Infection and Immunity

Tyrosine Kinase Inhibition Reduces Inflammation in the Acute Stage of Experimental Pneumococcal Meningitis

Klemens Angstwurm, Uwe-Karsten Hanisch, Tarraneh Gassemi, Margrethe Bastholm Bille, Marco Prinz, Ulrich Dirnagl, Helmut Kettenmann and Joerg R. Weber

Updated information and services can be found at:
http://iai.asm.org/content/72/6/3294

These include:

REFERENCES
This article cites 35 articles, 11 of which can be accessed free at:
http://iai.asm.org/content/72/6/3294#ref-list-1

CONTENT ALERTS
Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more»

Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml
To subscribe to another ASM Journal go to: http://journals.asm.org/site/subscriptions/
Tyrosine Kinase Inhibition Reduces Inflammation in the Acute Stage of Experimental Pneumococcal Meningitis

Klemens Angstwurm,1 Uwe-Karsten Hanisch,2 Tarraneh Gassemi,1 Margrethe Bastholm Bille,1 Marco Prinz,2,3 Ulrich Dirnagl,1 Helmut Kettenmann,2 and Joerg R. Weber1*

Department of Neurology, Charité, Humboldt University Berlin, 10098 Berlin,1 Max Delbrück Center for Molecular Medicine, 13092 Berlin,2 and Department of Neuropathology, Georg August University, 37075 Göttingen,3 Germany

Received 27 October 2003/Returned for modification 5 January 2004/Accepted 26 February 2004

Bacterial meningitis is an acute inflammatory disease of the central nervous system with a mortality rate of up to 30%. Excessive stimulation of the host immune system by bacterial surface components contributes to this devastating outcome. In vitro studies have shown that protein tyrosine kinase inhibitors are highly effective in preventing the release of proinflammatory cytokines induced by pneumococcal cell walls in microglia. In a well-established rat model, intracisternal injection of purified pneumococcal cell walls induced meningitis characterized by increases in the regional cerebral blood flow and intracranial pressure, an influx of leukocytes, and high concentrations of tumor necrosis factor alpha (TNF-α) in the cerebrospinal fluid. Compared with the values at the beginning of the experiment, intraperitoneal injection of tyrphostin AG 126 reduced the increases in regional cerebral blood flow (at 6 h, 127% ± 14% versus 222% ± 51% of the baseline value; P < 0.05) and intracranial pressure (at 6 h, 0.8 ± 2.4 versus 5.4 ± 2.0 mm of Hg; P < 0.05), the influx of leukocytes (at 6 h, 1,336 ± 737 versus 4,350 ± 2,182 leukocytes/μl; P < 0.05), and the TNF-α concentration (at 6 h, 261 ± 188 versus 873 ± 135 pg/μl; P < 0.05). These results demonstrate that inhibition of AG 126-sensitive tyrosine kinase pathways may provide new approaches for preventing excessive inflammation and reducing the increases in blood flow and intracranial pressure in the acute phase of bacterial meningitis.

* Corresponding author. Mailing address: Department of Neurology, Charité, 10098 Berlin, Germany. Phone: 49 30 450 560104. Fax: 49 30 450 560942. E-mail: joerg.weber@charite.de.
(pCO₂), the arterial blood pressure (determined with a femoral catheter), the ICP (determined with a catheter in the cisterna magna and Statham P10 EZ pressure transducers [Spectramed, Oxnard, Calif.]), and the rCBF (determined by laser-Doppler flowmetry parietally through thinned bone with a PeriFlux 4001 Master Camera [Spectramed, Farjalla, Sweden]) were measured continuously. After a stable rCBF baseline was recorded (30 min), 75 µl of CSF was withdrawn and replaced by an equal volume of sample.

The ICP data were expressed as the difference between the value obtained and the value at the beginning of the experiment (in millimeters of Hg), and rCBF data were expressed as a percentage of the baseline value.

At the beginning of each experiment and then at 2-h intervals, blood samples were taken to determine arterial P0₂, Pco₂, and pH (COMPACT 1; AVL List, Graz, Austria). Leukocytes in the blood and CSF were counted before and after the experiment.

PCW preparation. PCW were purified as described previously (28, 35), with minor modifications. Unencapsulated S. pneumoniae R6 was cultured in chemically defined medium, heat killed, and mechanically disintegrated by using 0.1-mm beads. The suspension was digested with DNase (Promega, Mannheim, Germany) and RNase (U.S. Biochemical Corp., Cleveland, Ohio), treated with trypsin (with 10 mM CaCl₂; Sigma-Aldrich Chemie Gmbh), and after centrifugation (23,000 × g, 20 min) resuspended in 2% sodium dodecyl sulfate (Serva, Heidelberg, Germany) this was followed by extensive washing. The purified cell walls were resuspended in phosphate-buffered saline at an optical density at 620 nm of 1 (equivalent to 10⁸ CFU/ml), and stored at –20°C. The composition of PCW has been described previously (15).

Experimental groups. Control animals were inoculated intracisternally with pyrogen-free saline (n = 7), and animals with meningitis were inoculated with PCW (n = 7). Tyrphostin AG 126 (Calbiochem-Novabiochem Corp., San Diego, Calif.), dissolved in 200 µl of dimethyl sulfoxide, was inoculated intraperitoneally 2 h before induction of meningitis (7.5 mg/kg [n = 7] or 15 mg/kg [n = 9]) or 1 h after induction of meningitis (15 mg/kg [n = 6] or 30 mg/kg [n = 4]). In untreated controls 200 µl of dimethyl sulfoxide was injected intraperitoneally (n = 7).

Statistical analysis. All data were expressed as means ± standard deviations. The means of independent groups were compared by one-way analysis of variance and the Student-Newman-Keuls multiple-comparison test and by the Student t test for two groups. A P value of <0.05 was considered significant.

RESULTS

Tyrphostin AG 126 prevented the PCW-induced increase in rCBF. Intracisternal injection of PCW resulted in a slow increase in rCBF over 6 h (Fig. 1A), as previously described (19, 31). Pretreatment with AG 126 reduced the increase in the rCBF in a dose-dependent manner compared to the increase in animals with untreated meningitis at 3 h (with 7.5 mg of AG 126 per kg, 133% ± 18% versus 161% ± 22% [P < 0.05]; with 15 mg/kg, 120% ± 15% [P < 0.05] and at 6 h (with 7.5 mg/kg, 153% ± 36% versus 222% ± 51% [P < 0.05]; with 15 mg/kg, 127% ± 14% [P < 0.05]; linear correlation, r² = 0.5260 [P < 0.001]) (Fig. 1A). Administration of AG 126 1 h after challenge with PCW was also effective when 15 mg/kg was used (at 3 h, 130% ± 12% [P < 0.05]; at 6 h, 150% ± 18% [P < 0.05]) and when 30 mg/kg was used (Fig. 1A). AG 126 treatment alone did not alter rCBF in control animals (Fig. 1B).

Tyrphostin AG 126 prevented the PCW-induced increase in ICP. Inflammatory hyperemia contributes to ICP. Therefore, we asked whether a reduction in the cerebral blood flow resulted in attenuation of ICP in AG 126-treated animals. Pretreatment with 7.5 mg of AG 126 per kg, as well as with 15 mg of AG 126 per kg, reduced the ICP significantly compared to the ICP in untreated rats with meningitis at 3 h (with 7.5 mg of AG 126 per kg, 0.7 ± 1.6 versus 2.0 ± 1.0 mm of Hg [difference not significant]; with 15 mg of AG 126 per kg, 0.6 ± 1.0 mm of Hg [P < 0.05]) (Fig. 2A) and at 6 h (with 7.5 mg of AG 126 per kg, 1.9 ± 2.1 versus 5.4 ± 2.0 mm of Hg [P < 0.05]; with 15 mg/kg, 0.8 ± 2.4 mm of Hg [P < 0.05]; r² = 0.4394 [P < 0.01]) (Fig. 2B). Posttreatment with 30 mg/kg prevented the increase in ICP (at 3 h, 0.6 ± 1.0 mm of Hg [P < 0.05]; at 6 h, 1.1 ± 1.9 mm of Hg [P < 0.05]), whereas posttreatment with 15 mg/kg did not prevent the increase (at 6 h, 6.9 ± 4.6 mm of Hg [difference not significant]). In control animals and AG 126-treated controls there was no change in ICP over time (data not shown).

Tyrphostin AG 126 reduced the PCW-induced invasion of the CSF by leukocytes. Invasion by leukocytes is a hallmark of bacterial meningitis. AG 126 reduced the invasion of the subarachnoidal space by leukocytes in a dose-dependent manner (with 7.5 mg of AG 126 per kg, 1,984 ± 1,066 versus 4,350 ± 2,182 leukocytes/µl [P < 0.05]; with 15 mg of AG 126 per kg, 1,336 ± 737 leukocytes/µl [P < 0.05]; linear correlation, r² = 0.4182 [P < 0.05]) (Fig. 2C). The 30-mg/kg AG 126 treatment inhibited leukocyte invasion of the CSF even 1 h after induction of meningitis (1,011 ± 936 leukocytes/µl [P < 0.05]), whereas the 15-mg/kg posttreatment was not effective (4,439 ± 1,024 leukocytes/µl [difference not significant]).

Tyrphostin AG 126 reduced the TNF-α concentrations in the CSF. TNF-α is thought to be one of the key proinflammatory cytokines in meningitis (1, 17). Pretreatment of animals with meningitis with AG 126 reduced the concentration of TNF-α in the CSF significantly compared to the concentration in untreated animals with meningitis (with 15 mg of AG 126 per kg, 261 ± 188 versus 873 ± 135 pg/ml [P < 0.05]) (Fig. 2D). Posttreatment with 15 mg/kg was not effective, but posttreatment with 30 mg/kg decreased the concentration of TNF-α significantly (188 ± 97 pg/ml [P < 0.05]). The TNF-α levels were not different in controls and AG 126-treated controls (18 ± 3 and 28 ± 10 pg/ml).

AG 126 treatment had no effect on physiological parameters. Body temperature, mean arterial blood pressure, and arterial pH, P0₂, and Pco₂ were measured every hour, and
Adjunctive therapy in pneumococcal meningitis targets the overwhelming immune response due to the release of highly inflammatory components of foedal bacteria. Recently, pretreatment with dexamethasone has been proven to decrease the mortality and morbidity from pneumococcal meningitis (9). Further improvement must be based on a detailed understanding of the triggers of this immune response, as well as the ability of AG 126 to cross the blood-brain barrier (as determined by a detailed understanding of the triggers of this immune response).

DISCUSSION

Here we show that specifically targeted intervention in the inflammatory cascade (A) and in reduced ICP (C) can reduce the mortality and morbidity due to pneumococcal meningitis (A). Further improvement must be based on a detailed understanding of the triggers of this immune response, as well as the ability of AG 126 to cross this barrier (as determined by analysis of variance).

TABLE 1. Physiological parameters for the experimental groups

<table>
<thead>
<tr>
<th>Animals</th>
<th>Mean arterial blood pressure (mm of Hg)</th>
<th>pH</th>
<th>pCO$_2$ (mm of Hg)</th>
<th>pO$_2$ (mm of Hg)</th>
<th>White blood cell count (cells/μL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Zero time</td>
<td>2 h</td>
<td>4 h</td>
<td>6 h</td>
<td>Zero time</td>
</tr>
<tr>
<td>Control rats</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untreated</td>
<td>101 ± 10</td>
<td>102 ± 11</td>
<td>100 ± 9</td>
<td>97 ± 10</td>
<td>7.41 ± 0.03</td>
</tr>
<tr>
<td>Pretreated with AG 126 (15 mg/kg)</td>
<td>105 ± 8</td>
<td>103 ± 14</td>
<td>96 ± 8</td>
<td>96 ± 11</td>
<td>7.42 ± 0.02</td>
</tr>
<tr>
<td>Rats with meningitis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untreated</td>
<td>105 ± 9</td>
<td>105 ± 5</td>
<td>102 ± 10</td>
<td>98 ± 7</td>
<td>7.40 ± 0.02</td>
</tr>
<tr>
<td>Pretreated with AG 126 at:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.5 mg/kg</td>
<td>103 ± 10</td>
<td>103 ± 8</td>
<td>101 ± 10</td>
<td>96 ± 11</td>
<td>7.41 ± 0.02</td>
</tr>
<tr>
<td>15 mg/kg</td>
<td>97 ± 9</td>
<td>99 ± 10</td>
<td>95 ± 11</td>
<td>93 ± 11</td>
<td>7.40 ± 0.02</td>
</tr>
<tr>
<td>30 mg/kg</td>
<td>104 ± 10</td>
<td>107 ± 9</td>
<td>106 ± 11</td>
<td>102 ± 12</td>
<td>7.41 ± 0.02</td>
</tr>
</tbody>
</table>

The data are means ± standard deviations. The values for the experimental groups were not significantly different (as determined by analysis of variance) and were within normal ranges.
and the TNF-α concentration in the CSF in the acute phase of experimental meningitis. AG 126 prevented an increase in rCBF, a measure of local vasodilatation, in a dose-dependent manner. Furthermore, treatment of the animals 1 h after induction of meningitis still inhibited the increase in rCBF. This is consistent with significantly improved hemodynamic parameters seen in tyrophostin-treated animals with multiorgan failure caused by Escherichia coli (26).

Clinically, increased ICP in the acute phase of bacterial meningitis is enormously important and may be attributed to at least three mechanisms (21): (i) vasogenic edema due to extravasation of plasma compounds and hyperemia; (ii) cytotoxic edema caused by toxins released from activated leukocytes (13), glia (20), endothelial cells (12), and bacteria; and (iii) an increase in CSF outflow resistance (22). Decreased ICP in tyrophostin-treated animals may result from attenuated hyperemia, as well as reduced leukocyte recruitment and TNF-α concentrations in the CSF.

Leukocyte influx into the CSF, the hallmark of bacterial meningitis, was significantly reduced in AG 126-treated animals compared to that in untreated animals. Reducing the leukocyte influx is believed to have potential therapeutic benefits because high numbers of leukocytes correlate with an unfavorable outcome (3), and blocking leukocyte invasion attenuates brain edema, an increase in the ICP, hyperemia, and neuronal damage and improves survival in experimental meningitis (4, 29, 32). In a model of zymosan-induced peritonitis neutrophil adhesion in vitro (16). Autoimmune encephalomyelitis is suppressed by tyrosine kinase inhibitors (6, 7), most likely by inhibition of invasion of the brain parenchyma by leukocytes (8).

TNF-α is thought to be one of the key cytokines in bacterial meningitis, as the level of TNF-α is elevated in the CSF of meningitis patients (30) and in experimental models (17), and it dramatically accelerates experimental pneumococcal meningitis (1). Production of TNF-α requires p42/p44MAPK activation, as shown in macrophages (18), astrocytes (25), and microglia (14). AG 126-treated mice survive a lipopolysaccharide-induced lethal shock, and the protection is correlated with decreased TNF-α production (18). Accordingly, AG 126 treatment reduced TNF-α levels in the CSF of animals with meningitis in the present study.

In conclusion, our study showed that an AG 126-sensitive protein tyrosine kinase is important in the early phase of pneumococcal meningitis. AG 126 effectively inhibited blood flow and an increase in the ICP and reduced the leukocyte influx and TNF-α concentration in the CSF. These results suggest that inhibition of selective tyrosine kinase phosphorylation may provide new approaches for decreasing the excessive inflammatory response caused by antibiotic lysis of bacteria and the release of highly inflammatory PCW.

ACKNOWLEDGMENTS

This study was supported by Deutsche Forschungsgemeinschaft projects SFB 507 (U.-K.H., H.K., and J.R.W.) and WE 1981 (J.R.W.), by Thorvald Madsens Legat (M.B.B.), and by the Hermann & Lilly Schilling Foundation.

REFERENCES

Editor: J. N. Weiser