9% of the
ENCODE, 13% of the VEGA and 12% the YALE processed
pseudogenes have been considered here as genes or un-
processed pseudogenes (addition of the third and fourth
columns of Table 1; see the text below for details on the
discrimination between functional and pseudogenic gene
duplicates). But, surprisingly, despite the low overlap (15%)
of ENCODE unprocessed pseudogenes with our retrotrans-
posed regions, we observed a significant discrepancy with the
corresponding VEGA regions, which showed a 45% (319
regions) overlap with our processed pseudogenes. From a
manual inspection of the alignment of each of these 319
VEGA predictions with their closest functional gene, we
found that, although 141 of them clearly maintain at least one
of the original introns, and therefore can be classified as real
duplicated pseudogenes, the remaining 178 show either no
detectable conservation of introns or clear evidence of intron
loss, which is consistent with a retrotranspositional origin.

Identification of Gene Duplicates

In order to identify duplicated (pseudo)genes among the
remaining 24,547 human and 23,355 mouse candidate gene
sets, we compared them with and in-between the two species.
We recorded as close paralogs those pairs of sequences that
matched significantly (BLAST E-value < le-10 and >50%
sequence identity) over at least 90% of either of the
sequences within a species. This last condition excludes the
pairs of sequences that show similarity only at the domain
level (e.g., shared SH3 domains). These constraints resulted in
a total of 9,484 and 9,017 gene duplicates in human and
mouse, respectively. The analysis of the genomic location of
these sequence pairs shows a clear correlation with their
relative age of formation: Paralogous relations with higher
sequence identity are normally intrachromosomal, whereas
older ones tend to involve different chromosomes (Figure S1).
Of those pairs in which both sequences are located within the
same chromosome, 81% are less than 1 Megabase apart, and
more than half can be found even within a distance of 100
kilobases.

Discrimination of Functional and Inactive Gene Copies

The genes in duplicated regions should be distinguishable
from unprocessed pseudogenes by the integrity of functional
features such as promoters and coding region. The activity of
promoters is difficult to test, and indirect functionality
measures via expression evidence (e.g., through the analysis
of expressed sequence tags [ESTs]) are not straightforward
because of mapping difficulties for close paralogs and
additional translational control. Therefore, in addition to
syntenic conservation, the integrity of the coding region is
often used to test for functionality [16,21], i.e., the complete-
ness of the gene and the presence or absence of truncations
(in-frame stop codons, or frameshifts). Gene copies that
possess truncations and/or incomplete coding regions are
likely to be inactive, whereas those that are conserved in
synteny between human and mouse, or are complete and
uninterrupted are potentially functional.

Although the presence or absence of truncations is
relatively easy to detect, there is little information about
how complete a gene copy has to be in order to remain
functional. Although it will vary from gene to gene, and
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incomplete copies coding for less than 50% of the closest
paralog can retain functionality [9], we expect that duplicated
coding regions usually require a minimal coverage in order to
retain functional potential. These values can be estimated
from the comparison of functional paralogs (i.e., gene copies
that have survived a period of functional redundancy and are
conserved in the population). Such cases were identified
among the gene duplicates as pairs of paralogs that showed
clear orthologous relationships between human and mouse
because they have been kept in both genomes independently
since they diverged over at least the last 75-100 million years
ago (Figure 2A). The comparison of the relative length of
these human functional paralogs shows that the majority have
coding regions that can usually be well aligned over more
than 80% of their length (Figure 2B). Even though this
distribution suggests that only nearly complete gene copies
remain functional, this might simply be the consequence of a
higher tendency of genes to duplicate entirely as suggested by
the overall predominance of complete gene copies in the
genome (Figure 2C). In fact, the evaluation of the relative
coverage of identical human gene copies, which have
probably undergone a few deletion events, shows that at
least 80% of all duplication events cover more than 70% of
the ancestral coding region. Therefore, in order to estimate
the probability of a gene duplicate being potentially func-
tional (Pf) according to the observed length of the coding
region, we evaluated the length coverage of the longest
coding region of all functional paralogous pairs normalized
by the frequency at which such coverage is observed (see
Materials and Methods). As shown in Figure 2C, this
probability is high for complete or nearly complete copies,
and decreases significantly for coding regions that cover less
than 70% of the closest paralog, which is assumed to reflect
the length of the ancestral gene.

Incomplete Gene Copies Can Remain Functional

The probability of a duplicate being functional with an
incomplete coding region is low but not zero. A total of 461
(231 in human and 230 in mouse) incomplete gene copies
were found to present orthology and therefore suspected to
be functional. A manual inspection of the copies that cover
less than 50% of the neighboring paralogs but have an
ortholog in the other species revealed that most of them are
indeed partial gene copies that have been conserved in each
of the two lineages. One example corresponds to a copy of
the gene encoding the ETS-2 repressor factor (ERF), a gene
that regulates proliferation of some types of cancer cell lines
[25,26]. This partial copy, which has not been noticed by gene
prediction programs or even during more detailed analyses
of the region [27], comprises the second and third coding
exons (i.e., covers 25%) of the ERF gene and contains a
complete ESF-2 domain (Figure S2). The high degree of
sequence identity of these two exons among the human,
mouse, and the dog orthologs (between 90%-93% DNA
identity in exons, whereas introns are too divergent to be
aligned), and their low dxlds ratios (0.015, 0.022, and 0.018 for
the human, mouse, and dog fragments, respectively) strongly
indicate a selected function of the partial copy in mammals.
Another example is a partial copy of the Spb transcription
factor gene located in both human and mouse genomes on
Chromosome 2. Both the human and mouse downstream
orthologous copies of these genes, which comprise no more
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than 30% of the ancestral coding region, share 98% protein
identity and contain a complete Zinc-finger domain. Among
these orthologous partial copies, we have found other Zinc-
finger-containing cases that have no homologous complete
genes nearby, indicating that Sp5 or homologous genes
underwent several rounds of partial duplication and trans-
location events.

Annotating Human and Mouse Unprocessed
Pseudogenes

On the basis of the coverage-dependent probability of
functionality derived above, the presence or absence of
truncations, and orthology, we have initially classified the
collections of 9,484 human and 9,017 mouse duplicates,
respectively, into: (1) 7,229 and 6,943 potentially functional
copies (genes) corresponding to coding regions that are non-
truncated and more than 94% complete (P; > 0.9), or with 1:1
clear orthologous relationships (operationally defined as best
reciprocal matches in the global interspecies protein com-
parison); (2) 1,811 and 1,581 likely non-functional copies (or
unprocessed pseudogenes) with truncated or incomplete
coding regions (less than 60% of the length of their
functional paralogs; associated to Pr < 0.2), and with no
orthology; and (3) 444 and 493 of predictions without
assignment (uncertain), which comprises the remaining non-
truncated coding regions between 60% and 94% paralog
length coverage associated with inconclusive P values
(between 0.2 and 0.9).

As a preliminary evaluation of the results of this
classification, we compared some properties of the gene
and pseudogene sets at different levels and observed: (1)
Consistent with the nature of these sets, genes showed
significantly higher (p = 3e-65) levels of expression: In human,
89% could be unambiguously assigned to ESTs (with an
average of 136 ESTs per gene), in contrast to only 40% of the
pseudogenic predictions (with an average of nine ESTs per
region). Because the fraction of expressed pseudogenes could
actually correspond to misclassified functional genes, we
further evaluated whether the premature stop codons or
frameshifts detected in these regions were also present in
their assigned EST. We found that 75% of the premature
truncations that are covered by ESTs (corresponding to 267
predictions) are in fact also present in the majority of the
associated cDNAs. A fraction of the rest presented inaccur-
acies in the alignment, or included cases in which the EST
sequence disagrees with the genomic sequence probably due
to sequencing errors in either the cDNA or the genome, to
posttranslational modifications, or to genomic polymor-
phisms, which also account for some of the cDNA-to-genome
sequence disagreements found in other studies [28]. (2) We
also compared human gene and pseudogene sets to known
and predicted genes. The vast majority of functional regions,
94% in both human and mouse, overlapped with the
corresponding RefSeq, ENSEMBL, VEGA, or ENCODE genes.
The remaining non-overlapping functional fractions, which
contain 222 predictions in human and 198 in mouse,
correspond to potentially novel functional duplicated gene
copies that have been overlooked by gene predictors (see
supplementary data at http://www.bork.embl.de/Docu/
human__mouse__duplicates). Among these, the majority have
no clear ortholog in the other species, suggesting that they
arose independently in each of the lineages. In order to keep
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(A) Identification of orthologous duplicated pairs. Genes are labeled with letters (same letters in human and mouse mean best reciprocal orthologs, e.g.,
genes “a,” “¢,” and “d”). Numbers within circles in tree nodes represent gene duplication events. Dashed lines indicate orthology between human and
mouse duplication nodes, which is inferred from the orthologous relations between the products of that duplication in each of the organism.
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(B) Distribution of orthologous duplication nodes in human according to the coverage of the shortest coding region relative to the longest one. The line
corresponds to the exponential curve adjusted to the observed data (see Materials and Methods).
(Q) Distribution of the coverage of all duplicates found in human (columns), and probability for being functional according to the coverage (P;, dashed

line).
DOI: 10.1371/journal.pcbi.0020076.9002

our sets consistent with current annotated genes in each of
these organisms, we further reclassified as functional genes
the fraction of gene copies that overlapped with RefSeq and
were initially labeled as unprocessed pseudogenes (344
human and 439 mouse) or uncertain (252 human and 213
mouse). A manual inspection of these regions indicates the
presence of an important fraction of incomplete predictions
that derived from templates annotated as partial proteins in
RefSeq or SwissProt databases. Therefore, and in agreement
with this comparison, we were finally able to respectively
classify in the human and the mouse genomes 7,229 and 6,943
predictions as potentially functional genes, and 1,811 and
1,581 as unprocessed pseudogenes, respectively. The residual
fraction that comprised 444 human and 493 mouse predic-
tions remained unsolved with the criteria used here, and their
classification likely requires additional strategies or even
manual inspection.

In order to evaluate the level of agreement of this
classification with current annotations, we have compared
our human collections of genes (singletons and duplicated)
and unprocessed pseudogenes with external databases. We
observe a general agreement with the ENSEMBL database
(83% and 2% of its genes overlap with our functional and
pseudogenic regions, respectively; see third and fourth
columns in Table 1), however we also found that a
considerable fraction, 256% of ENCODE and 34% of VEGA
duplicated pseudogenes, were classified as functional genes
by our method. To clarify this disagreement, we carried out a
detailed manual analysis of each of the 18 controversial
ENCODE entries, which largely agree with the VEGA
annotation. We found that, although these regions cover
different types of functions, half of them correspond to a
Chromosome 11 cluster of odorant receptors, a family of
genes that has been always difficult to classify regarding
functionality and origin, due to the fact that a considerable
fraction of them have been silenced in several lineages [29],
and they normally have only one coding exon. Even though
we failed to identify expression evidence for the 18 ENCODE
regions in EST databases, we believe that they should be
considered preferentially functional because: (1) They
present intact and complete open reading frames, some of
which have been conserved since the human-mouse split, as
they appear as clear orthologs to mouse regions (see above);
and (2) several of the odorant receptors genes are expressed
in fetal and adult tongue [30,31], which could explain the lack
of expression detected from ESTs, as lingual cDNA libraries
are rarely included in large-scale sequencing projects. Finally,
as with our method, RefSeq and ENSEMBL have also
classified half of these regions as functional genes (see the
list and the overlap at http://[www.bork.embl.de/Docu/
human__mouse__duplicates).

Discussion

The identification and annotation of gene duplicates are of
considerable relevance for several reasons: to uncover closely
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related genes with similar functions, to investigate the
underlying mechanisms that modulate gene and protein
families, and through comparative approaches, to identify
changes in gene families associated with lineage specific
traits. Although a large fraction of duplicated genes are
included in a number of gene annotations, up to now there
have been no global efforts directed to specifically resolve
complex genomic regions with multiple gene copies and to
distinguish genes and unprocessed pseudogenes. Therefore,
we have performed the first comprehensive search in the
human and mouse genomes of all duplicates of protein
coding genes that are detectable through similarity to known
proteins. Although not considering existing gene annotation,
we recovered the vast majority of manually annotated genes
(obtained from RefSeq), but also identified novel genes (222
in human and 198 in mouse), which constitute around 1% of
the entire repertoire of protein coding genes in these
organisms. We also obtained a comprehensive collection of
unprocessed pseudogenes in human and mouse. The number
of human and mouse unprocessed pseudogenes identified in
this study are probably an accurate representation of the
total number of these regions in this genomes, but we cannot
discard the possibility that a fraction of them remained
unidentified due to the conservative nature of our approach
(e.g., a small fraction of the single-exon ones might have been
labeled as processed).

Because we collected all (i.e., functional and dispensable)
gene duplicates independently of their role in the organisms,
we could uncover some mechanistic and evolutionary aspects
of gene duplication that cannot be properly addressed by
only considering the fraction of copies that were retained in
those genomes either by genetic drift or by providing a
selective advantage, i.e., functional genes: (1) We have
observed that the vast majority (75%) of segmental gene
duplications occur in tandem indicated by the location of
recent duplicates (>95% sequence identity). With time, these
copies tend to move to other locations, mostly to other
chromosomes. From our analysis, it is not clear though
whether this flow of gene copies is random or subject to some
kind of pressure that favors some genes to remain together or
apart, perhaps because they need to share or avoid common
regulatory elements. A detailed analysis of the data provided
here could reveal possible functional constraints behind these
gene flows and could contribute to the understanding of the
general rules that define the distribution of the genes in
mammalian genomes. (2) We also found that the majority of
genes are duplicated completely or nearly completely,
probably as part of large duplicated segments [32]. The
assignment of ESTs to a large fraction of gene duplicates
suggests that promoter sequences are also often duplicated
along with coding sequence. The fact that a large number of
silenced coding regions have evidence of transcription
demonstrates that these duplicated promoter sequences can
remain operative despite the functional relevance of the
transcribed region, contributing to the overall bulk of neutral
transcription. A subset of human expressed pseudogenes has
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been also recently reported [33]. Even though we cannot
discount the possibility that expressed coding regions that
appear truncated could eventually act in the regulation of
paralogs (possibly as antisense as previously observed [34]),
these results question the relationship between transcription
and functionality that is often assumed during gene annota-
tion. (3) Our results also illustrate the plasticity of genes and
proteins, as we uncovered the first examples of gene
duplicates that have remained conserved in different mam-
malian lineages and therefore are likely to be functional
although they appear to be considerably shorter than their
close paralogs. Further investigation should reveal whether
these copies are the result of partial gene duplication or are
due to subsequent deletion events as recently suggested for
the primate-specific RGP gene family [9].

The development of a protocol for the automatic annota-
tion of genes and unprocessed pseudogenes in complex
regions with many duplicated and often fragmented (pseu-
do)genes should also facilitate the annotation of other
metazoan genomes. Here we show that the resolution of such
regions deserves particular attention and cannot be solved
using traditional approaches employed during primary
genome analyses. Furthermore, we also provide preliminary
novel biological insight into the mechanism of gene duplica-
tion and into the evolution and fate of gene duplicates, as well
as the necessary data that will allow further and more detailed
investigations in these directions.

Materials and Methods

Comparison with other gene and pseudogene sets. We used the
following reference datasets of genes and pseudogenes in order to
assess our methology: RefSeq (http://www.ncbi.nlm.nih.gov/RefSeq),
ENSEMBL (v36: http://lwww.ensembl.org), VEGA (v15: http:/ivega.
sanger.ac.uk), and ENCODE (Dec 2005: http://www.genome.gov/
10005107). For each set, we made clusters of transcripts and, in the
case of splice variants, we selected the longest transcript per gene.
The number of unique transcripts in these sets are 17,533 (RefSeq
protein coding genes), 6,542 (RefSeq reviewed genes), 21,579
(ENSEMBL protein coding genes), 10,587 (VEGA protein coding
genes), 434 (ENCODE protein coding genes), 704 (VEGA unprocessed
pseudogenes), 71 (ENCODE unprocessed pseudogenes), 125 (EN-
CODE processed pseudogenes), 3,168 (VEGA processed pseudo-
genes), and 6,543 (Yale processed pseudogenes). For each of these
regions, the coordinates on the genomic sequence are compared with
those of the regions predicted in this study. We consider that there is
overlap at genomic level between two regions of two sets if at least
one nucleotide of the coding sequence (CDS) overlaps and both
predictions are in the same strand.

Identification and evaluation of gene duplicates, and calculation of
ds. In the context of identification of pseudogenes, we have
previously already screened the human (build34) and the mouse
(mmb5, May 2004) genomes for all regions that showed significant
sequence similarity to known proteins (EMBL CDS translations +
SwissProt + RefSeq) as described elsewhere [10,14]. In brief, we have
compared with BLAST all available known proteins against the
human and mouse genomes and predicted the coding sequences
(using GENEWISE) in all the regions that presented significant
protein matches. Here we have used an updated version of the
BLAST2GENE program [35], which efficiently identifies independent
gene duplicates within complex multicopy regions. We finally
accepted predictions only when we could unambiguously map them
with BLAT [36] to the same chromosome on the finished human
genome (build35) with more than 989% identity.

The evaluation of our procedure that identifies and reconstructs
gene and derived coding regions was carried out using a jackknife
test. For this we predicted the sequence of known RefSeq (reviewed)
genes without using their own cDNA translation, but instead their
closest sequence in the database (less than 98% identity). The
predictions that we obtained for each of these genes were then
compared with their real products at different levels in order to
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assess the coverage and the quality of our sequences. Note that the
results of this evaluation tend to lower the real accuracy of our
procedure as for many of the detectable regions in the genome, the
final predictions are expected to be of higher quality because the real
peptide product was used.

To make human and mouse orthologous predictions and thus to be
able to discard retrotransposed regions, we have applied a two-step
approach, based on sequence comparison and evaluation of genomic
position. First, we have compared with BLASTP the translations of all
human and mouse predicted regions (stop codons and frameshifts
were circumvented for this comparison) and extracted up to 23,000
best reciprocal mouse-human hits that we took as candidate
orthologous pairs. Of these, we only accepted as reliable ortholog
pairs 17,164 that had other neighboring best reciprocal hits in both
organisms. With this filter, we excluded those orthologous-looking
pairs detected in which recently formed processed pseudogenes
(almost identical to their parental gene) were likely to be involved
(the majority of these pairs were formed by a single exon in one
organism and an intron containing prediction in the other). We fixed
the retained pairs and further compared with BLASTP each
unassigned prediction found in-between with all predictions in the
other species that were located in the corresponding orthologous
region expanded 2 Megabases in both directions, and accepted as
orthologs those sequences that showed a significant (Evalue < 0.001)
match.

We estimated the rate of synonymous substitutions (ds) for each of
the matching pairs of the set defined as segmental (i.e., non-
retrotransposed) gene duplicates. For each of these pairs, we
constructed a protein-based (CLUSTALW; [37]) DNA alignment. dg
values were calculated using codeml included in the PAML package
[38]. We grouped all matching pairs through single linkage clustering,
and sorted them chronologically by the UPGMA algorithm [39] using
ds values as distances in order to infer the order of each of the
duplication events.

Evaluation of the coverage of coding regions and estimation of Py.
To evaluate the coverage for a particular gene duplication, i.e., the
relative length of the duplicated coding regions, we compared the
length of each of the identified copies with each of their paralogs. If a
group of genes underwent several rounds of duplications, we
calculated the coverage of the older duplication events by comparing
the lengths of the longest products at each of the resulting branches.
Following the example shown in Figure 2A, we inferred the relative
coverage of duplication “1” in human by comparing each of the
resulting genes (“a” with “c” and “d,” and “b” with “c” and “d”) and
selected the largest of all ratios obtained.

We applied the Bayes theorem to calculate the probability of being
potentially functional for a given coverage, P(f|c). For this, we
adopted two assumptions: (1) All human duplications that are
orthologous to mouse are functional, and (2) all the duplications
that formed complete coding regions (i.e., with coverage (c) = 1.0) are
potentially functional. From the Bayesian law, the probability is
calculated as:

Plelf) - P(f)

P M

P(fle) =
where P(c|f) is the fraction of orthologous duplications with a given
coverage, and P(c) is the frequency of that coverage within all the
duplications, which corresponds to the fraction of duplications with a
certain coverage divided by the total number of duplications.

From the second assumption, Equation 1 can be re-written as:

Ple=1|f)-P(f)

Pife=1) =" Z 0 = @)
therefore,
PO = ¥

From Equations (1) and (3), we obtain:
_Plf) - Ple=1)
PU =P pe=117)

Hence, P(f|c) is calculated from P(c|f) and P(c), which are represented
as,

(4)

Nfunctional (all n()dCS)

Plelf) = ©)

and
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Ntesl(E)

Ple) = ——enf
(©) Niest(all nodes)

(6)
respectively, where Ngynciional (or testy(€) corresponds to the number of
orthologous duplications (or duplications under test) with a certain
coverage ¢. We next calculated these functions by fitting an
exponential curve to the observed data points (see Figure 2B) and
obtained

Niunctionat (€) = 3.28 X 1077 - exp(15.0 - ¢) + 1.0 (7)

and

Niesi(€) = 3.69 X 10~ - exp(14.4 - ¢) + 39.0. (8)

See Figure 2B for a graphical representation of the fitting
exponential curve (Equation 7) corresponding to the functional cases.

From Equations 4, 7, and 8, we are finally able to calculate the
probability of being potentially functional for any given duplicate
according to its coverage using the final equation (Equation 9):

(3.28 X 1075 - exp(15.0 - ¢) + 1.0) - 6.48
3.69X 107" - exp(14.4 - ¢) + 39.0

P(fle) = (9)
Mapping of human ESTs. All ESTs from dbEST (http://lwww.ncbinlm.
nih.gov/dbEST; as of February 2004) were aligned against the human
genome using stand-alone BLAT [36], and we accepted only those
matches with a percentage identity greater than 96% and with an
alignment length greater than 100 bases. If the difference in score
between the best hit and second-best hit was less than ten in a BLAT-
like scoring scheme, we considered such an EST alignment as
ambiguous and excluded it from our study.

(Supplementary data can be found at http://www.bork.embl.de/
Docu/human__mouse__duplicates.)
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Supporting Information

Figure S1. Distribution of Human Gene Duplications According to
the Degree of Protein Identity among Their Gene Products, and
Their Present Location in the Genome (in the Same or Different
Chromosomes)

Found at DOI: 10.1371/journal.pcbi.0020076.sg001 (494 KB PDF).

Figure S2. Example of Functional Partial Tandem Duplicate
Found at DOI: 10.1371/journal.pcbi.0020076.sg002 (437 KB PDF).
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The GenBank (http://www.ncbi.nlm.nih.gov/Genbank) accession num-
bers for the genes discussed in this paper are human ETS-2 repressor
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(51460866), and mouse Spb transcription factor gene (9454416).

The RefSeq (http:/lwww.ncbi.nlm.nih.gov/RefSeq) accession num-
ber for the copy of the gene encoding the ETS-2 repressor factor
(ERF) is NP_006485.1.
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