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Abstract

Constitutive nuclear nuclear factor (NF)-kB activity is observed in a variety of hematopoietic
and solid tumors. Given the distinctive role of constitutive NF-kB for Hodgkin and Reed-
Sternberg (HRS) cell viability, we performed molecular profiling in two Hodgkin’s disease
(HD) cell lines to identify NF-kB target genes. We recognized 45 genes whose expression in
both cell lines was regulated by NF-kB. The NF-kB—dependent gene profile comprises che-
mokines, cytokines, receptors, apoptotic regulators, intracellular signaling molecules, and tran-
scription factors, the majority of which maintain a marker-like expression in HRS cells. Re-
markably, we found 17 novel NF-kB target genes. Using chromatin immunoprecipitation we
demonstrate that NF-kB is recruited directly to the promoters of several target genes, including
signal transducer and activator of transcription (STAT)5a, interleukin-13, and CC chemokine
receptor 7. Intriguingly, NF-kB positively regulates STAT5a expression and signaling path-
ways in HRS cells, and promotes its persistent activation. In fact, STAT5a overexpression was
found in most tumor cells of tested patients with classical HD, indicating a critical role for HD.
The gene profile underscores a central role of NF-kB in the pathogenesis of HD and poten-

tially of other tumors with constitutive NF-kB activation.
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Introduction

Members of the nuclear factor (NF)*-kB transcription fac-
tor family regulate immune, inflammatory, and acute phase
responses, and their homozygous inactivation in mice re-
sults in severe immune system dysfunction (1-3). One of its
most important functions is the activation of an antiapop-
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totic gene expression program (4—6). More recently, NF-kB
activation has been connected to cell growth control (7-9).
Because signaling pathways that govern proliferation and
survival are important for tumor development, NF-«kB has
an intrinsic oncogenic potential.

Indeed, ample evidence linking Rel/NF-kB activity to
oncogenesis has been accumulated in the past years (7-10).
Transforming capacity has first been demonstrated for the
viral oncoprotein v-Rel in vitro and in vivo (10). More-
over, oncogenic viruses, such as human T cell leukemia vi-
rus I or Epstein-Barr virus, activate NF-kB as part of the
transformation process (11, 12). Similarly, cellular onco-
proteins like Her-2/Neu and BCR-ABL induce NF-kB to
achieve resistance to apoptosis or enhance transformation
capacity (13, 14). Finally, chromosomal rearrangements of
genes coding for Rel/NF-kB factors have been observed in
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many human hematopoietic and solid tumors, and several
human cancer cell types display persistent nuclear NF-kB
activity as a result of constitutive activation of IkB kinases
(IKKs) or mutations inactivating IkB subunits (7).

Most evidence for the role of Rel/NF-kB in human ma-
lignancies came from an analysis of Hodgkin’s disease (HD).
HD is the first hematopoietic tumor from which an aberrant
constitutive NF-kB activation has been described (15). The
malignant Hodgkin and multinucleated
Reed-Sternberg cells in HD only represent a fraction of the
neoplastic lesions that are populated by eosinophils, neutro-
phils, T cells, B cells, plasma cells, histiocytes, and others.
These reactive cells are attracted by cytokines and chemo-
kines abundantly produced by Hodgkin and Reed-Stern-
berg (HRS) cells (16-18). Molecular single cell analysis has
suggested that HRS cells are derived from germinal center
B cells or B cells at later differentiation stages (19). Due to
the scarcity of malignant cells it has been difficult to define
the transforming molecular lesions that lead to the develop-
ment of HD. Several HRS cell lines have been established
and clonal identity with primary HRS cells has been dem-
onstrated for L1236 cells, indicating that HRS cell lines can
serve as suitable model systems (20). Constitutively activated
NEF-kB is a characteristic feature of HRS cell lines and pri-
mary cells (15, 21). Interestingly, mutations in the ikba
gene, producing nonfunctional or unstable IkBa proteins,
are recurrent molecular abnormalities of HRS cell lines (22—
24). However, most primary HRS cells lack mutations in
the ikba gene. Recent data indicate persistently activated
IKK complex as the major cause of constitutive NF-kB ac-
tivity (25). The inhibition of NF-kB by the expression of
the superrepressor IKBAN in various HRS cell lines led to
decreased proliferation, enhanced apoptotic response, and
strongly impaired tumor growth in immune-deficient mice
(21, 26). Constitutive NF-kB activity regulates the expres-
sion of genes typically overexpressed by HRS cells, includ-
ing the cell cycle regulatory protein cyclin D2, antiapoptotic
proteins Bfl-1/A1, c-IAP2, TNFR-associated factor 1, and
Bel-x;, and the cell surface receptors CD40 and CD86 (26).
Thus, an important function of aberrant NF-kB activity in
cell growth of malignant cells is well established. However,
a determination of the full group of genes controlled by
constitutive NF-kB will be important to understand its
pathogenetic role in HD and other types of tumors.

For this purpose, we performed large-scale gene expression
profiling in L428 and HDLM2 cells. In both cell lines, NF-
kB activity could be efficiently blocked by adenoviral expres-
sion of the superrepressor IKBAN, leading to massive sponta-
neous apoptosis within 48 h after infection. We identified 45
genes, which are affected upon NF-kB inhibition, encoding
chemokines, cytokines, receptors, apoptotic regulators, intra-
cellular signaling molecules, and transcription factors. Several
known NF-kB target genes were found, which are overex-
pressed in primary or cultured HRS cells. Besides this, 17
novel genes could be verified as NF-kB targets by Northern
blot or RT-PCR analysis. Importantly, most of these genes
displayed elevated expression levels in HRS cells. Stimulus-
and IKK-dependent induction in non-Hodgkin cells, as well

mononuclear

as direct recruitment of NF-kB to promoter regions, con-
firmed that many of these genes, including signal transducer
and activator of transcription (STAT)5a, CCR7, or IL-13 are
direct targets of NF-kB. We observed that NF-«kB interferes
with the Janus kinase/STAT signaling pathway and causes a
high level of constitutive STAT5a activity in cultured and
primary HRS cells. Because NF-kB controls a complex net-
work of genes with central pathogenic importance in HD,
we suggest that NF-kB is a key regulator in this malignancy.

Materials and Methods

Viral Infection. Ad5-IkBAN and Ad5 control viruses were
previously described (26). 10°-107 pelleted cells were resuspended
in RPMI 1640 containing 10% FCS at 107 cells/ml. Viruses were
added (at a multiplicity of infection [m.o.i.] of 300 for L428;
m.o.i. of 100 for HDLM?2) and cells were incubated for 2 h at
37°C in 5% CO,. After infection, cells were pelleted and resus-
pended at 3 X 10° cells/ml.

Cell Culture. Reh, Nam, 1428, L1236, KMH-2, and HDLM?2
cells were grown in RPMI 1640 (GIBCO BRL) supplemented
with 10% FCS, 100 U/ml penicillin/streptomycin, 2 mM L-glu-
tamine, as well as 50 wM B-mercaptoethanol for 70Z/3 or 1.3E2
cells. Cells were treated with 200 ng/ml PMA (Calbiochem-
Novabiochem), 10 pg/ml LPS (Sigma-Aldrich), or 25 pwg/ml cy-
cloheximide (CHX; Calbiochem-Novabiochem).

Extracts, Electrophoretic Mobility Shift Assay (EMSA), Western
Blotting, and Immunoprecipitation. ~Preparation of whole cell ex-
tracts, Western blotting, and EMSA was performed as previously
described (26). STATS5a gel shift oligonucleotides (sc-2565)
were purchased from Santa Cruz Biotechnology, Inc. For im-
munoprecipitation, 400 pg protein whole cell extract was mixed
with immunoprecipitation bufter (50 mM Hepes, pH 7.5, 150
mM NaCl, 1.5 mM MgCl,, 1 mM EDTA, 1% Triton X-100,
10% glycerol, 1mM dithiothreitol, protease and phosphatase in-
hibitors). Extracts were precleared with protein A—Sepharose for
1 h at 4°C. Immunoprecipitation using 2 wg STAT5a antibody
(sc-1656; Santa Cruz Biotechnology, Inc.) was performed for
2 h at 4°C. Samples were washed four times with immuno-
precipitation buffer and analyzed by SDS-PAGE and Western
blotting. Mouse monoclonal antibodies against phosphotyrosine
(05-321; Upstate Biotechnology), rabbit polyclonal antibodies
against IkBa (C-21; Santa Cruz Biotechnology, Inc.), STAT5a
(66621N; BD Biosciences), or CDK4 (H-22; Santa Cruz Bio-
technology, Inc.), as well as horseradish peroxidase—conjugated
anti—rabbit or anti-mouse antibodies (New England Biolabs,
Inc.) were used for detection.

DNA Microarray Analysis.  Total RNA was prepared from
Ad5 control- or Ad5-IkBAN—infected L428 or HDLM2 cells 24 h
after infection (RNeasy Kit; QIAGEN). Samples for Affymetrix
microarray analysis were prepared according to the manufacturer’s
instructions. The HuGeneFL GeneChip microarray was hybrid-
ized with RNA at 45°C for 16 h, washed, and stained using the
GeneChip Fluidies station according to the manufacturer’s instruc-
tions. DNA chips were scanned with a GeneChip scanner and sig-
nals were processed by the GeneChip expression analysis algorithm
(version 3.2; Affymetrix). The quantification of each gene expres-
sion was obtained from the hybridization intensities of 20 perfectly
matched and mismatched control probe pairs. All chip files were
scaled to a uniform intensity value of 1,000. For a comparative
chip file, the experimental file (Ad5-IkBAN-infected cells) was
compared with the baseline file (Ad5 control-infected cells).
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Genes that fit the following criteria were considered decreased/in-
creased genes upon NF-kB inhibition: the change call was either
decreased or induced, the change in the average difference was
greater than twofold, the sort score value was >1 or <1, and an
absolute call of “presence” was associated with the baseline file.

Northern Blotting. Total RNA preparation and Northern
blotting was performed as previously described (26). For the gen-
eration of probes, LM.A.G.E. cDNA clones (Resource Center of
the German Human Genome Project, Max-Planck Institute for
Molecular Genetics, Berlin, Germany) were either digested or
amplified by PCR. Isolated fragments were labeled with
Megaprime DNA Labeling System (Amersham Biosciences). De-
tailed information is available upon request.

RT-PCR. 5 pg total RNA (see above) were reverse tran-
scribed using oligo dT primers and the Superscript™ first strand
synthesis RT-PCR system (Life Technologies) according to the
manufacturer’s instructions. cDNA was amplified by CombiPol
DNA polymerase (Invitek). To establish relative quantities, serial
c¢DNA dilutions were amplified with B-actin—specific primers (22
cycles) for standardization. To semi-quantify expression levels of
potential target genes, cDNAs were amplified with specific PCR
primer pairs (30—40 cycles) in a volume of 50 pl. 10 pl of the re-
actions were analyzed on 1% agarose gels. Nucleotide sequences
and detailed PCR conditions are available upon request.

Chromatin Immunoprecipitation (ChIP) Assay. ChIP was per-
formed as previously described (27). The following are sequences
of promoter-specific primers: IkBa: 5° GACGACCCCAAT-
TCAAATCG 3’ (s), 5’ TCAGGCTCGGGGAATTTCC 3’ (as);
c-jun: 5 CGACTGTAGGAGGGCAGCGG 3’ (s), 5" AGCC-
CTTATCCAGCCCGAGC 3’ (as); [IL-13: 5" GGAAGAGAGG-
GTGGGCAAGC 3’ (s), 5" GTTCCTAGTGCCACTGGGGC
3" (as); CCR7: 5" CCAGAAGCCAGAGGGAAAGC 3’ (s), 5'
TGACAGTCGCTGGTCATAGG 3’ (as); CD44: 5" GAGGG-
GCCCGCCCGGGAGGG 3’ (s), 5" GCGAACGGAGGGCG-
CGGGCG 3" (as); STAT5a: 5° GCAGCTGGGCTGGC-
CCCTCC 3’ (5), 5" CCCCCTCTCCAAGAGGCCCC 3’ (as);
thiopurine methyltransferase (TPMT): 5" CCCGGGGCTCAC-
CTTTGCGC 3’ (s), 5° GAGGGTGCGGGGTGGGTATC 3’
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(as); tissue factor pathway inhibitor (TFPI)-2: 5° CACAA-
ACGCTCCCTCAGGGC 3’ (s), 5 TCACCCCGCCGCCC-
CCGCGC 3’ (as); and GLUT5: 5" CCAGTCATTCACCAT-
GAGCC 3’ (s), 5 GTAAGTGGGTGCCCCCTGGG 3’ (as).

Immunohistochemistry.  Paraffin blocks from lymph node biop-
sies of patients with classical HD were from files of the Consulta-
tion and Reference Center for Hematopathology, Free Univer-
sity, Berlin, Germany. The diagnosis of classical HD was
according to the criteria of the World Health Organization’s clas-
sification (28). Four micrometer sections were deparaftinized and
subjected to an antigen retrieval protocol to optimally visualize
antigens in paraffin-embedded tissue. For that, tissue sections
were immersed in 10 mmol citrate, pH 6.0, and cooked under
high pressure in a pressure cooker for 2 min. Sections were incu-
bated with anti-STAT5a antibody (sc-1656; Santa Cruz Biotech-
nology, Inc.) at a dilution of 1:200. Bound antibody was visual-
ized using the streptavidin-biotin-alkaline phosphatase method
and Fast Red as chromogen (kit 5005; Dako). The specificity of
STAT5a immunodetection in HRS cells was confirmed by com-
petition with a specific peptide (sc-1656p; Santa Cruz Biotech-
nology, Inc.).

Results

NF-kB—dependent Gene Profiling in HRS Cells. The
identification of target genes is an important step to under-
stand the oncogenic potential of NF-kB and its function
in HRS cells. To provide a representative gene profile, we
performed a parallel microarray analysis of two different
HRS cell lines. We previously established adenovirus-
mediated expression of the superrepressor IKBAN to down-
modulate constitutive NF-kB activity in the HRS cell line
L428 (26). As a second HRS cell line, HDLM2 cells were
used. As observed for 1428 cells, the expression of IKBAN
nearly abolished NF-kB DNA binding activity in
HDLM2 cells and caused a dramatic growth defect pri-

Figure 1. Adenovirus-mediated IkBAN ex-
pression abrogates NF-kB activity and induces
£ & massive spontaneous apoptosis in HDLM2
cells. (A) HDLM2 cells were infected with
Ad5-IkBAN or Ad5 control (m.o.i. of 100).
Control infection with a [B-galactosidase—
expressing adenovirus indicated 80% infection
efficiency (m.o.i. of 100; not depicted). Whole
cell extracts prepared at the indicated time
points were analyzed by Western blotting for
IkBa. (B) Whole cell extracts of HDLM2 cells
infected with Ad5 control or Ad5-IKBAN were
analyzed by EMSA using an H2K binding site
probe. (C) Growth rates of noninfected or in-
fected HDLM2 cells, as indicated, were deter-
mined in five independent experiments. (D)
Apoptotic cells were determined by annexin V
staining in noninfected or infected cells.

HDLM2 HDLM2
C48 148
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marily due to massive spontaneous apoptosis (Fig. 1). NF-
kB—mediated protection against apoptosis is due to its
transcriptional regulation of a distinct set of antiapoptotic
genes (26). RNA prepared 24 h after the infection of L428
and HDLM2 cells with either Ad5 control or Ad5-IkBAN
viruses was used for hybridization to high density DNA
microarrays. The DNA arrays contained 7,133 gene se-
quences and expressed sequence tags. Before hybridiza-
tion, RNA from each of the samples was converted to tar-
get according to standard procedures. The hybridized
chips were then processed and analyzed as described in
Materials and Methods.

A total of 45 genes met the criteria that expression was
considered decreased or increased upon NF-kB inhibition
in both L428 and HDLM2 cell lines (Fig. 2). Other genes
fulfilled the criteria for NF-kB—dependent regulation in
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only one cell line. In L428 cells, the expression of 15 addi-
tional genes was decreased and 6 were increased upon NF-
kB inhibition. In HDLM2 cells, 43 additional genes had
decreased and 23 had increased expression (Fig. 3). Among
the candidates identified as common for both cell lines, the
expression of only one gene, L-fucosidase, was increased,
indicating a potential repressor function of NF-kB. Expres-
sion of all others was decreased greater than twofold, in
turn suggesting that these genes are induced by constitutive
NF-kB activity in HRS cells.

The target genes could be classified into these groups:
cytokines and chemokines, cell surface receptors, cell adhe-
sion molecules, regulators of apoptosis, signaling molecules,
transcription factors, and a group of genes with miscella-
neous functions (Fig. 2). The presence of several genes
known to be NF-kB target in other cell types like lympho-
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NF-kB target genes in individual HRS cell lines (A) L428 and (B) HDLM2. Analysis was performed as described in Fig. 2. Genes with de-

creased expression genes upon NF-kB inhibition are listed first followed by genes with increased expression. Graphical representations of average differ-

ence values are shown.

toxin-a, IL-6, GM-CSF, TNF-«, intercellular adhesion
molecule (ICAM)-1, or CD95 verified the efficacy of the
screen (29). Because NF-kB activity protects HRS cells
from cell death (Fig. 1; reference 26), it was expected to
detect antiapoptotic genes (Fig. 2). All of them are known
NF-kB target genes and with the exception of IEX-1, the
overexpression in HRS cells has been documented (26, 29,
30). In agreement with our prior observations (26), the cell
surface receptors CD40 and CD86 were found to be acti-
vated by NF-kB. We discovered 23 novel NF-kB target
genes activated in both cell lines including IL-13, mac-
rophage-derived chemokine (MDC), CD44, and STAT5a.
Importantly, several of these including IL-13, CD44, leu-
kocyte-specific protein (LSP)-1, and STAT5a (see below)
are overexpressed in HRS cells (31-34).

High Level Expression of NF-kB Target Genes in HRS
Cells.  All novel candidates identified for both L1428 and
HDLM2 cells and a group of known NF-kB target genes
were selected for Northern analysis to validate NF-kB—
dependent expression in HRS cells. Because the microchip
data were obtained from two independent experiments and
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two different cell lines, the rate of false positives should be
minimal. For some candidates, semi-quantitative RT-PCR
was performed. We analyzed mRNA expression in Ad5-
IkBAN- or Ad5 control-infected L428 and HDLM?2 cells,
and in uninfected HRS and control cell lines. For all sam-
ples we confirmed that NF-kB DNA binding activity was
constitutive only in HRS cells and was repressed by IKBAN
(Fig. 4 A). Pronounced NF-kB—dependent regulation
could be verified for the vast majority of genes (Fig. 4, B
and C). Moreover, the observed change of mRINA expres-
sion levels upon NF-kB inhibition correlated well with the
DNA microarray data (Fig. 2). CX3CL, MIP1-a, CCR7,
IL-15Ra, CD83, IEX-1, SMAD?7, interferon regulatory
factor 1, and NF-kB p100, previously proposed to be regu-
lated by NF-kB in other cell types (29, 35-39), could be
confirmed as cellular target genes in HRS cells. Abundant
CCRY7 and CD83 expression was detected exclusively in
HRS cells (Fig. 3 B), supporting recent observations (38,
40). Likewise, the mRINA patterns of CX3CL, [EX-1, IL-
15Ra, and pl00 indicate strongly elevated expression in
HRS cells compared with non-HRS cells (Fig. 4 B).
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Among the novel target genes, 17 could be validated
by Northern blotting or RT-PCR, namely IL-13, MDC,
1-309, EMR1, CD44, ABIN, LSP-1, protein kinase C
(PKC)-8, STAT5a, Spi-B, LPS-induced TNF-a factor
(LITAF), HLA-F, glucose transporter protein GLUTS5,
TFPI-2, TPMT, KIAA0084, and RES4-25 (Fig. 4, B and
C). The chemokine I-309 was strongly and NF-kB depen-
dently expressed in virally infected cells (Fig. 4 B). In con-
trast, only weak amounts of mRINA could be detected in
noninfected HRS cells, indicating a stimulating event
caused by adenoviral infection. The remaining six candi-
dates, like TC21 or NCF2 (Fig. 2), could not be confirmed

from various control (Reh, Namalwa) and HRS cell lines as indicated. Northern blotting was
performed for the indicated genes. As a control, the stripped blot was reprobed with a
GAPDH cDNA probe. (C) Total RNA was extracted as described in B and RT-PCR reac-
tions were performed for the indicated genes. As internal control, RT-PCRs were performed

(unpublished data). This might be caused by the fact that
these candidates display very low average values or that the
observed change in the average difference was near the cut-
off criteria (Fig. 2). In general, the microarray analysis was
confirmed by Northern and RT-PCR analysis.

As an important observation, many of the novel target
genes, including MDC, 1L-13, CD44, ABIN, LSP-1,
STAT5a, GLUT5, TPMT, and TFPI-2 display high level
expression in HRS compared with non-HRS cells, thus
correlating with constitutive NF-kB activity. CD44 and
IL-13 have been suggested as crucial factors in the patho-
genesis of HD (31, 33).
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Novel Target Genes Are Inducible by IKK-dependent Signal-
ing. For additional verification, a subgroup of novel target
genes was analyzed in 70Z/3 pre-B lymphoma cells and
their IKK+y-deficient variant 1.3E2, which is defective in
IKK signaling (41). Cells were stimulated with PMA, LPS,
or LPS in combination with CHX, and mRNA expression
of CCR7, Spi-B, LITAF, PKC-9, and ABIN was analyzed
(Fig. 5). CCR7 and Spi-B mRNA expression was signifi-
cantly induced by LPS, whereas no or only weak induction
was observed with PMA or LPS in the presence of CHX.
Because CHX blocks protein synthesis, these observations
suggest an additional protein requirement for NF-kB—
dependent activation of CCR7 and Spi-B. In contrast,
LITAF, PKC-8, and ABIN mRNAs were induced by all
stimuli in 70Z/3 cells. The lack of induction of all five
genes in 1.3E2 cells and the results from previous experi-
ments (Fig. 2 and Fig. 4, B and C) reveals that all are regu-
lated through the IKK—NF-«kB pathway.

NF-kB Recruitment to Target Promoters. To analyze if
NF-kB is recruited to target promoters, ChIP assays (27)
were performed with L428 cells. The p65 antibody precip-
itated an IkBa gene promoter fragment that could be
blocked with an antibody-specific peptide, although it did
not precipitate the ¢-jun promoter. However, both pro-
moter fragments could be precipitated with an anti—c-Jun
antibody (Fig. 6 A). These data demonstrate the specificity
of the procedure and are in agreement with the conserva-
tion of binding sites in the two genes. Next, ChIP assays
were performed with L428 cells that were uninfected or
infected with Ad5-IkBAN or Ad5 control. p65 recruit-
ment to the IkBo promoter was strongly diminished in
IkBAN-expressing cells compared with infected and unin-
tected controls (Fig. 6 B). We also investigated the
association of NF-kB with IL-13, CCR7, CD44, STAT5a,
TPMT, TFEPI-2, or Glut5 promoter regions (Fig. 6 B). In

70Z3 1.3E2
PMA LPS LPS - PMA LPS LPS
- - CHX - - - CHX
- - CCRT7
L ; Spi-B
“-e . @ LITAF
- W = = = s

—
- -l “m ABIN
BB -

Figure 5. Novel NF-kB target genes are induced by IKK-dependent
signaling in pre-B cells. 70Z/3 and 1.3E2 cells were stimulated with
PMA, LPS, or LPS in combination with CHX for 2 h. RNA was ex-
tracted and Northern blotting was performed for the indicated genes. The
stripped blot was reprobed with a GAPDH probe.
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all cases, we observed NF-kB binding in noninfected and
Ad5 control-infected cells. Again, no or only weak binding
was observed in the presence of peptide or in cells infected
with Adv-IKBAN. Promoter sequences in the databases
(GenBank and euGenes) showed that all analyzed genes
contain NF-kB binding site motifs according to the con-
sensus sequence GGGRNNYYCC (Fig. 6 B; reference
42). The data provide strong evidence that these genes are
under direct transcriptional control of NF-«kB.

NF-kB Induces STAT5a Overexpression and Activation in
HRS Cells. The transcription factor STAT5a is an inter-
esting novel target gene, because STAT5a activity is linked
to cell growth control. Moreover, constitutively activated
STAT5a has been observed in a variety of tumors (43, 44).
Similar to mRNA expression (Fig. 4 B), we observed high
level protein expression of STAT5a in all HRS cell lines
but not in non-HRS cells (Fig. 7 A). STAT5a protein ex-
pression was dependent on NF-kB because it was reduced
in both L428 and HDLM2 cells 48 h after infection with
Adv-IkBAN. Furthermore, a constitutive STAT5a DNA
binding activity was observed in the majority of HRS cell
lines, most strongly in L1236 and L540 cells (Fig. 7 B). In
line with this, constitutive tyrosine phosphorylation, a pre-
requisite for STAT5a activation, was observed in HRS
cells (Fig. 7 C). Intriguingly, NF-kB inhibition led to a
rapid loss of STAT5a phosphorylation and DNA binding
activity 24 h after infection with Ad5-IkBAN (Fig. 7, B
and C). Thus, NF-kB controls both expression and activa-
tion of STAT5a.

Patients with Classical HD Reveal a High Level of STAT5a
Expression in Malignant Cells. ~ As predicted from the data
obtained with cell lines, all patients tested with classical HD
(24 cases) revealed high level cytoplasmic and nuclear stain-
ing for STAT5a in >80% of the HRS cells in the lymph
node sections (Fig. 7 D and unpublished data). Tonsil sec-
tions, as benign tissue, revealed elevated STAT5a expres-
sion in germinal center cells, albeit not at the same level as
in HRS cells (unpublished data). Nuclear staining of HRS
cells implies that STAT5a is constitutively active in primary
HRS cells. In contrast to classical HD, only in a subset (4
out of 14 cases) of lymphocyte predominance HD were all
malignant lymphocytic and histiocytic cells significantly
stained for STAT5a (unpublished data). Overall, STAT5a
staining was weaker in lymphocyte predominance HD
compared with classical HD.

Discussion

A considerable body of work has linked deregulated NF-
kB activity to oncogenesis (7). High level constitutive nu-
clear NF-kB is a characteristic and important property of
the malignant cells of HD (15, 18, 21, 26). There is ample
evidence that cell death protection is a key function of
constitutive NF-kB activity in HRS cells (Figs. 1 and 2;
references 21 and 26). However, additional contributions
to the pathogenesis of HD are poorly understood. Our
large-scale gene profiling revealed that NF-kB regulates a
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complex network of genes, which are overexpressed in pri-
mary and cultured HRS cells (Table I; references 18, 26,
31, 32, 38, 40, and 45—49). A significant fraction of these
genes appears to determine important characteristic proper-
ties of malignant cells in HD.

In addition to the antiapoptotic function, NF-kB might
render tumor cells resistant to chemotherapy, as thiopurine
TPMT, which catalyses S-methylation of thiopurines such
as 6-mercaptopurine and 6-thioguanine, was identified as a
novel target with high level expression in HRS cells (Figs.
2, 4 C, and 6). Indeed, TPMT activity is relevant for che-
motherapy treatment, as has been reported for childhood
acute lymphoblastic leukemia (50).

The malignant HRS cells invoke the infiltration of reac-
tive cells including granulocytes, plasma cells, and T cells.
The expression of the chemokine MDC with the adhesion
molecule ICAM-1 and CD86 by HRS cells has been pro-
posed to account for a preferential influx of Th2-type T
cells and the suppression of Thil-type immune response
(45). Recent data suggested that TNF-a secretion by HRS
cells induces eotaxin in fibroblasts of HD tissue, which sub-
sequently recruits T cells and eosinophils (51). Likewise,
CX3CL1 and CDS83 have the potential to attract T cells
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and might contribute to T cell influx into the affected
lymph nodes (52, 53). Similarly, cytokines like IL-6 and
GM-CSF stimulate plasma cells, Th2 cells, and eosinophils
(45, 54). Taken together, these NF-kB target genes are
strongly implicated to contribute to the architecture of af-
fected lymph nodes in HD.

Tumor cells of classical HD are predominantly found in
the interfollicular zone or less frequently in the follicular
mantle zone of partially infiltrated nodes (55). Thus, con-
fining tumor cells to distinct lymphoid compartments
might be mediated by chemokine receptors like CCR7. In
agreement with recent data, CCR7 was determined as a
bona fide NF-kB target gene in HRS cells (38). CCR7
might not only contribute to distinct dissemination of neo-
plastic cells into lymphoid organs, but also seems to have a
more general role in tumor cell migration because a critical
role in breast cancer metastasis has been described (56).
Likewise, CD44 is expressed at high levels in HRS cells
and implicated in the dissemination of HRS cells (31).
Moreover, the expression of CD44 splice variant v10 is as-
sociated with an unfavorable clinical prognosis (31). Fi-
nally, the serine protease inhibitor TFPI-2, which has a
proinvasive effect in hepatocellular carcinoma cells, might

NF-kB Target Genes in Hodgkin’s Lymphoma
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also be involved in the migration of HD tumor cells (57).
Altogether, NF-kB controls a set of genes that likely regu-
lates tumor cell localization.

Deregulated proliferation is a typical event associated
with malignant transformation. Therefore, the overexpres-
sion of factors involved in growth control is of great inter-
est. Both IL-13 and CD40 play a critical role in B cell
proliferation (18, 58). Remarkably, IL-13—-neutralizing
antibodies blocked the proliferation of HDLM-2 cells (33).
Likewise, the IL-15-IL-15R signaling pathway was sug-
gested as important for tumor propagation in multiple my-
eloma (59). Our data reveal IL-15R overexpression in
HRS cells (Fig. 5). However, a potential role of the IL-15—
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STAT5a antibody (top). Loading control blots were
probed with anti-CDK4 antibody (bottom). (B) STAT5a
DNA binding activity in whole cell lysates of control and
HRS or infected L428 and HDLM2 cells was analyzed by
. EMSA. Specificity of STAT5a—DNA complexes was con-
firmed in competition experiments (unpublished data). (C)
Immunoprecipitations were performed with whole cell ly-

- sates of control and HRS or infected L428 and HDLM2

cells. STAT5a tyrosine phosphorylation was detected by
Western blotting using antibodies against phosphotyrosine
(top left). Analysis of HDLM2 cells is shown in a separate
experiment (top right). Blots were reprobed with antibod-
ies against STAT5a (bottom). (D) Patients with classical
HD reveal high level of STAT5a expression in malignant
cells. Immunohistochemistry of classical HD. All HRS
cells (left; arrows indicate representative cells) reveal strong
STATS5a staining compared with surrounding benign cells.
Specificity of STAT5a detection was confirmed by compe-
tition with a specific peptide (right).

IL-15R signaling pathway in HD has to be established.
Aside from deregulated proliferation, malignant cells dis-
play high rates of glucose uptake and glycolysis (60). The
overexpression of GLUTS5, as observed in this study, might
permit the enhanced uptake of fructose and provide a met-
abolic advantage for HRS cells (61).

As a striking observation, constitutive NF-kB activates
the STAT5a signaling pathway both by overexpression and
by the induction of tyrosine phosphorylation of STAT5a in
cultured HRS cells (Figs. 2, 4, and 7). Notably, all patients
analyzed with classical HD express high level activated
STAT5a in the entire tumor cell population (Fig. 7 D).
These findings establish a new level of complexity in the
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Table I.  Pathogenetic Relevance of NF-kB Target Genes for HD and Other Neoplastic Malignancies
Known Verified Expression  Expression
Gene target  target in HRS cells® in HRS cells Expression in other tumors Potential involvement in pathogenesis
IL-6 + + + Multiple myeloma, HNSCC  Induction of plasma cell infiltration
GM-CSF + + + HNSCC Regulates eosinophil proliferation
CX3CL1 + + + — Recruits T cells to lymphoma
ICAM-1 + + Multiple myeloma Recruits T cells to lymphoma
CD83 + + + + — Recruits T cells to lymphoma
MDC + + — Recruits Th2-type T cells to lymphoma
CD86 + + B cell leukemia Interacts with T cells, induces anergy?
Lymphotoxin-a + + — Inflammatory mediator
TNF-a + + Multiple myeloma Inflammatory mediator
IL-13 + + + — Proliferation
IL-15Ra + + + Multiple myeloma, ATL Proliferation, survival
CD40 + + B cell lymphoma, carcinoma  Proliferation, survival
STAT5a + + ATL, CML, ALL Proliferation, survival
GLUT5 + + Breast carcinoma Metabolic advantage
IEX-1 + + + — Antiapoptotic
Bel-x; + + Breast carcinoma Antiapoptotic
A1/Bfl-1 + + Gastric and colon carcinoma  Antiapoptotic
c-1AP2 + + — Antiapoptotic
TRAF1 + + — Antiapoptotic
TPMT + + ALL S-methylation of thiopurines
CCRY7 + + + + ATL, breast carcinoma Dissemination into lymphoid organs
TFPI-2 + + Owvarian carcinoma, HCC Invasion
CD44 + + + Colon and breast carcinoma,  Dissemination in lymphoid organs
B-CLL, multiple myeloma associated with high risk of relapse
ABIN + + — ?
LSP-1 + + + B cell leukemia and lymphoma ?
NF-kB2/p100 + + + Breast and colon carcinoma ?

Known target, NF-kB regulation was previously described (26, 29, 38, 77) for HRS or non-HRS cells; Verified target, NF-kB regulation in HRS
cells was determined by Northern/RT-PCR; ATL, adult T cell leukemia; CML, chronic myelogenous leukemia; ALL, acute lymphoblastic
leukemia; HCC, hepatocellular carcinoma cell; B-CLL, B cell chronic lymphocytic leukemia.

*Genes for which the high level expression in primary or cultured HRS cells was described in the literature (18, 26, 31, 32, 38, 40, 45—49).
®Genes for which the high level expression in primary or cultured HRS cells was demonstrated in this study.

oncogenic function of NF-kB. STAT5a has been impli-
cated in hematopoietic cell growth and tumor develop-
ment and may therefore present an important downstream
effector of NF-kB (43, 44). Because STAT5a regulates cell
cycle progression via activating D-type cyclins (62) and in-
hibits apoptosis by stimulating Bcl-x; expression (63), it
might contribute to cyclin D2 and Bel-x; induction in
HRS cells in synergism with NF-kB (26). Because cyclin
D2 could not be detected as a direct NF-kB target gene in
the microarray analysis 24 h after Adv-IKkBAN infection
but is affected at later time points (26), NF-kB could regu-
late cyclin D2 expression in part via STAT5a. In fact, both
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cyclin D2 and Bcl-x; contain functional STAT5 binding
sites in their promoter regions (64, 65).

Aside from HD, the expression of aberrant NF-kB activ-
ity or mutant rel/nfkb genes has been noted in many human
hematopoietic (e.g., multiple myeloma, adult T cell leuke-
mia, chronic myelogenous leukemia, acute lymphoblastic
leukemia, and B cell leukemia and lymphoma) and solid
tumors (e.g., head and neck squamous cell [HNSCC],
breast, colon, and ovarian carcinoma; reference 7). Corre-
spondingly, many of the NF-kB target genes are overex-
pressed in these tumors and are implicated to contribute to
their pathogenesis (Table I). In particular GLUTS5, Bcl-x;,

NF-kB Target Genes in Hodgkin’s Lymphoma
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CCR7, CD44, and p100 are overexpressed in breast carci-
noma (7, 56, 61, 66, 67). In colon carcinoma, high levels of
CD44, Bfl-1/A1, and p100 have been observed (7, 67, 68).
A high concentration of cytokines IL-6 and GM-CSF are
produced by tumor cells of patients with HNSCC (69),
whereas enriched levels of TFPI-2 were found in ovarian
tumor samples (70). Different types of leukemia display ab-
errant expression of CD86, IL-15Ra, STAT5a, CCR-7,
CD44, and LSP-1 (32, 44, 71-74). At last, the overexpres-
sion of the NF-kB target genes IL-6, TNF-a,, ICAM-1,
IL-15Ra, and CD44 seems to contribute to the pathogen-
esis of multiple myeloma (59, 75, 76). NF-kB—dependent
gene profiling in the described tumors might extend these
observations and further manifest the role of deregulated
NF-kB activity in oncogenesis.

In addition to clinical implications, this study provides
new insights into NF-kB—dependent gene regulation.
Only a minority of previously described target genes (29,
77) could be identified as NF-kB regulated in HRS cells.
Although several known target genes like RANTES or
A20 are expressed in HRS cells, they either did not re-
spond or only weakly responded upon NF-kB inhibition
(unpublished data). Thus, constitutive NF-«kB drives a spe-
cific network of genes in HRS cells that differs from signal-
induced NF-kB—dependent regulation in other cell types.
Although all HRS cell lines display constitutive NF-kB ac-
tivity, there is some heterogeneity in the expression of sev-
eral target genes (Fig. 4). Likewise, junB, which is regu-
lated by NF-kB (29 and unpublished data), met the criteria
for NF-kB target genes only in HDLM2 cells. These ob-
servations reflect variations in gene expression control
among different HRS cells and suggest the requirement of
additional factors for NF-kB—dependent gene activation.
In fact, LPS stimulation of CCR7 and Spi-B expression in
70Z/3 cells was abrogated when protein synthesis was in-
hibited (Fig. 5). NF-kB might act in concert with other
transcription factors such as AP-1, or certain coactivators
like CBP/p300, to fully activate gene expression (78, 79).
Furthermore, some promoters require modifications in
chromatin structure to make NF-kB sites accessible (27).
Taken together, NF-kB—dependent gene expression is a
matter of both the NF-kB activation status and the molec-
ular environment within a given cell type.

In summary, this study underlines a fundamental impor-
tance of NF-kB in HD. NF-kB controls a complex net-
work of genes, which promotes the specific architecture of
Hodgkin lymphoma, supports proliferation and migration,
and confers resistance to apoptosis. Pharmacological ma-
nipulation of the NF-kB system or of selected target genes
might have a therapeutic potential for HD and other neo-
plastic malignancies.
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