Development/Plasticity/Repair

ErbB2 Signaling in Schwann Cells Is Mostly Dispensable for Maintenance of Myelinated Peripheral Nerves and Proliferation of Adult Schwann Cells after Injury

Suzana Atanasoski,1 Steven S. Scherer,2 Erich Sirkowski,3 Dino Leone,† Alistair N. Garratt,† Carmen Birchmeier,3 and Ueli Suter1

1Institute of Cell Biology, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland, 2Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6146, and 3Max-Delbrück-Centrum for Molecular Medicine, 13092 Berlin, Germany

Neuregulin/erbB signaling is critically required for survival and proliferation of Schwann cells as well as for establishing correct myelin thickness of peripheral nerves during development. In this study, we investigated whether erbB2 signaling in Schwann cells is also essential for the maintenance of myelinated peripheral nerves and for Schwann cell proliferation and survival after nerve injury. To this end, we used inducible Cre-loxP technology using a PLP-CreERT2 allele to ablate erbB2 in adult Schwann cells. ErbB2 expression was markedly reduced after induction of erbB2 gene disruption with no apparent effect on the maintenance of already established myelinated peripheral nerves. In contrast to development, Schwann cell proliferation and survival were not impaired in mutant animals after nerve injury, despite reduced levels of MAPK-P (phosphorylated mitogen-activated protein kinase) and cyclin D1. ErbB1 and erbB4 do not compensate for the loss of erbB2. We conclude that adult Schwann cells do not require major neuregulin signaling through erbB2 for proliferation and survival after nerve injury, in contrast to development and in cell culture.

Key words: peripheral nerves; Schwann cells; Wallerian degeneration; receptor tyrosine kinases; Cre-loxP system; proliferation

Introduction

Lesions of peripheral nerves initiate a sequence of cellular changes distal to the injury known as Wallerian degeneration (Griffin and Hoffman, 1993; Scherer and Salzer, 2001). They include axonal degeneration, myelin breakdown, and de-differentiation and proliferation of Schwann cells. The molecular phenotype of “denervated” Schwann cells in axotomized nerves is similar to immature Schwann cells in developing nerves (Jessen and Mirdsly, 2005; Sherman and Brophy, 2005). However, control of proliferation differs. Schwann cell proliferation is independent of cyclin D1 in development, but injury-induced proliferation is strongly impaired in the absence of cyclin D1 (Kim et al., 2000; Atanasoski et al., 2001). Furthermore, the cell cycle inhibitor p21 regulates Schwann cell proliferation in development and after injury by different mechanisms (Atanasoski et al., 2006). Characterizing the molecular signals that control the response of Schwann cells to injury has implications for our understanding of disease mechanisms in inherited and acquired neuropathies (Suter and Scherer, 2003; Berger and Schaumburg, 1995).

Schwann cells express erbB2 and erbB3 forming functional heterodimeric receptors for neuregulins (Cohen et al., 1992; Jin et al., 1993; Ho et al., 1995; Levi et al., 1995; Grinspan et al., 1996; Carroll et al., 1997; Vartanian et al., 1997). ErbB2 and erbB3 are obligate heterodimers, because erbB2 alone does not efficiently bind neuregulins and erbB3 has no kinase activity (Slawkowski et al., 1994). In development, neuregulin-1 isoforms have potent effects on differentiation, survival, and proliferation of Schwann cells (Shah et al., 1994; Dong et al., 1995; Morrissey et al., 1995; Grinspan et al., 1996; Trachtenberg and Thompson, 1996). Animals deficient in erbB2, erbB3, or the PNS-enriched isoform of neuregulin-1, show reduced numbers of precursors and immature Schwann cells (Riethmacher et al., 1997; Britsch et al., 1998; Grinspan et al., 1996; Trachtenberg and Thompson, 1996). Lowered expression of the neuronal neuregulin-1, or conditional ablation of erbB2 in late Schwann cell development, causes defects in postnatal Schwann cell differentiation and the formation of abnormally thin myelin sheaths (Garratt et al., 2000; Chan et al., 2004; Michailov et al., 2004; Taveggia et al., 2005). Conversely, overexpression of axonal neuregulin-1 in transgenic animals induces hypermyelination (Michailov et al., 2004). We hypothesized that erbB2/erbB3 receptor signaling plays also an active role in proliferation control of adult Schwann cells after nerve injury. Schwann cell proliferation in Wallerian degeneration follows a predictable time course (Bradley and Asbury, 1970) and the expression of neuregulin and the tyrosine receptors...
erbB2 and erbB3 is coordinately induced (Cohen et al., 1992; Carroll et al., 1997; Kwon et al., 1997), strongly implicating this pathway in Schwann cell mitogenesis after axotomy. We tested this hypothesis with a rigorous genetic approach by deleting erbB2 specifically in Schwann cells of adult mice. Loss of erbB2 in adult myelinating Schwann cells did not influence the maintenance of myelinated peripheral nerves. Furthermore, in contrast to our expectations (Carroll et al., 1997; Kwon et al., 1997; Gurtin et al., 2005), lack of erbB2 had no detectable effect on Schwann cell proliferation after nerve injury. We conclude that the signaling pathways that regulate proliferation in Schwann cells after nerve injury are fundamentally different from those identified in development and in culture.

Materials and Methods

Animals. Hemizygous PLP-CreERT2 mice (Leone et al., 2003) and homozygous erbB2flox mice (Garratt et al., 2000) have been described previously. The erbB2floxflox mice used in this study carry an allele that encodes a nonfunctional ErbB2-galactosidase fusion protein lacking the tyrosine kinase domain (Britsch et al., 1998). Hemizygous PLP-CreERT2 erbB2wt/lacZ mice were crossed with erbB2myc/lacZ animals to obtain PLP-CreERT2 erbB2wt/lacZ animals, double transgenic mice. PLP-CreERT2 erbB2wt/lacZ animals were then bred with homozygous erbB2lox mice (erbB2lox/lox) to obtain control PLP-CreERT2 erbB2lox mice and experimental PLP-CreERT2 erbB2lox mutants. The resulting genotypes from this cross were as follows: PLP-CreERT2erbB2lacZ/lox (one of four; the experimental group), PLP-CreERT2erbB2wt/lacZ (one of four; the control group), erbB2lacZ/lox (one of four), or erbB2wt/lacZ (one of four). The phenotypes were analyzed on a C57BL/6J129 hybrid background. Tail-derived DNA was analyzed by PCR to identify PLP-CreERT2-positive mice (Leone et al., 2003) and to distinguish erbB2 wild-type and lacZ alleles (Britsch et al., 1998). Primers used for detecting PLP-CreERT2 alleles were as follows: 5′-CAC TCT GTG CTT GGT AAT AGT G, and 5′-TGG GAT CCG CCG CAT AAC C (94°C for 2 min, 35 min at 94°C for 45 s, 53°C for 30 s, and 72°C for 1 min, followed by a final extension at 72°C for 5 min). Primers used for detecting lacZ alleles were as follows: 5′-CCA CCC TCT GCG TCC AGA TGG TGA A, and 5′-CGG GCC TCT TCG CTA TTA CCG GAG C (94°C for 2 min, 35 min at 94°C for 45 s, 57°C for 30 s, and 72°C for 90 s, followed by a final extension at 72°C for 5 min). To obtain the recombined erbB2Δα, control, and mutant animals received daily intraperitoneal injections of 2 mg of tamoxifen (TM) for 5 consecutive days. Sciatic nerves were injured 10 d and 10 weeks after the last injection, respectively. For the myelin maintenance experiments, sciatic nerves were collected 2 months after the last injection. Primers used for detecting the erbB2lox allele were as follows: primer1, CTT CTT ATG ATG TAT; primer2, GCA GGG CAA TAT TTG TGT CCT T (94°C for 2 min, 35 times at 94°C for 45 s, 53°C for 30 s, and 72°C for 1 min, followed by a final extension at 72°C for 5 min); for the erbB2Δα allele: primer 3, AGT GCC TCA TGT GTG CAG TGA G, and primer 4, TGA GTT ACA GAC CAA GCC GCT CCA G (94°C for 2 min, 35 times at 94°C for 45 s, 53°C for 30 s, and 72°C for 1 min, followed by a final extension at 72°C for 5 min). Genomic DNA from sciatic nerves was prepared as described previously (Garratt et al., 1999). 2 μg of genomic DNA was analyzed by PCR to identify PLP-CreERT2 erbB2Δα, control, and mutant animals.

Sciatic nerve transection. The right sciatic nerve of anesthetized mice (100 mg/kg Ketaminol; 5 mg/kg Narcoxyl, i.p.) was exposed at the sciatic notch. Nerves were fixed for 30 min in freshly prepared 4% paraformaldehyde (in PBS), washed in PBS, incubated in 30% sucrose in PBS for 6 h at 4°C, and stored at 20°C and mounted on SuperFrost/Plus glass slides (Faust, Schaffhausen, Switzerland) and stored at 20°C. Sections were blocked for 1 h in PBS containing 10% goat serum, 1% BSA, and 0.3% Triton X-100, and incubated with a rabbit antisera against S100 (1:300; DakoCytomation, Carpinteria, CA) for 16 h at 4°C. Slides were rinsed in PBS and incubated with Cy3-conjugated goat anti-rabbit secondary antibody (1:200; Jackson Immunoresearch, West Grove, PA) for 1 h at room temperature (RT). Sections were rinsed in PBS, and then fixed in 4% paraformaldehyde for 10 min on ice, rinsed in PBS, incubated in methanol for 10 min on ice, rinsed in PBS, incubated in 1 M HCl at 60°C for 7 min, rinsed in PBS, incubated with biotinylated antibody against BrdU (1:10; Caltag Laboratories, South San Francisco, CA) for 1 h at 37°C, rinsed, and incubated with streptavidin-FITC (1:400; J. Neurosci., February 15, 2006 • 26(7):2124 – 2131 • 2125)
Jackson ImmunoResearch) for 1 h at RT. Controls with secondary antibodies only showed negligible stainings. Sections were mounted in AF1 (Citifluor, Canterbury, UK) with 4',6'-diamidino-2-phenylindole (1:1000; Roche, Basel, Switzerland). Immunoreactivity was visualized by epifluorescence microscopy and documented using a Hamamatsu (Hamamatsu City, Japan) Color Chilled 3CCD camera. Images were processed with Adobe Photoshop 7.0 for Macintosh.

Statistical analysis. Three animals per genotype were analyzed, and the individual who counted was blinded to the genotype of the mice. BrdU-positive cells were counted in two adjacent 40× objective fields, each covering an area of 0.25 mm², ~2.5–3.0 mm distal to the site of transection. To avoid possible differences in cell size or sampling biases, six random sections from different levels within a nerve were examined. A total of ~1000 S100-positive cells per nerve and mouse have been analyzed. The percentage of S100/BrdU-positive cells was determined (mean ± SD) and the values transformed with arcsin[√(percentage/100)]. The transformed values were compared using the two-tailed unpaired Student’s t test.

Western blotting. Sciatic nerve tissue was dissected from killed mice, frozen in liquid nitrogen, pulverized with a chilled mortar and pestle, and dissolved in SDS gel sample buffer (Atanasoski et al., 2004). Nerves of at least three mice per genotype were pooled, and two pools were analyzed in duplicate. Proteins were electrophoresed on 5% SDS-polyacrylamide gels, transferred onto polyvinylidene difluoride membrane, and immunoblotted with antibodies against epidermal growth factor receptor (EGFR)/erbB1 (NeoMarkers, Fremont, CA) at 1:1500 dilution, erbB2 (Santa Cruz Biotechnology, Santa Cruz, CA) at 1:100 dilution, erbB3 (Santa Cruz Biotechnology) at 1:100 dilution, erbB4 (a kind gift from Cary Lai, The Scripps Research Institute, La Jolla, CA) at 1:5000 dilution, mitogen-activated protein kinase (MAPK) (Cell Signaling, Beverly, MA) at 1:1000 dilution, phosphorylated MAPK (MAPK-P) (Cell Signaling) at 1:1000 dilution, cyclin D1 (Santa Cruz Biotechnology) at 1:100 dilution, and β-actin (Sigma, St. Louis, MO) at 1:500 dilution. After incubating with goat anti-rabbit horseradish peroxidase- (Santa Cruz Biotechnology) or goat anti-mouse κ chain alkaline phosphatase-conjugated secondary antibodies (Southern Biotechnology, Birmingham, AL), the immunoreactive bands were visualized by Western Lightning (PerkinElmer Life Sciences, Wellesley, MA) or CDP-Star (Roche), respectively. The blots were quantified using the ImageJ software (http://rsb.info.nih.gov/ij/), normalizing the individual lanes to the β-actin signal.

Light microscopy. Mice were killed, and sciatic nerves were removed and placed in fixative (3% glutaraldehyde on 0.1 M phosphate buffer, pH 7.4) overnight at 4°C. The samples were washed twice in 0.1 M phosphate buffer, pH 7.4, placed in 2% osmium tetroxide in 0.1 M phosphate buffer, rinsed in water, dehydrated with successively increasing percentages of ethanol (25, 35, 50, 70, 80, 95, and 100%) followed by propylene oxide, infiltrated in 50 and 75% epoxy in propylene oxide, and then 100% epoxy overnight, embedded in fresh epoxy, and hardened in a 60°C oven. Semithin sections (500 nm) were stained with 1% toluidine blue and photographed on a Leica (Nussloch, Germany) DMR microscope using a cooled Hamamatsu camera. Images were scanned and manipulated in Adobe Photoshop. The observer (S. S. Scherer) was blinded to the genotype of the mice.

g ratio determinations. Semithin sections of a peroneal nerve from each of three control (Cre; erbB2 wt/flox) and three mutant (Cre; erbB2 lacZ/ flox) mice were imaged on a Leica DM microscope with a 100× oil immersion lens. For each nerve, one of the captured images was analyzed with OpenLab software, using a Wacom Intuos 3 (9 × 12) digital tablet to trace all of the myelinated axons in the image, excluding those with regions of uncompacted myelin. For each myelinated axon, the diameter of the axon and the outer diameter of the compact myelin sheath were traced. These data were transferred to a Microsoft (Redmond, WA) Excel spreadsheet and used to calculate a g ratio (the axon diameter/total diameter) for each axon. The g ratios of the control and mutant nerves were plotted, and a one-tailed Student’s t test was performed. No statistical difference was found (p = 0.11).

Results

Efficient ablation of erbB2 in adult Schwann cells of peripheral nerves

In this study, we have used a TM-inducible variant of the Cre recombinase (CreERT2) (Metzer et al., 1995; Feil et al., 1996) as a transgene under the control of mouse proteolipid protein (Plp) gene regulatory elements. This transgene can be specifically activated in Schwann cells in vivo to allow loxP site-mediated recombination (Leone et al., 2003). PLP-CreERT2 animals were crossed with erbB2^{wt/lacZ} mice (the erbB2^{lacZ} allele represents a null allele). Resulting PLP-CreERT2 erbB2^{wt/lacZ} animals were mated with mice homozygous for the conditional erbB2 allele (erbB2^{flox/flox}) in which loxP sites flank exons encoding crucial parts of the extracellular domain of the receptor (Fig. 1A) (Garrett et al., 2000). This strategy yielded PLP-CreERT2 erbB2^{flox/lacZ} mice (experimental/mutant group) and PLP-CreERT2 erbB2^{flox/wt} mice (control group).

Based on our previous optimization studies (Leone et al., 2003), 10-week-old mice received daily intraperitoneal injections of 2 mg of TM for 5 consecutive days to activate the Cre-ERT2 fusion protein and to delete the floxed erbB2 allele (erbB2Δ), present in both control and mutant mice (Fig. 1A). Genomic DNA from mutant sciatic nerves of treated mice was analyzed 2 months after the last TM injection to verify genomic deletion at the erbB2 locus (Fig. 1B, C). A 500 bp product corresponding to the deleted erbB2 allele (erbB2Δ) appeared exclusively in the PCR analysis of sciatic nerve DNA from individual TM-treated mutant animals (Fig. 1B, lanes 4–6) but not in the DNA of untreated controls.

Figure 2. Myelinated peripheral nerves are maintained in the absence of erbB2. These are images of transverse semithin sections of adult mouse nerves stained with toluidine blue. The tibial, peroneal, and sural branches of the sciatic nerve are shown for one control and one mutant mouse, 10 weeks after TM induction. Scale bar, 10 μm.
mutant mice (Fig. 1B, lanes 1–3). Conversely, the amount of a 200 bp product, corresponding to the erbB2lox allele, was markedly reduced after TM treatment of mutant animals (Fig. 1C, compare lanes 1–3 with lanes 4–6). Western blot analysis using nerve lysates from three pooled animals per genotype revealed that protein levels of erbB2 were not detectable in mutant compared with control nerves, 2 months after the last TM injection (Fig. 1D). We conclude that we have achieved highly efficient induced recombination of the floxed erbB2 gene, leading to strongly reduced levels of erbB2 protein in adult sciatic nerves.

Myelinated peripheral nerves are maintained and not detectably altered after erbB2 ablation in adult Schwann cells

Next, we examined whether loss of erbB2 in adult Schwann cells affects the maintenance of myelinated peripheral nerves. Figure 2 shows semithin cross sections of PLP-CreERT2 erbB2lox/wt and PLP-CreERT2 erbB2lox/ΔlacZ adult sciatic nerves 2 months after TM treatment. An observer who was blinded to the genotypes of the mice could not detect differences in the structure or in the degree of myelination when examining the tibial, peroneal, and sural branches of three mutants and three control mice; all looked normal. Figure 2 shows examples from a mutant and a control mouse. To corroborate these observations, the g ratios of the control and mutant nerves were determined, and no significant differences were found (supplemental figure, available at www.jneurosci.org as supplemental material). These findings indicate that Schwann cell-expressed erbB2 is not required for the maintenance of myelinated axons in adult peripheral nerves.

Schwann cell proliferation in Wallerian degeneration is not affected in adult erbB2-conditional null nerves

The finding that erbB2-deficient nerves appeared to be normal allowed us to examine the specific potential requirement for neuregulin/erbB signaling in proliferation and survival of adult Schwann cells in Wallerian degeneration. For this analysis, we examined longitudinal sections of the distal nerve stump at 4 d posttransection (4dpT), when Schwann cell proliferation is highest (Bradley and Asbury, 1970) and 12dpT, when erbB2 protein levels are high (Carroll et al., 1997; Kwon et al., 1997). We induced erbB2 ablation with TM in three control and three mutant mice, and transected one sciatic nerve 10 d after the last TM injection. Mitotically active Schwann cells were labeled by pulsing with BrdU at 4dpT or 12dpT. No BrdU-labeled Schwann cells were seen in uninjured controls or mutant nerves, whereas we found numerous BrdU-labeled cells in lesioned nerves of both genotypes 4dpT (Fig. 3A). Double labeling with the marker protein S100β demonstrated that the BrdU-positive cells were Schwann cells. We counted at least 1000 Schwann cells per mouse and determined that, at 4dpT and 12dpT, there were no significant differences in BrdU-positive cells between control and mutant nerves (Fig. 3B).

Because erbB2 signaling is also required for cell survival during development (Jessen et al., 1994; Grinspan et al., 1996; Garratt et al., 2000), we tested whether erbB2 ablation in adult Schwann cells causes increased apoptosis. No apoptotic cells were detected in control or mutant nerves, neither before nor after axotomy (data not shown).

To corroborate our results, we also ablated erbB2 using a second mouse line expressing CreERT2 under the control of the Schwann cell-specific Mpz/P0 promoter and regulatory regions of the human connexin32 gene (P0Cx-CreERT2) (Leone et al., 2003). Again, we found no differences in either the proliferation or the apoptosis of Schwann cells after axotomy between erbB2-deficient versus control mice (data not shown).
reduced compared with control nerves in lesioned and unlesioned nerves (Fig. 4A, B). Note that, as expected (Cohen et al. 1992; Carroll et al. 1997), the erbB2 level in lesioned control nerves was higher than in unlesioned control nerves (Fig. 4A, B). ErbB3 levels were not affected by the ablation of erbB2, neither in unlesioned nor lesioned nerves (Fig. 4A). Thus, conditional disruption of the erbB2 gene in adult Schwann cells results in drastically reduced erbB2 levels at 4dpT without significant effects on cell proliferation or survival during early and late Wallerian degeneration.

We next examined the possibility that the residual erbB2 protein expressed in injured nerves 10–14 d after the last TM injection (Fig. 4A) might account for the unchanged proliferative response of Schwann cells in mutant mice (Fig. 3). Based on our myelin maintenance studies, we waited 10 weeks after the last TM injection to achieve nondetectable levels of erbB2 in Schwann cells (Fig. 1D) before injuring three control and three mutant sciatic nerves. Again, there were no significant differences in BrdU-positive cells between control and mutant nerves (data not shown). These results corroborate our finding, that erbB2 signaling is largely dispensable for proliferation after nerve axotomy.

EGFR/erbB1 and erbB4 do not compensate for the loss of erbB2

To test the possibility that other erbB receptor family members compensate for the loss of erbB2, we analyzed the expression of EGFR/erbB1 (Ullrich et al., 1984; Carpenter, 1987) and erbB4 (Lai and Lemke, 1991; Plowman et al., 1993) in mutant and control groups of lesioned and unlesioned sciatic nerves by Western blotting (Fig. 4C). EGFR/erbB1 and erbB4 were not detectably expressed in normal (Cohen et al., 1992; Levi et al., 1995; Grinspan et al., 1996) and mutant sciatic nerves, regardless of lesions, indicating that there was no major compensation by these related receptors.

Ablation of erbB2 in adult Schwann cells alters the levels of active MAPK and cyclin D1

Puzzled by the unexpected findings, we examined whether downstream signaling molecules of the neuregulin/erbB pathway are affected by the erbB2 mutation. Nerve lysates of four mice per genotype were pooled and two pools were analyzed for the expression of MAPK-P, total MAPK, and β-actin (Fig. 5A), and cyclin D1 and β-actin (Fig. 5C). MAPK-P levels were normalized to total levels of MAPK (Fig. 5B). As expected, the level of MAPK-P in lesioned nerves 4dpT was higher than that in unlesioned, contralateral nerves, in which Schwann cells are not proliferating (Fig. 5A, B). Interestingly, MAPK-P levels were significantly reduced in mutant compared with control nerves 4dpT (Fig. 5A, B). Similarly, the amount of cyclin D1 in mutant mice was reduced compared with control nerves (Fig. 5C, D). We conclude that downstream signaling molecules of the erbB2 pathway are affected after ablation of erbB2 without apparent consequences for the proliferation or survival of Schwann cells during Wallerian degeneration.

Discussion

Neuregulin/erbB signaling is critically involved in several fundamentally important aspects of peripheral nerve development. In this study, we focused specifically on a potential role of this important signaling pathway in the regulation of adult Schwann cell proliferation after nerve injury. By disrupting this pathway in peripheral nerves in a spatially and temporally controlled manner in vivo, we were able to show that major neuregulin signaling through erbB2 is not an absolute requirement for the regulation of injury-induced Schwann cell proliferation. Furthermore, we found that erbB2 function is mostly dispensable for the mainte-
nance of myelinated peripheral nerves. These combined findings support our previous results (Atanasoski et al., 2002, 2006) that the molecular control and requirements for proper Schwann cell function differ fundamentally during development and after nerve damage.

We have demonstrated previously that the TM-induced recombination efficiency in Schwann cells of PLP-CreERT2 animals, crossed with mice carrying the Rosa26-LacZ reporter, is ~80% (Leone et al., 2003). Because recombination frequencies can vary between different alleles carrying loxP sites (Vooijs et al., 2000), we found increased Schwann cell proliferation and cell death after nerve damage compared with controls (our unpublished data). In contrast, ablating erbB2 exclusively in adult Schwann cells of fully myelinated peripheral nerves has no detectable effect on survival and cell division after injury. Thus, Schwann cell responses to axotomy depend on the timing of erbB2 ablation.

Analysis of neuregulin and erbB receptor expression in peripheral nerve undergoing Wallerian degeneration demonstrated that both ligands and receptors are not only expressed during the proliferation period but also throughout a subsequent time of markedly diminished Schwann cell mitogenesis (Carroll et al., 1997). This raises the question of whether neuregulin/erbB signaling plays a role in later stages of Wallerian degeneration. We
did not observe differences in proliferation or survival of Schwann cells 12 d posttransection when erbB2 levels are high in wild-type nerves. However, it remains to be determined whether erbB2 plays a role in remyelination, similar to its function in myelination during normal development.

Despite the finding that proliferation rates are not altered in conditional erbB2-null nerves after injury, we observed reduced levels of signaling molecules involved in the erbB2 pathway triggering proliferation, such as phosphorylated MAPK and cyclin D1 (Rahmatallah et al., 1998). We hypothesize that these molecules were not sufficiently suppressed to abolish proliferation. Alternatively, PI3-K (phosphatidylinositol 3-kinase), which has been shown to promote Schwann cell proliferation (Maurel and Salzer, 2000), might be involved in this paradigm. Furthermore, extracellular factors other than neuregulins may contribute to the regulation of Schwann cell proliferation and survival after axonal damage and/or compensate for the loss of neuregulin/erbB function. TGFβ might be a candidate because it is involved in the regulation of Schwann cell proliferation, survival, and differentiation (Ridley et al., 1989; Mews and Meyer, 1993; Einheber et al., 1995; Guenard et al., 1995; Parkinson et al., 2001; Awatramani et al., 2002; Day et al., 2003; Atanasoski et al., 2004). It remains to be seen whether interrupting this signaling pathway will have an impact on proliferation of adult Schwann cells after injury. Other mitogens that may play a role include PDGF (Hardy et al., 1992), NT-3 (neurotrophin 3) (Funakoshi et al., 1993), and IGF (Son-dell et al., 1997).

In summary, efficient Schwann cell-specific ablation of erbB2 in adult mice using two different CreERT2 lines has no detectable effects on the maintenance of myelinated peripheral nerves or on proliferation and survival of adult Schwann cells after injury. These findings are in sharp contrast to the observed developmental deficits when erbB2 is ablated in immature Schwann cells, strongly suggesting that the molecular control of Schwann cell proliferation is different during development than after nerve injury. It will be an exciting task to define the crucial signaling pathways that regulate Schwann cell proliferation after lesion.

References