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ABSTRACT

We propose a new method for detecting conserved
RNA secondary structures in a family of related RNA
sequences. Our method is based on a combination of
thermodynamic structure prediction and phylogenetic
comparison. In contrast to purely phylogenetic
methods, our algorithm can be used for small data sets
of ∼10 sequences, efficiently exploiting the information
contained in the sequence variability. The procedure
constructs a prediction only for those parts of
sequences that are consistent with a single conserved
structure. Our implementation produces reasonable
consensus structures without user interference. As an
example we have analysed the complete HIV-1 and
hepatitis C virus (HCV) genomes as well as the small
segment of hantavirus. Our method confirms the
known structures in HIV-1 and predicts previously
unknown conserved RNA secondary structures in HCV.

INTRODUCTION

One of the major problems facing computational molecular
biology is the fact that sequence information is available in far
greater quantities than information about the three-dimensional
structure of biopolymers. While the prediction of three-dimensional
RNA structures from sequence data is unfeasible at present (see,
however, 1 for a promising approach), the prediction of secondary
structure is in principle tractable even for large molecules.
Functional secondary structures are conserved in evolution (see
for instance 2) and they represent a qualitatively important
description of the molecules, as documented by their application
to the interpretation of molecular evolution data.

Almost all RNA molecules and, consequently, also almost all
sub-sequences of a large RNA molecule form secondary
structures. The presence of secondary structure in itself therefore
does not indicate any functional significance. In this contribution
we show that potentially functional RNA structures can be
identified by a purely computational procedure that combines
structure prediction and sequence comparison. RNA viruses are
an ideal proving ground for testing such a method.
(i) Distant groups of RNA viruses have very little or no detectable
sequence homology and often very different genomic organiz-

ation. Thus we can test our approach on essentially independent
data sets.
(ii) RNA viruses show an extremely high mutation rate, of the
order of 10–5–10–3 mutations per nucleotide and replication. Due
to this high mutation rate they form quasi-species, i.e. diffuse
‘clouds’ in sequence space (3), and their sequences evolve at a
very high rate. In contrast, functional secondary structures are
strongly conserved. Due to the high sequence variation, the
application of classical methods of sequence analysis is, therefore,
difficult or outright impossible. Indeed, except for the family
Mononegavirales (negative-stranded RNA viruses), there is no
accepted taxonomy above the genus level.
(iii) The high mutation rate of RNA viruses also explains their
short genomes, of less than ∼20 000 nt (3). A large number of
complete genomic sequences is available in databases. The
non-coding regions are most likely functionally important, since
the high selection pressure acting on viral replication rates makes
‘junk RNA’ very unlikely. So far, a number of relevant secondary
structures have been determined that play a role during the
various stages of the viral life cycle in a variety of different classes
of viruses, for instance lentiviruses (4–6), RNA phages (7,8),
flaviviruses (9), pestiviruses (10,11), picorna viruses (12–17),
hepatitis C viruses (10,18) and hepatitis D virus (19).

Three unrelated groups of viruses, which contain a variety of
human pathogens of global medical importance, will serve as
examples (see Fig. 1 for details). HIV-1 is a highly complex
retrovirus. Its genome is dense with information for coding of
proteins and biologically significant RNA secondary structures. The
latter play a role in both the entire genomic HIV-1 sequence and in
the separate HIV-1 mRNAs, which are basically (combined)
fragments of the entire genome. Flaviviridae are small enveloped
particles with an unsegmented, plus-stranded RNA genome. This
virus family contains the genera flavivirus (which includes the
viruses causing Japanese encephalitis, dengue fever, yellow fever
and tick-borne encephalitis), pestivirus, hepatitis C and the recently
discovered hepatitis G viruses (see 20 for a recent summary).
Hantaviruses are serologically related members of the family
Bunyaviridae (21). They are enveloped viruses with a tripartite
negative sense RNA genome. The three genome segments are called
L, M and S, encoding the viral transcriptase, envelope glyco-
proteins and nucleocapsid protein respectively. In this contribution
we shall be concerned only with the small (S) segment. Hantaviruses
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Figure 1. (Top) Organization of a retrovirus genome (HIV-1) and a Flaviviridae genome (hepatitis C). Proteins are shown on top, known features of the RNA are
indicated below. The major genes of HIV-1 are gag, pol, env, tat and rev. The gag gene codes for structural proteins for the viral core. The pol gene codes among others
for the reverse transcriptase and the protein that integrates the viral DNA (after reverse transcription) into the host DNA. The env gene codes for the envelope proteins.
The tat and rev genes code for regulatory proteins, Tat and Rev, that can bind to TAR and the RRE respectively. INS1, INS2 and CRS are RNA sequences that destabilize
the transcript in the absence of the Rev protein. FSH refers to the hairpin that is involved in the ribosomal frameshift from gag to pol during translation. Poly(A) refers
to the polyadenylation signal. PBS is the primer binding site. For references see Huynen and Konings (67). (Bottom) About 90% of the ∼10 kb genomes of flaviviridae
is taken up by a single long open reading frame that encodes a polyprotein which is co- and post-translationally cleaved by viral and cellular proteases into 10 viral
proteins (for a review see 68). The flanking NCRs are believed to contain cis-acting elements important for replication, translation and packaging. The X-tail, a highly
conserved sequence of 98 nt beyond a poly(U) stretch of variable length, might play an important role in the initiation of genomic replication (18). A and B denote
the location of the two structural elements shown in Figures 5 and 6 respectively.

have been implicated as aetiological agents for two acute diseases:
hemorrhagic fever with renal syndrome (HFRS) and hantavirus
pulmonary syndrome (HPS). Both diseases are carried by rodent
vectors.

The total length of the genomic sequences of HIV-1 and hepatitis
C virus (HCV), of the order of 10 000 nt, makes experimental
analysis of the secondary structure of full genomes unfeasible. For
RNAs of this size, structure prediction based on thermodynamic
constraints is the only approach that is available at present.

MATERIALS AND METHODS

RNA structure prediction

RNA secondary structures are predicted as minimum energy
structures by means of dynamic programming techniques
(22–25). An efficient implementation of this algorithm is part of
the Vienna RNA Package (available at http://www.tbi.univie.ac.at/
∼ivo/RNA/ ; 26). Complete HIV and HCV genomes were folded
on CalTech’s Delta using the message-passing version of the
minimum folding algorithm described by Hofacker et al. (5,27).
This version uses energy parameters based on Freier et al. (28),
Jaeger et al. (29) and He et al. (30), but ignores dangling ends.
The parameters are identical to those in Michael Zuker’s mfold
2.2 with the exception that stacking energies involving GU pairs
were taken from He et al. (30). All other foldings were performed
using version 1.2 of the package, which uses an updated
parameter set described in Walter et al. (31).

Sequence and structure comparison

While computation of the secondary structures is a straight-
forward (yet computationally demanding) task, their comparison
is less obvious.

A variety of combined alignment plus structure prediction
procedures have been proposed (32–34). The problem with this
approach is three-fold for our task. (i) The computational efforts
become prohibitive for longer sequences: CPU time scales of the
order of n4 in the approximate algorithm (32) and n3m in the exact
version (33), where n is the length of the sequence and m the
number of sequences, by far exceed the available resources.
(ii) Viral sequences show a large variation in sequence similarity
along the chain. Furthermore, we do not expect a conserved
secondary structure for all parts of the sequence, even if there is
a significant level of sequence conservation. Combined folding
and alignment algorithms will, therefore, produce poor alignments
in such cases. (iii) The use of a combined algorithm for predicting
structure and alignment would not allow independent verification
of the predicted structural elements. The possibility of verifying
the predicted structures, however, is particularly important when
dealing with the relatively sparse data sets that are available.

We start the comparison procedure with an alignment of the
sequences that is obtained without any reference to the predicted
structures. The multiple sequence alignments are calculated using
CLUSTAL W (35). A good alignment is a prerequisite for the
success of our method. We find, however, that regions with
conserved structures tend to align well, at least locally. We did not
find it necessary to improve the alignments based on visual
inspection. A modification of the alignment taking into account
already predicted structures might increase the number of
compensatory mutations and possibly also the number of detected
structural elements. However, it would compromise the use of the
sequence data for verifying the predicted structures.

The sequence alignment is then used to produce an alignment
of the secondary structures by introducing the appropriate gaps
into the minimum energy foldings. Up to this point our procedure
is essentially the same as Riesner’s ConStruct (36), although we
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Figure 2. Scheme of the secondary structure analysis of viral genomes. Sequences are aligned using a standard multiple alignment procedure. Secondary structures
for each sequence are predicted and gaps are inserted bases in the sequence alignment. The resulting aligned structures can be represented as aligned mountain plots.
From the aligned structures consistently predicted base pairs are identified. The alignment is used to identify compensatory mutations that support base pairs and
inconsistent mutants that contradict pairs. This information is used to rank proposed base pairs by their credibility and to filter the original list of predicted pairs.

start from minimum energy structures instead of base pair
probabilities. The evaluation of the structure alignment, however,
is quite different from these approaches. (i) We do not assume a
priori  that there is a conserved secondary structure for all parts of
the sequence. Hence, we cannot simply search for the secondary
structure that maximizes the sum of the predicted base pairing
probabilities. (ii) We explicitly use the sequence information
contained in the multiple alignment to confirm or reject predicted
base pairs. A flow diagram of our approach is shown in Figure 2.

A quick overview of the data is conveniently obtained from the
mountain representation. In the mountain representation (37) a
single secondary structure is represented on a two-dimensional
graph, in which the x-coordinate is the position k of a nucleotide
in the sequence and the y-coordinate the number m(k) of base pairs
that enclose nucleotide k. The mountain representation allows for a
straightforward comparison of secondary structures and inspired a
convenient algorithm for structure-based alignments of secondary
structures (37,38). Mountain representation plots, such as the one in
Figure 3, can be used to identify conserved sub-structures. The
consensus mountain of a set of N sequences can be defined as

m(k)1�N�N

s
� 1ms(k) 1

The quality of a consensus mountain can be assessed at each
position by comparing the slopes qs(k) = ms(k) – ms(k – 1) of the
different sequences (39). These one-dimensional representations,
such as m(k), provide a global overview of the structure and can
be used to guide a manual reconstruction of consensus secondary
structure elements. This approach turned out to be rather tedious
for the 3′-non-coding regions (NCRs) of flaviviruses with a chain
length of only 200–300 nt and is certainly not feasible for the
analysis of entire genomes. On the other hand, the data contained
in these simplified one-dimensional representations are not
detailed enough to allow for automatic reconstruction of conserved
patterns.

Automatic detection of conserved structural elements

The starting point of a more detailed analysis is a list of all predicted
base pairs. This list will in general not be a valid secondary structure,
i.e. it will violate one or both of the following two conditions:
(i) no nucleotide takes part in more than one base pair;
(ii) base pairs never cross, i.e. there may not exist two base pairs
(i.j) and (k.l) such that i < k < j < l.

Therefore, we rank the individual base pairs by their ‘credibility’
(see below). Then we go through the sorted list and weed out all
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Figure 3. Aligned mountain representations m(k) of the RNA secondary structure of 13 complete HCV genomes. Peaks and plateaux in the mountain representation
correspond to hairpins and unpaired regions in the secondary structure. The folds were computed with CalTech’s Intel Delta, a distributed memory parallel computer
with 512 nodes and roughly 12 Mbytes memory per node. The thick full line is the average mountain representation. In the lower part of the sequence we plot the
variance of the slopes (scattered dots) and a running average (full green line). Deep minima of the green curve correspond to consistently predicted parts of the structure,
such as the two regions labelled A and B.

base pairs that violate conditions (i) or (ii). Clearly, the sorting
procedure is of crucial importance. For each predicted base pair (i.j)
we store the nucleotides occurring in the corresponding positions in
the sequence alignment. We shall call a sequence non-compatible
with a base pair (i.j) if the two nucleotides at positions i and j would
form a non-standard base pair, such as CA or UU. A sequence is
compatible with base pair (i.j) if the two nucleotides form one of the
following six combinations: GC, CG, AU, UA, GU or UG.

When different standard combinations are found for a particular
base pair (i.j) we may speak of consistent mutations. If we find
combinations such as GC and CG or GU and UA, where both
positions are mutated at once, we have compensatory mutations.
The occurrence of consistent and, in particular, compensatory
mutations strongly supports a predicted base pair, at least in the
absence of non-consistent mutations.

From the frequencies fij  with which (i.j) is predicted in the
sample of sequences we derive the pseudo-entropy

Sij  = –Σk fik lnfik –Σk fkj lnfkj + fij  lnfij 2

where (i.k) and (k.j) are the alternative predicted base pairs
involving i and j respectively. The pseudo-entropy is a measure
for the reliability with which (i.j) is predicted.

We call a base pair (i.j) symmetrical if j is the most frequently
predicted pairing partner of i and if i is the most frequently predicted
pairing partner of j. Note that for each sequence position i there is
at most one symmetrical base pair involving i. A symmetrical base
pair (i.j) necessarily has a rather large value for fij; in particular, it
does not allow a large number of structural alternatives.

In a first preprocessing step we remove for each i all but the
most frequent pair (i.j) from the list of predicted base pairs. The
list is then sorted according to the following hierarchical criteria
[i.e. criterion (ii) is used only when two pairs are not distinguished
by criterion (i), and so on]:
(i) the more sequences non-compatible with (i.j), the less credible
is the base pair;

(ii) symmetrical base pairs are more credible than other base pairs;
(iii) a base pair with more consistent mutations is more credible;
(iv) base pairs with smaller values of pseudo-entropy Sij  are more
credible.

Note that criteria (i) and (iii) make direct use of the sequence
information without reference to frequency of a base pair.

Scanning the sorted list from the top, we remove a base pair if
it conflicts with a higher ranking one that has already been
accepted. Finally, base pairs with fij  below some threshold are
removed. This ensures that structures are predicted only for regions
in which we have a strong signal. The threshold value is a
conservative estimate for the reliability of the secondary structure
prediction (40). In this study a value of 0.3 gave good results. The
final output can be displayed as a colour-coded dot plot (as shown
in Figs 4 and 5) or as a colour-coded mountain plot (Fig. 7).

The virtue of this approach can be tested quite easily. In Figure 4
we compare the predicted consensus structure for two sets of
2-error mutants of the same wild-type sequence. Sequences in the
first set were generated by randomly mutating two positions.
Even this small amount of sequence heterogeneity leads to a quite
diverse set of structures (although some sequences fold into the
wild-type structure) and, hence, no unambiguous secondary
structure is predicted.

A second set was generated in the same way, but this time only
sequences folding into the same structure as the wild-type were
accepted. Since, by construction, all sequences fold into the same
structure, we obtain a perfect prediction for this set which is
supported by a small number of compensatory mutations.

The example shows that even a small number of mutations will
disrupt the secondary structure in the absence of selection
pressure to conserve the structure. Our approach is capable of
distinguishing conserved secondary structure elements from
pieces of sequence with high degrees of homology but without
conserved structural features.
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Figure 4. An artificial example. Two samples of 2-error mutants of the yeast tRNAphe sequence were subjected to our procedure. A square in row i and column j of
the dot plot indicates a predicted pair (i.j). Its size and colour indicates the frequency and ‘credibility’ of the base pair. The area of the square is proportional to the
frequency fij  with which (i.j) is predicted. Colours indicate the number of consistent mutations: red 1, yellow 2 and green 3 different types of base pairs. These saturated
colours indicate that there are only compatible sequences. Decreasing saturation of the colours indicates an increasing number of non-compatible sequences:
i.e. sequences that cannot form (i.j). If there are more than two non-compatible sequences the entry is not displayed. (Upper right triangle) The 29 sequences that fold
into the wild-type cloverleaf structure of tRNAs lead to a perfect reconstruction of the secondary structure. Each helix is supported by at least one consistent mutation.
Forty-seven of the 76 sequence positions are conserved. (Lower left triangle) A sample of 20 randomly generated 2-error mutants of the tRNAphe sequence does not
produce a reasonable prediction of the cloverleaf structure: one stack of the cloverleaf is not predicted at all and another stack does not conform to the wild-type
structure. Each helix contains several inconsistent mutations, despite the fact that 43 of the 76 positions are conserved. The only acceptable signal in this data set are
the top-most three pairs of the anticodon loop.

Table 1. Predictions of 5s RNAs

Sample n Sequence identity (%) Base pairs
Predicted ‘False’ Phylogenetic

Halobacteriales 12 81.8 31 1a 31…36

Methanomicrobiales 9 75.0 29 2a 32…39

Halobacteriales + Methanomicrobiales 11 71.1 30 1a 31…39

Methanobacteriales + Methanococciales 12 67.3 33 4a 33…38

Eubacteria 15 60.9 16 0 26…33

Eubacteriab 10 58.8 19 2a 25…33

Archaea 10 58.3 23 0 32…46

Eubacteria + Archaea 10 52.8 21 0 26…45

aNo ‘falsely’ predicted base pair is in conflict with the phylogenetic structure.
bDisjoint samples.



 

Nucleic Acids Research, 1998, Vol. 26, No. 163830

Figure 5. Comparison of predicted minimum energy structures in region A (around position 8000) of the HCV genome. The colour coding of the dot plot is explained
in the caption to Figure 4. The lower left part of the plot shows a conventional picture of the predicted structure. Base pairs marked in green have non-consistent
mutations, circles indicate compensatory mutations. The extended outer stem contains a number of compensatory mutations supporting its existence. Nevertheless,
there are two ‘holes’ and one bleached square that at first glance would tempt one to reject the prediction. A close examination shows, however, that the bleached green
square belongs to a base pair that is almost always predicted, exhibits three different types of standard base pairs and is UU in a single sequence. The mismatches UU,
AC and GA have all been frequently observed (42), e.g. in helical regions of 16S rRNA structures (2), and do not necessarily destabilize the helix. Similarly, the first
hole (shown as a light grey circle in the Figure) in this stem is AC in four sequences and forms three different types of base pairs, namely GC, GU and AU. The second
hole (large grey circle) is a conserved GA mismatch that might well be present in the secondary structure. The last GC pair before the interior loop, shown on the lower
left, does not appear in the dot plot because three sequences cannot form that pair. These three sequences also have the AC mismatch and fold slightly differently: they
form a bulge after the yellow base pair and then a helix that is shifted by 1 base. The one sequence that cannot make the ‘green’ base pair is among these three sequences
as well. Shifts in RNA secondary structure have so far only been reported for the RRE in lentiviruses (63).

As a second example, we applied our method to samples from
the Berlin RNA Databank (41), which contains 5S RNA
sequences and phylogenetic structures. To investigate the influence
of sequence heterogeneity we randomly selected 9–15 sequences
from different sub-groups (see Table 1). For a relatively
homogeneous sample, such as the Halobacteriales, we obtain an
almost perfect prediction with only one small helix of 2 bp
missing. For heterogeneous samples such as a random selection of
five Eubacteria and five Archaea we still find most of the correct
structure without introducing any false positives. Occasionally we
find base pairs not in the phylogenetic structure. In all such cases
they only elongate a helix present in the phylogenetic structure.

The accuracy of the minimum energy predictions for these
sequences varies widely; on average ∼70% of the phylogenetic
pairs are present in the minimum energy structure. Note, however,
that different pairs are predicted in different sequences; in fact, no
pair was present in the minimum energy structures of all
sequences in a sample and some minimum energy structures do
not contain a single correct pair.

Sometimes well-predicted stacked regions are interrupted by
individual ‘holes’ or show a single base pair with a few
non-compatible sequences. While in many cases these features
reflect structural variability or the existence of an internal loop,
they can be attributed to non-standard base pairs, like GA or UU,
that do not necessarily disrupt the helix (42) in other cases. An
example is shown in Figure 5.

RESULTS

As a first application of our method we have investigated the
minimum energy folding of 13 complete HCV sequences, a
sample of 13 complete HIV-1 sequences and the S segment of 19
strains of hantavirus (access codes are listed in the Appendix).
Minimum free energy structures of the complete HIV and HCV
genomes were obtained on CalTech’s Intel Delta. For details of
the parallel computer implementation of the folding algorithm see
Hofacker et al. (5). The hantavirus sequences were folded using
the serial version of the folding program, which uses a slightly
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Figure 6. Predicted conserved minimum energy structure of region B (around
position 9100) of the HCV genome. The colour coding of the dot plot is
explained in the caption to Figure 4. The lower left part of the plot shows a
conventional picture of the predicted structure. Circles indicate a compensatory
mutation.

more recent parameter set (31). Multiple sequence alignments were
obtained using CLUSTAL W. Both the folding outputs and the
multiple alignments were processed without further modification.

Hepatitis C sequences have chain lengths of ∼9500 nt. The
main differences in length stem from the 3′-end of the genome,
where a poly(U) region separates a 98 nt sequence from the rest
of the genome (18,43). This so-called X-tail is not present in the
published ‘complete’ genomes, with a single (very recent)
exception (Genbank accession no. D85516). In this sequence we
found no long range interactions involving the X-tail and, hence,
no evidence for the panhandle structure postulated in figure 7B of
Kolykhalov et al. (43). We find that the poly(U) region acts as a
spacer causing the X-tail to fold as a separate domain. It is
justified, therefore, to consider the main part of the genome
[before the poly(U) region] and the X-tail separately.

The length of the CLUSTAL W alignment of the main part of
the genome, up to the poly(U), is 9538. Insertions or deletions
appear in 267 positions before the poly(U). 4919 positions are
conserved; the mean pairwise identity of sequences is 80%.

The 5′-NCR has recently been studied using a combination of
thermodynamic prediction and biochemical methods (10,44,45).
Unfortunately, the sequences at the 5′-end are highly conserved
(97% pairwise identity, 89% of the 342 positions conserved). As
a consequence of the very small sequence variation, our approach
is not much better than thermodynamic predictions on a single
sequence in this case. We find most of hairpins appearing in the
model of Brown et al. (10), but predict no longer range base pairs.

A similar situation is encountered for the X-tail: of the 98 nt
only five show any sequence variability. There are only three
different sequences of these 98 nt among the eight database
entries currently available. Our data agree with the three
stem–loops predicted in Blight and Rice (46) and Ito and Lai (47)
based on chemical probing. It is also supported by two consistent
mutations in the long helix at the very 3′-end.

We do, however, find convincing structural motifs within the
coding region of the viral genome, two examples of which are
shown in Figures 5 and 6. Although neither region has been
investigated before, the large number of compensatory mutations
clearly indicates that these structural motifs are conserved.

The minimum free energy structures of the 13 sequences
contain a total of 23 186 bp. Preprocessing leaves only 2805 list
entries, which is already slightly less than the ∼3050 bp predicted
in the individual minimum energy structures. Of these, 432
entries are inconsistent with higher ranking entries in the sorted
list, 572 entries are removed because there are more than two
inconsistent sequences and the frequency fij  of 298 of the
remaining base pairs is below the threshold value 0.3. This leaves
us with 1503 pairs in the dot plots, a reduction of >50% from the
original. Of these, 985 have only compatible sequences, 179 have
a single incompatible sequence and 339 have two.

The output generated for large molecules will in general still
contain a substantial number of base pairs that are at best doubtful,
such as isolated base pairs and short helices with several
inconsistent sequences. The truly promising structures are, however,
easy to detect by visual inspection of the resulting dot plot.

As a second example, we have re-analysed a sample of HIV-1
sequences from an earlier study (5). The number of predicted
conserved base pairs is similar to the HCV case (see Table 2 for
details). In the following we discuss the automatically generated
predictions for two well-understood secondary structure motifs,
namely the trans-activating responsive element (TAR) and Rev
response element (RRE), in some detail.

Table 2. Predicted secondary structure elements

HCV HIV1

Number of sequences (N) 13 13

Minimum sequence 9400 9074

Maximum sequence length 9502 9292

Alignment length 9538 9535

Conserved positions 4919 4779

Average sequence identity (%) 80 83

Different base pairs 23 186 20 667

Credible base pairs 1503 1121

1 Consistent mutation 460 300

2 Consistent mutations 80 44

3 Consistent mutations 8 2

4 Consistent mutations 2 0

At the 5′-end of the viral HIV-1 RNA molecule resides the
trans-activating responsive (TAR) element (48), which interacts
with the regulatory Tat protein. Binding of the Tat protein to TAR
is responsible for activation and/or elongation of transcription of
the provirus (49,50). On the basis of biochemical analysis (4) and
computer prediction of the 5′-end of the genome it is known that
the TAR region in HIV-1 forms a single isolated stem–loop
structure of ∼60 nt with ∼20 bp interrupted by two bulges.

This structure is indeed predicted in the minimum free energy
structures of 11 of the 13 sequences analysed here. The consensus
prediction (Fig. 7) is identical to the structure reported in the
literature. The mean pairwise sequence identity of this region is
85%.
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Figure 7. The TAR structure of HIV-1. Almost all predicted base pairs are consistent with all 13 sequences, most of them are predicted in at least 11 sequences. A
large number of compensatory mutations supports the thermodynamic predictions. Our computed consensus structure (lower left) matches the structure determined
by probing and phylogenetic reconstruction (4). We display here the consensus dot plot, the classical secondary structure and a mountain representation. The latter
is a convenient alternative to dot plots for larger structural motifs. Base pairs are represented by slabs connecting the two sequence positions. The width and colour
of a slab corresponds to size and colour of the corresponding dot plot entry.

The Rev response element (RRE) is an important conserved
RNA structure that is located within the env gene. The interaction
of RRE with the Rev protein reduces splicing and increases the
transport of unspliced and single spliced transcripts to the
cytoplasm, which is necessary for the formation of new virion
particles (51).

A long stem–loop structure (I) separates the binding region
from the rest of the RNA. The long stem–loop structure
furthermore indicates that the structure is easily accessible. The
consensus secondary structure of the RRE in HIV-1 is a
multi-stem–loop structure consisting of five hairpins supported
by a large stem structure (52; see Figs 8 and 9). An alternative
structure of only four hairpins, in which hairpins III and IV of the
consensus model merge to form one hairpin, has also been
proposed (53,54); it matches the minimum energy structure for
some sequences, e.g. HIVLAI (55). A comparison of minimum
energy structures (5,27) shows that there appears to be a third
structure in which hairpin III is relatively large and a few of the
other hairpins have disappeared from the minimum free energy
structure. A comprehensive analysis of the base pairing
probabilities in the RRE shows that hairpins II, IV and V, as well
as the basis of hairpin III, are not well defined, in the sense that
they allow for different structures with comparable probabilities
(56).

As a final example we consider the S segment of hantavirus.
The ∼1700 nt long S segment contains a single ORF encoding a
nucleocapsid (N) protein. In contrast to other members of the family

Bunyaviridae, there is no evidence for a second non-structural (NSs)
protein coded by the S segment. We used the 19 sequences listed
in the Appendix, which have a mean pairwise identity of 63.9%.
The only detected structural feature in this case is a 19 bp
stem–loop structure formed by the 5′- and 3′-ends.

This panhandle structure is highly significant: All sequences
are compatible with the structure and it is part of the minimum
energy prediction in 16 of the 19 minus strands and 14 plus
strands. There are two positions which show compensatory
mutations (see Fig. 10). The panhandle structure was postulated
in the 1980s for all Bunyaviridae (57,58).

DISCUSSION

We have presented a combination of secondary structure
prediction based on thermodynamic criteria and sequence
comparison that is capable of reliably identifying conserved
structural features in a set of related RNA molecules. The method
has been designed for routine investigations of large RNA
molecules, such as complete viral genomes. Indeed, the procedure
does not require any intervention: CLUSTAL W alignments and
minimum energy structures [as obtained from the Vienna RNA
Package or Zucker’s mfold (59)] can be used ‘as is’. Our program
currently does not support the detection of pseudo-knots.
However, the method is in principle suitable for this task (with
minor modifications), provided the structure prediction algorithm
allows for pseudo-knots (60,61).
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Figure 8. Colour coded mountain plot of the RRE region. The five-fingered structure is clearly visible. The peaks are, from left to right: IIc, III, IV, V and VI, in the
notation of Dayton et al. (52). The short stem IIa is not predicted for this particular data set (see Fig. 9).

Conserved secondary structures are likely to be functional, thus
our method can be used to find functional secondary structures.
Since our method emphasizes sequence variation, it complements
other methods for finding functional RNA secondary structures
based on thermodynamic prediction (for example 55,62).

We have applied this technique to complete genomes of three
quite different species of RNA viruses: HIV-1, HCV and the small
segment of hantavirus. In all cases we have been able to identify
most of the known secondary structure features. In addition, we
predict a large number of conserved structural elements which
have not been described so far.

We have designed our approach in such a way that it does not
predict a structure for all parts of a molecule; the filtering
procedure outlined in Materials and Methods is designed in such
a way that only base pairs that may occur in almost all sequences
and that are predicted in a sizeable fraction of the sequences will
be accepted. It is not surprising, therefore, that the predicted RRE
structures in Figure 9 do not contain every single base pair of the
published, experimentally supported structures. Rather, we
obtain a subset of base pairs that is consistent with known
features. This suggests that we are not producing a large number
of false positives. The fact that no false positives were produced
in the analysis of 5S RNA sequences supports this claim. On the
other hand, we recover most of the structures described for both
HIV-1 and HCV, as well as the panhandle structure of hantavirus
and the main structural features of 5S RNA.

Since the success of the method depends on the availability of
a good alignment, it works best for samples with moderate
sequence heterogeneity (say 80% identity). However, alignment
errors should at worst cause some structures to be missed, but are not
likely to lead to falsely predicted structures. For heterogeneous
samples of sequences that code for proteins good quality
alignments might be obtained by first aligning the protein
sequences of the translation products and translating back to
nucleic acid sequences.

Extensive computer analysis of the RRE region of HIV-1 and
HIV-2 has shown that the sequence alignment does not completely
coincide with the alignment at the level of the secondary structure
(63). This has two important implications: (i) methods that
predict secondary structure of RNA on the basis of co-variation
of positions within the sequence (2) cannot provide an unambiguous
answer here; (ii) the RRE has structural versatility. As a
consequence, we obtain slightly different predictions for the
conserved structure depending on the set of sequences used for
the analysis. This structural versatility could also play a role in a
single HIV clone. Using McCaskill’s algorithm (64) for predicting
the matrix of base pairing probabilities, we have indeed identified
a spectrum of alternative structures for the RRE of HIVLAI in a
previous communication (55). Similar features have been
detected in the 3′-NCR of flaviviruses (39,65). These facts make
it worthwhile to generalize the present approach to using base
pairing probability matrices instead of minimum energy structures,
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Figure 9. Consensus structures of the HIV-1 RRE region from a set of 13 sequences and from the 21 sequences reported in Hofacker et al. (5). The main hairpins are
present in both predictions; the only difference is hairpin IIa which is supported by a single compensatory base pair in the larger data set. The predictions agree very
well with an experimentally supported structure (52) that also contains IIa. The sequence in the IIa region is conserved in the smaller data set and purely thermodynamic
considerations favour the short stack extending stack III in the right hand structure [this stem is called IIc in Mann et al. (53) and Zemmel et al. (54)]. Interestingly,
earlier studies (5,55) indicate a substantial structural versatility in this region which may explain minor disagreements between different published structures (see for
example 52–54).

Figure 10. Consensus structures for the minus strand of the S segment of hantavirus. The only consistently predicted structure is a panhandle formed by the 5′- and
3′-ends.
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as in ConStruct (1), despite the substantial increase in required
computer resources. Preliminary data indicate a promising increase
in the accuracy of predicted structures.
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APPENDIX

In this study we have used the following viral RNA sequences
(Genbank accession nos are given in parentheses).

HIV-1: HIVANT70 (M31171, L20587), HIVBCSG3C
(L02317), HIVCAM1 (D10112, D00917), HIVD31 (X61240,
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X16109 U23487), HIVELI (K03454, X04414), HIVLAI
(K02013), HIVMAL (K03456), HIVMVP5180 (L20571),
HIVNDK (M27323), HIVOYI (M26727), HIVRF (M17451,
M12508), HIVU455 (M62320) and HIVZ2Z6 (M22639).

HCV: complete genomes (except for the X-tail): HCU16362
(U16362), HCU45476 (U45476), HPCCGAA (M67463),
HPCCGENOM (L02836), HPCCGS (D14853), HPCEGS
(D17763), HPCHCJ1 (D10749), HPCJ483 (D13558, D01217),
HPCJRNA (D14484, D01173), HPCJTA (D11168, D01171),
HPCK3A (D28917), HPCPP (D30613) and HPCRNA (D10934).

X-tail sequences (accession numbers only): D63922, D67091,
D67092, D67093, D67094, D67095, D67096, D85516 (the last
sequence is a complete genome including the X-tail).

Hantavirus sequences: AF004660, HNVNPSS, HVU37768,
HMU32591, HSU29210, KHU35255, AF005727, PHU47136,
PHVSSEG, PSU47135, PUUSNP, PUVSVIN83, PUVSVIRRT,
PVSZ84204, PVU22423, VRANICAS, RMU52136, HPSNUPR
and TUVS5302.

The comparison algorithm described is implemented as an
ANSI C program alidot. It generates a text file with information on
all predicted base pairs and a postscript file of the dot plot of the
predicted conserved base pairs. Alternative representations, such as
the aligned mountain plots, input files for XRNA (66) and
post-processing of XRNA output is handled by a collection of perl
scripts. This software is available upon request from the authors.


