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Abstract
Background: TRAIL (tumor necrosis factor related apoptosis inducing ligand) is an apoptosis inducing
ligand with high specificity for malignant cell systems. Combined treatment modalities using TRAIL and
cytotoxic drugs revealed highly additive effects in different tumour cell lines. Little is known about the
efficacy and underlying mechanistic effects of a combined therapy using TRAIL and ionising radiation in
solid tumour cell systems. Additionally, little is known about the effect of TRAIL combined with radiation
on normal tissues.

Methods: Tumour cell systems derived from breast- (MDA MB231), lung- (NCI H460) colorectal- (Colo
205, HCT-15) and head and neck cancer (FaDu, SCC-4) were treated with a combination of TRAIL and
irradiation using two different time schedules. Normal tissue cultures from breast, prostate, renal and
bronchial epithelia, small muscle cells, endothelial cells, hepatocytes and fibroblasts were tested
accordingly. Apoptosis was determined by fluorescence microscopy and western blot determination of
PARP processing. Upregulation of death receptors was quantified by flow cytometry.

Results: The combined treatment of TRAIL with irradiation strongly increased apoptosis induction in all
treated tumour cell lines compared to treatment with TRAIL or irradiation alone. The synergistic effect
was most prominent after sequential application of TRAIL after irradiation. Upregulation of TRAIL
receptor DR5 after irradiation was observed in four of six tumour cell lines but did not correlate to
tumour cell sensitisation to TRAIL. TRAIL did not show toxicity in normal tissue cell systems. In addition,
pre-irradiation did not sensitise all nine tested human normal tissue cell cultures to TRAIL.

Conclusions: Based on the in vitro data, TRAIL represents a very promising candidate for combination
with radiotherapy. Sequential application of ionising radiation followed by TRAIL is associated with an
synergistic induction of cell death in a large panel of solid tumour cell lines. However, TRAIL receptor
upregulation may not be the sole mechanism by which sensitation to TRAIL after irradiation is induced.
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Background
TRAIL (Tumour necrosis factor related apoptosis inducing
ligand) is one of the most promising anti-cancer agent
being currently under investigation (for review see [1-5]).
Initially it was shown that TRAIL specifically induces
tumour cell apoptosis and tumour regression in nude
mice, even when applied as single agent [6,7]. In the
meantime rare reports questioned the tumour cell specifi-
city of TRAIL since it was shown that TRAIL induced apop-
tosis also occurred in normal human liver cells [8,9].
However, subsequentially it was shown that the biochem-
ical preparation of TRAIL rather than TRAIL itself was
responsible for the observed toxic effect on hepatocytes
[10]. This is strongly supported by the lack of toxicity of
TRAIL receptor agonists in humans in first phase I studies
[11].

One possible explanation for the tumour specifity of
TRAIL could lie in its potential role as a mediator of
tumour immune surveillance in vivo. In this regard it has
been shown that mice lacking TRAIL display a signifi-
cantly reduced capacity to eliminate syngenic tumour cells
in the liver [12,13].

Although TRAIL is a member of the death receptor ligand
family certain differences exist to the well characterised
ligands TNF (Tumour necrosis factor) or CD95. Most
important in this regard is the fact that at least five, instead
of only two resp. one, different TRAIL receptors have been
identified: The proapoptotic DR4/Trail-R1 [14] and DR5/
TRAIL-R2/TRICK2 [15-18] as well as TRAIL-R3/DcR1/
TRID [16,33,20] and TRAIL-R4/DcR2/TRUNDD [21,22],
which lack any pro-apoptotic function. The latter were
shown to protect cells from TRAIL induced apoptosis by
competing with the agonistic receptors for TRAIL binding.
In addition, TRAIL-R4/DcR2 is able to induce NF-κB acti-
vation, which might upregulate a wide array of anti-apop-
totic proteins [19-21,23,24]. The role of the fifth TRAIL
binding protein, the soluble osteoprotegerin (OPG) is still
unclear, since it displays only low binding affinity to
TRAIL at physiological temperatures [25,26].

In analogy with the signalling events triggered by CD95,
multimerisation of the agonistic TRAIL receptors induces
the recruitment of the FADD adapter molecule to the
receptor, leading to a subsequent autoproteolytic activa-
tion of initiator caspase-8 [27,28]. Active caspase-8 in turn
triggers the proteolytic activation of downstream caspases
including caspase-3. Downstream caspases ultimately
degrade a broad range of cellular proteins and apoptosis
is finalized (for review see [29]).

Up to now, caspase-8 was shown to be the most crucial
mediator of TRAIL induced apoptosis [30,31]. However, it

has been shown that caspase-10 may act as a surrogate for
caspase-8 in some cell systems [32,33].

In contrast to receptor mediated apoptosis, DNA damage
triggers apoptosis mainly via mitochondrial death path-
ways (for review see [34,35]). Key step of mitochondrial
apoptosis pathways is the mitochondrial release of pro-
apoptotic mediators including cytochrome c. This release
is generally controlled by a complex interplay of pro-
apoptotic members of the Bcl-2 family namely Bax, Bak,
Noxa and Puma. Activation of either of those molecules
may occur directly via conformational changes [36] or
transcriptional upregulation [37-39]. Cytochrome c
released from the mitochondria triggering the activation
of caspase-9 by association with APAF-1 in an ATP
dependent manner [39,40]. Caspase-9 subsequently acti-
vates the downstream effector caspase cascade including
caspase-3 and, in analogy to receptor mediated apoptosis,
cell death is finalised.

With only very few exceptions [41], apoptosis induction
via mitochondrial death pathways is abrogated by anti-
apoptotic members of the Bcl-2 family. Anti-apoptotic
proteins of the Bcl-2 family interfere with the cytochrome
c release from mitochondria on multiple stages [42-44].

Interestingly, both (death receptor mediated and mito-
chondrial) pathways are interconnected on several levels.
In case of death receptor activation, the propagation of the
apoptotic signal is enhanced by caspase-8 mediated acti-
vation of Bid [46]. Bid like other BH3-only molecules trig-
gers the release of cytochrome c from mitochondria
ultimately resulting in activation of caspase-9 [45,40].
Thus, receptor mediated death pathways are directly con-
nected to mitochondrial death pathways. Vice versa, acti-
vation of caspase-9 via the mitochondrial pathway results
in secondary activation of caspase-8 and Bid also leading
to an amplification of the intracellular death signal [47-
49].

Although TRAIL induces apoptosis when given alone, it
has been shown that combination of TRAIL with cytotoxic
drugs as 5-fluorouracil, etoposide, paclitaxel, actinomycin
C and cisplatin has an even higher apoptotic efficacy [50-
59,6].

Whereas abundant data therefore support the combina-
tion of TRAIL with cytotoxic drugs, only limited studies of
TRAIL combined with ionising radiation have been per-
formed [31,33,60-62]. Except for breast and renal cancer,
no data supporting the application of TRAIL in the field of
radiation oncology are available. Up to now, statistical
analysis of a synergistic efficacy have been presented
rarely. In addition, potentially harmful effects of a combi-
nation on normal cells have not sufficiently ruled out.
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Methods
Chemicals
All biochemicals were obtained from Sigma-Aldrich
chemicals (Deisenhofen, Germany) unless otherwise
specified. Hoechst 33342 was purchased from Calbio-
chem and dissolved in distilled water as 1.5 mM stock
solution.

Cell culture
The tumour cell lines MDA-MB 231, HCT-15, Colo 205,
NCI H460, FaDu DD and SCC-4 cells were purchased
from ATCC (Bethesda, MD, USA). HSF6/ HSF7 fibrob-
lasts, HUVEC and SMC were kindly provided from H-P.
Rodemann and R. Kehlbach (Tübingen, Germany).
Respectively. All cells were grown in RPMI 1640 medium
(Gibco Life Technologies, Eggenstein, Germany) and
maintained in a humidified incubator at 37°C and 5%
CO2. Normal human epithelial cells (HMEC, PrEC,
RPTEC, SAEC) and hepatocytes were obtained from
Clonetics/Cambrex (Taufkirchen, Germany). Cell culture
was performed according to the manufacturer's protocols.

TRAIL stimulation
TRAIL induced apoptosis was induced with recombinant
human TRAIL/TNFSF10 (R&D Systems, Wiesbaden-Nor-
denstadt, Germany) in concomitant or sequential applica-
tion with irradiation.

Irradiation
Cells were irradiated with 6 MV Photons using a Siemens
Mevatron linear accelerator with a dose rate of 4 Gy per
min at room temperature.

Quantification of apoptosis induction
Apoptosis induction was quantified by counting of cells
with a characteristic apoptotic morphology after DNA
staining with Hoechst 33342. Cells were stained by incu-
bation with Hoechst 33342 at a final concentration of 1.5
µM for 15 min. Microscopy was performed using a Zeiss
Axiovert 200 microscope (Carl Zeiss, Jena, Germany)
using an excitation wavelength filter of 380 nm. All apop-
totic rates were means of at least three independent exper-
iments. The given error bars represent the standard error
of the mean from independent measurements of the same
cell batch.

Westernblotting
Cells (1 × 106) were lysed for 30 min in a lysis buffer con-
taining 25 mM HEPES, 0.1% SDS, 0.5% deoxycholate, 1%
Triton X-100, 10 mM EDTA, 10 mM NaF and 125 mM
NaCl on ice. After removing insoluble material by centrif-
ugation for 10 min at 12.000 g, 20 µg lysate was separated
by SDS-PAGE. Blotting was performed employing a tank
blotting apparatus (Biorad, Munich, Germany) onto
Hybond C membranes (Amersham, Braunschweig, Ger-

many). Equal protein loading was confirmed by Ponceau
S staining (Sigma). Blots were blocked in PBS buffer con-
taining 0.05 % Tween 20 and 5% bovine serum albumin
at 4°C over night. Primary antibodies were detected after
repeated washings with PBS/Tween 20 (0.05%) of the
membrane, using a secondary antibody (anti IgG-AP
1:10.000, Santa-Cruz-Biotech, Heidelberg, Germany)
diluted in PBS/Tween and incubated for 3 hours at room
temperature and washed three times with PBS/Tween.
Detection of antibody binding was performed employing
enhanced chemoluminescence (CSPD®-Solution Tropix,
Applied Biosystems, MA, USA). PARP cleavage was tested
using a polyclonal antibodies for cleaved and uncleaved
PARP from Boehringer (Mannheim, Germany) in a 1:
1000 dilution. Monoclonal antibodies for caspase 8 were
a gently gift from Prof. K. Schultze-Osthoff and used in a
1:45 dilution. β-Actin (Santa Cruz, Heidelberg, Germany)
antibody was used in a 1: 5000 dilution.

Receptor expression
Cells (0,2 × 106) were washed twice with PBS and incu-
bated for 30 min with PE-labeled anti-R1/DR4 or -R2/
DR5-antibody (R&D Systems, Wiesbaden-Nordenstadt,
Germany) at a dilution of 1: 400 in 0,5% FCS/PBS. FACS
analyses of superficial receptor expression was performed
according to manufacturer's protocol with the Quan-
tibrite™ kit from BD (Heidelberg, Germany).

Statistical analysis
Efficacy of the combined modalities were evaluated by the
isobolic method [63].

Results
Ionising radiation sensitises solid tumour cells to TRAIL 
induced apoptosis
Rates of apoptosis induction in response to ionising radi-
ation or TRAIL alone and after combination were deter-
mined. Since previous studies on Jurkat T cells or breast
cancer cells demonstrated an upregulation of TRAIL recep-
tor R2/DR5 after combined treatment with TRAIL and
irradiation [54,31] two different application schedules
were tested. TRAIL was either applied directly after cell
irradiation or 12 hours later, to allow for receptor
upregulation.

As shown in figure 1, ionising radiation alone (10 Gy) at
48 h induced apoptosis in all cell systems from e.g. 16,0
% in FaDu cells and 34,1% in NCI H460 up to 58,0 % in
Colo 205 cells, whereas 0.1 ng/ml TRAIL had a very lim-
ited activity in FaDu (3,0%) and Colo 205 cells (14,5%)
and up to 30,7 % in NCI H460 tumour cells. In contrast,
combination of irradiation (10 Gy) with immediate
TRAIL application (0,1 ng/ml) was associated with a
much higher apoptotic response (e.g. FaDu 23,3 %, NCI
H460 51,9% and Colo 205 80,3%). This effect was even
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more pronounced when TRAIL was applied 12 hours after
irradiation (e.g. FaDu 30,0 %, NCI H460 65,2% and Colo
205 88,0%).

In order to test whether the effect of TRAIL and radiation
was additive or synergistic an isobologram analysis was
performed. Even when applied concomitantly the interac-
tion was synergistic in some cell systems (figure 2a,
Colo205, HCT 15 and FaDu) but additive in others (MDA
MB 231 and SCC-4). When TRAIL was applied 12 hours
after irradiation the interaction was synergistic in all but
one cell system (figure 2b).

Processing of caspase 8 and PARP
In order to substantiate the findings on apoptosis induc-
tion, caspase activation was verified by analysis of cas-
pase-8 and the processing of the caspase-3 substrate PARP
24 hours after TRAIL application. In keeping with the
above results, the most prominent effects were found for
Colo 205 and NCI H460 cells with strongly increased cas-
pase-8 and PARP processing after combined treatment.
Colo 205 cells were particularly sensitive to sequential
application of irradiation and TRAIL, whereas less inten-
sive caspase-8 and PARP processing was found for MDA
MB231, SCC4 and FaDu (fig. 3). These data correlate well

Time course of induction of apoptosis in six solid tumour cell linesFigure 1
Time course of induction of apoptosis in six solid tumour cell lines. Apoptosis was determined by microscopic evalu-
ation of Hoechst stained cell nuclei 12 to 48 h after treatment with TRAIL 0,1 ng/ml and 10 Gy alone, and after simultaneous 
and sequential application of combined therapy. Data represent means of three independent experiments; bars ± SD
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with the kinetics of apoptosis induction as determined by
fluorescence microscopy of Hoechst stained cells (fig. 1).

Irradiation induced regulation of TRAIL receptors
In order to analyse the role of TRAIL receptor regulation in
combined therapy with irradiation and TRAIL receptor
expression was quantified by flow cytometry using the
Quantibrite™ kit system from Becton Dickinson (Heidel-
berg, Germany). No upregulation of DR4/R1 was found
in all tested tumour cell lines. Instead, a subtle downregu-
lation of DR4/R1 after irradiation was observed (fig. 4A).
Fig. 4B demonstrates upregulation of TRAIL receptor
DR5/R2 12–18 h after irradiation with 10 Gy in four of six
tested cell lines. Colo 205 cells showed the most

pronounced receptor upregulation of 196,8%. In HCT-15
and NCI H460 cells an upregulation of R2/DR5 of
118,0% resp. 96,4% could be measured. In MDA MB231
cells and SCC-4 cells no significant upregulation of recep-
tors was found. FaDu cells do not express TRAIL-receptor
R2/DR5 and therefore no upregulation of R2/DR5 could
be observed after treatment.

Combined treatment of TRAIL and ionising radiation do 
not damage normal tissue
As stated above, hardly any data on normal tissue toxicity
after combined treatment are available. We therefore ana-
lysed the effect of irradiation plus TRAIL on human hepa-
tocytes, fibroblasts (HSF6 and 7), epithelial cells from

Isobolographic analysis of apoptosis induction after combined treatmentFigure 2
Isobolographic analysis of apoptosis induction after combined treatment. Apoptosis was determined by microscopic 
evaluation of Hoechst stained cell nuclei 48 h after combined treatment. Envelopes of additivity were calculated with data of 3 
independently performed experiments. Datapoints below the curves resemble a synergistic effect, datapoints between the 
curves demonstrate an additive effect and above the curves a subadditive response of combined treatment. A : tumour cells 
were treated simultaneously with 10 Gy and 0,1 ng/ml TRAIL. B: cells were irradiated with 10 Gy 12 h prior to treatment with 
0,1 ng/ml TRAIL.
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prostata (PrEC), kidney (RPTEC), breast (HMEC) and
small airways (SAEC), endothelial cells from umbilical
cord (HUVEC) and small muscle cells (SMC). Normal tis-
sue cells were treated with 10 Gy and a tenfold higher dos-
age of TRAIL (1 ng/ml) as used for tumour cells. For
evaluation of apoptosis strict morphologic criteria as con-
densation of chromatin and nuclear fragmentation were
used. 48 h after combined treatment no relevant sensitisa-
tion of normal tissue cells to TRAIL induced apoptosis
could be detected in all cultures. Moreover, even preirra-
diation did not sensitise normal cells to TRAIL induced
apoptosis as observed in tumour cells (table 1 and fig. 5).

Discussion
Based on the rationale that radiation and TRAIL induce
cell death via distinct but overlapping cell death path-
ways, tumour cell lines and normal tissue cultures were
subjected to either radiation or TRAIL alone or combined
with varying application schedules. Our data show that
combining radiation with TRAIL induces apoptosis in a
significantly higher percentage than either treatment
alone. It is important to note that for TRAIL stimulation in
our experiments on tumour cells very low concentrations
of TRAIL were used (0.1 ng/ml). The pharmacodynamic
properties of TRAIL, especially the peak plasma levels in
humans, are not known. Since it is likely that toxicity rises
with higher doses of TRAIL, the observation of pro-
nounced effects on tumour cell kill at such low doses is
particularly intriguing.

Any combination of radiation with TRAIL proved to be
more effective than either one alone; however depending
on dose level and schedule of stimulation less than
additive, additive and synergistic effects were detectable.
When TRAIL was applied simultaneously with irradiation
three of the six cell systems reacted synergistically. In con-
trast, five of the six cell systems reacted with synergistic
effects when TRAIL was given sequentially 12 hours after
irradiation. One of the cell lines displayed only less than
additive effects.

Statistical analysis confirmed, that synergistic effects are
more pronounced and occur with greater likelihood after
sequential application of TRAIL after irradiation when
compared to concomitant treatment schedules.

Possible explanations for the positive interaction of TRAIL
and DNA damaging agents including ionising radiation
are being disputed. Since the sensitisation was associated
with upregulation of the DR5 receptor in some experi-
mental settings [31,54,64,68-70], it is thought that the
synergy is based on the increased surface density of the
death receptors. Our data support the notion that DNA
damage leads to an increased surface expression of the
DR5 receptor. However, no tight correlation between
receptor upregulation and magnitude of cell kill was
observed. It has been suggested, that intact p53 is essential
for upregulation of R2/DR5 death receptor expression by
ionising radiation [64,68]. However, at least in one of our

Westernblot analysis of Caspase-8 activation and PARP-cleavageFigure 3
Westernblot analysis of Caspase-8 activation and PARP-cleavage. Lysates were prepared as described in methods. In 
six tumour cell lines(Colo 205, NCI H460,, HCT-15, MDA MB 231, FaDu and SCC-4) caspase-8 and PARP cleavage was ana-
lysed in untreated cells (lane 1), 24 h after treatment with TRAIL 0,1 ng/ml (lane 2) and 10 Gy alone (lane 3), after simultaneous 
(lane 4) and sequential application (lane 4) of combined therapy. Every cell line shows a different cleavage pattern according to 
the rate of apoptosis induction. β-Actin staining was used as loading control. The mapped blots represent each one of three 
independently performed immunoblots.
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Surface expression of TRAIL receptors after irradiation with 10 Gy in six tumour cell linesFigure 4
Surface expression of TRAIL receptors after irradiation with 10 Gy in six tumour cell lines. Quantification of 
receptor expression was performed 6 to 48 h after irradiation by FACS analyis using the Quantibrite™ evalution system from 
BD(Heidelberg, Germany) according to manufacturer's instructions. Data shown are from one representative experiment (n ≥ 
3). A: Cell surface expression of R1/DR4 B: Cell surface expression R2/DR5
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Table 1: Normal tissue toxicity.

Hepatocyt
es

HMEC PrEC RPTEC SAEC HUVEC SMC HSF6 HSF7

Control 0,3 ± 0,5 0,3 ± 0,5 0,3 ± 0,5 0 0,3 ± 0,5 0,2 ± 0,2 0,5 ± 0,2 0 0

TRAIL 1,0 
ng/ml

0,3 ± 0,5 0,5 ± 0,4 0 0 0 0,2 ± 0,1 0,1 ± 0,1 0 0

10 Gy 0 0,5 ± 0,5 0 0 0,1 ± 0,2 0,3 ± 0,2 1,5 ± 0,5 0 0

Simultane
ous 
combined 
therapy

0 1,6 ± 0,5 0,7 ± 0,5 0 0 0,3 ± 0,1 1,3 ± 0,9 0 0

Sequential 
combined 
Therapy

0,3 ± 0,5 0,8 ± 0,5 1,5 ± 1,0 0 0,3 ± 0,5 0,2 ± 0,2 1,2 ± 1,0 0 0

Cells were treated with 1,0 ng/ml TRAIL, 10 Gy, simultaneous combined therapy and with 10 Gy 12 h prior to TRAIL application. Microscopic 
evaluation of Hoechst stained cell nuclei with strict apoptotic criteria as chromatin condensation and nuclear fragmentation was performed 48 
hours after treatment. Table shows percentage of apoptotic cells ± SD (n = 3).

Microscopic evaluation of normal tissue cellsFigure 5
Microscopic evaluation of normal tissue cells. Lack of apoptosis was determined by microscopic evaluation of Hoechst 
stained cell nuclei. Micrographs depict cells of eight different normal tissues, 48 h after irradiation alone and after sequential 
treatment with 10 Gy 12 h previously to application of 1,0 ng/ml TRAIL.
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cell lines (HCT-15) known to harbour a non-function p53
DR5 upregulation was clearly upregulated. Thus,
alternative p53 independent pathways for the upregula-
tion of DR5 may exist. This finding is in accordance with
data on p53 -/- HCT-116 cells and mouse embryonic
fibroblasts showing that NF-κB may also be important for
a irradiation induced upregulation of death receptors
[65].

Recently, it was shown in overexpression experiments of
NF-κB that its subunits c-Rel and RelA regulate expression
of cell death molecules in a differential manner. This sug-
gests that RelA, in contrast to c-Rel, acts as a survival factor
by inhibiting expression of DR4/DR5 and caspase-8 and
up-regulating cIAP1 and cIAP2 [71]. This process depends
also on cell type and microenvironment [54,65]. There-
fore NF-κB subunits seem to play an ambiguous role in
regulation of apoptotic pathways. To know its exact role
in radiation induced cell death further research is neces-
sary. Additionally, conflicting data regarding the role of
Bcl-2 in death receptor-mediated apoptosis have been
provided in the past few years. Interestingly, new data
point to a complex relationship between Bcl-2-mediated
inhibition of apoptosis and the Bcl-2 protein expression
level, the strength and the duration of the death receptor
stimulus [66]. Therefore, Bcl-2 expression levels might
play a critical role in the modulation of TRAIL sensitivity
of tumour cells.

Recently, it has been shown that the interaction of 5-FU
with TRAIL is strictly Bax but not Bak dependent in HCT
116 cells [67]. Thus, these experiments suggest also a crit-
ical role for the proapoptotic Bcl-2 homolog Bax in link-
ing the TRAIL death receptor pathway to the
mitochondrial apoptosis signalling cascade.

However, the general mechanism of the positive interac-
tion of TRAIL with irradiation remains unclear. It may
ultimately turn out, that manifold mechanisms exist and
only some mechanisms will be operative in a single cell
system [68].

The second part of our experiments the toxicity of TRAIL
combined with radiation on normal tissues. In order to be
able to draw relevant conclusions for normal tissue cells
[8], 10 fold higher doses of TRAIL were used in these
experiments. The first important finding is that TRAIL did
not induce apoptosis in any of our cell systems including
human liver cells. Thus, our experiments confirm the high
tumour cell specificity of TRAIL [6,7]. Prior to embarking
upon a phase I trial combining TRAIL with irradiation we
wished to show a lack of sensitisation to TRAIL by pre-irra-
diation in normal tissues, compared to tumour cells.
Using a wide array of normal cell systems we could not
detect any effects of a pre-irradiation on TRAIL sensitivity.

Combination of TRAIL with irradiation showed no
increase in toxicity over radiation alone. These results are
in good accordance with data from Shankar and
coworkers showing that TRAIL induced apoptosis rates are
only mildly enhanced by a preirradiation of non-malig-
nant human prostate epithelial cells [68].

Conclusions
Our data suggest that TRAIL has great potential in cancer
treatment, especially in sequential combination with radi-
otherapy. We did not observe any sensitising effect of the
sequential treatment on TRAIL sensitivity in normal tissue
cells. Xenograft experiments designed to answer the ques-
tions regarding the short and long term efficacy of a com-
bination of radiation with either TRAIL or TRAIL specific
antibodies are underway in our laboratory.
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