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ABSTRACT

We propose a new method for detecting conserved
RNA secondary structures in a family of related RNA
sequences. Our method is based on a combination of
thermodynamic structure prediction and phylogenetic
comparison. In contrast to purely phylogenetic
methods, our algorithm can be used for small data sets
of (110 sequences, efficiently exploiting the information
contained in the sequence variability. The procedure
constructs a prediction only for those parts of
sequences that are consistent with a single conserved
structure. Our implementation produces reasonable
consensus structures without user interference. As an
example we have analysed the complete HIV-1 and
hepatitis C virus (HCV) genomes as well as the small
segment of hantavirus. Our method confirms the
known structures in HIV-1 and predicts previously
unknown conserved RNA secondary structures in HCV.

INTRODUCTION

ation. Thus we can test our approach on essentially independent
data sets.

(ii) RNA viruses show an extremely high mutation rate, of the
order of 16°-10-3 mutations per nucleotide and replication. Due

to this high mutation rate they form quasi-species, i.e. diffuse
‘clouds’ in sequence spacg),(and their sequences evolve at a
very high rate. In contrast, functional secondary structures are
strongly conserved. Due to the high sequence variation, the
application of classical methods of sequence analysis is, therefore,
difficult or outright impossible. Indeed, except for the family
Mononegavirales (negative-stranded RNA viruses), there is no
accepted taxonomy above the genus level.

(i) The high mutation rate of RNA viruses also explains their
short genomes, of less thaB0 000 nt 8). A large number of
complete genomic sequences is available in databases. The
non-coding regions are most likely functionally important, since
the high selection pressure acting on viral replication rates makes
‘junk RNA' very unlikely. So far, a number of relevant secondary
structures have been determined that play a role during the
various stages of the viral life cycle in a variety of different classes
of viruses, for instance lentiviruse$—6), RNA phages 1,8),

One of the major problems facing computational moleculaifaviviruses ), pestiviruses1(0,11), picorna viruses1@-17),
biology is the fact that sequence information is available in farepatitis C virusesl(,18) and hepatitis D viruslg).

greater quantities than information about the three-dimensionalThree unrelated groups of viruses, which contain a variety of
structure of biopolymers. While the prediction of three-dimensiondluman pathogens of global medical importance, will serve as
RNA structures from sequence data is unfeasible at present (s&amples (see Fidl for details). HIV-1 is a highly complex
however] for a promising approach), the prediction of secondaryetrovirus. Its genome is dense with information for coding of
structure is in principle tractable even for large moleculequroteins and biologically significant RNA secondary structures. The
Functional secondary structures are conserved in evolution (Jasier play a role in both the entire genomic HIV-1 sequence and in
for instance2) and they represent a qualitatively importantthe separate HIV-1 mRNAs, which are basically (combined)
description of the molecules, as documented by their applicatidf@gments of the entire genome. Flaviviridae are small enveloped

to the interpretation of molecular evolution data.

particles with an unsegmented, plus-stranded RNA genome. This

Almost all RNA molecules and, consequently, also almost allirus family contains the genera flavivirus (which includes the
sub-sequences of a large RNA molecule form secondamruses causing Japanese encephalitis, dengue fever, yellow fever
structures. The presence of secondary structure in itself theref@nd tick-borne encephalitis), pestivirus, hepatitis C and the recently
does not indicate any functional significance. In this contributiodiscovered hepatitis G viruses (sg@ for a recent summary).
we show that potentially functional RNA structures can bédantaviruses are serologically related members of the family
identified by a purely computational procedure that combineBunyaviridae 21). They are enveloped viruses with a tripartite
structure prediction and sequence comparison. RNA viruses aregative sense RNA genome. The three genome segments are calle

an ideal proving ground for testing such a method.

L, M and S, encoding the viral transcriptase, envelope glyco-

(i) Distant groups of RNA viruses have very little or no detectablproteins and nucleocapsid protein respectively. In this contribution
sequence homology and often very different genomic organizve shall be concerned only with the small (S) segment. Hantaviruses
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Figure 1. (Top) Organization of a retrovirus genome (HIV-1) and a Flaviviridae genome (hepatitis C). Proteins are shown on top, knesof tbaetiRBIA are
indicated below. The major genes of HIV-1 gag pol, eny tat andrev. Thegaggene codes for structural proteins for the viral core pbhgene codes among others

for the reverse transcriptase and the protein that integrates the viral DNA (after reverse transcription) into the hosebigferEhcodes for the envelope proteins.
Thetatandrevgenes code for regulatory proteins, Tat and Rev, that can bind to TAR and the RRE respectively. INS1, INS2 and CRS asnBaéAlssqlestabilize

the transcript in the absence of the Rev protein. FSH refers to the hairpin that is involved in the ribosomal framegtytofpmiduring translation. Poly(A) refers

to the polyadenylation signal. PBS is the primer binding site. For references see Huynen and KoniBg&@87) About 90% of thé&1L0 kb genomes of flaviviridae

is taken up by a single long open reading frame that encodes a polyprotein which is co- and post-translationally cledadimelirar proteases into 10 viral
proteins (for a review see 68). The flanking NCRs are believed to coigtaitting elements important for replication, translation and packaging. The X-tail, a highly
conserved sequence of 98 nt beyond a poly(U) stretch of variable length, might play an important role in the initiatioricofegdination (18). A and B denote

the location of the two structural elements shown in Figures 5 and 6 respectively.

have been implicated as aetiological agents for two acute disease#s variety of combined alignment plus structure prediction
hemorrhagic fever with renal syndrome (HFRS) and hantavirygrocedures have been proposé#-84). The problem with this
pulmonary syndrome (HPS). Both diseases are carried by rodemiproach is three-fold for our task. (i) The computational efforts
vectors. become prohibitive for longer sequences: CPU time scales of the
The total length of the genomic sequences of HIV-1 and hepatitisder ofn* in the approximate algorithrZ) andn3Min the exact
C virus (HCV), of the order of 10 000 nt, makes experimentalersion 83), wheren is the length of the sequence andhe
analysis of the secondary structure of full genomes unfeasible. Famber of sequences, by far exceed the available resources.
RNAs of this size, structure prediction based on thermodynam{i) Viral sequences show a large variation in sequence similarity

constraints is the only approach that is available at present. along the chain. Furthermore, we do not expect a conserved
secondary structure for all parts of the sequence, even if there is
MATERIALS AND METHODS a significant level of sequence conservation. Combined folding
o and alignment algorithms will, therefore, produce poor alignments
RNA structure prediction in such cases. (iii) The use of a combined algorithm for predicting

ucture and alignment would not allow independent verification

structures by means of dynamic programming techniqu the predicted structural elements. The possibility of verifying
(22-25). An efficient implementation of this algorithm is part of te predicted structures, however, is particularly important when

the Vienna RNA Package (available at http:/Avww.tbi.univie.ac.afl€aling with the relatively sparse data sets that are available.
COvo/RNAY ; 26). Complete HIV and HCV genomes were folded e start the comparison procedure with an alignment of the
on CalTech’s Delta using the message-passing version of thgduences that is optalned without any reference to the predlcyed
minimum folding algorithm described by Hofackeral (5,27).  Structures. The multiple sequence alignments are calculated using
This version uses energy parameters based on Etaib(2g), ~CLUSTAL W (35). A good alignment is a prerequisite for the
Jaegeet al (29) and Heet al (30), but ignores dangling ends. SUCCess of our method. We find, however, that regions with
The parameters are identical to those in Michael Zuker’s mfolgonserved structures tend to align well, at least locally. We did not
2.2 with the exception that stacking energies involving GU pairé"d it necessary to improve the alignments based on visual
were taken from Het al (30). All other foldings were performed inspection. A modification of the alignment taking into account

using version 1.2 of the package, which uses an updatéfeady predicted structures might increase the number of
parameter set described in Wakeal (31). compensatory mutations and possibly also the number of detected

structural elements. However, it would compromise the use of the
sequence data for verifying the predicted structures.

The sequence alignment is then used to produce an alignment
While computation of the secondary structures is a straightf the secondary structures by introducing the appropriate gaps
forward (yet computationally demanding) task, their comparisoimto the minimum energy foldings. Up to this point our procedure
is less obvious. is essentially the same as Riesner’'s ConStagt &lthough we

RNA secondary structures are predicted as minimum ener%’

Sequence and structure comparison
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Figure 2. Scheme of the secondary structure analysis of viral genomes. Sequences are aligned using a standard multiple alignreeSepoymatyrstructures
for each sequence are predicted and gaps are inserted bases in the sequence alignment. The resulting aligned stregttessitiaa ls aligned mountain plots.
From the aligned structures consistently predicted base pairs are identified. The alignment is used to identify compésiansrihatusupport base pairs and
inconsistent mutants that contradict pairs. This information is used to rank proposed base pairs by their credibilitgiathe torfginal list of predicted pairs.

start from minimum energy structures instead of base paithe quality of a consensus mountain can be assessed at eact

probabilities. The evaluation of the structure alignment, howevegppsition by comparing the slopggk) = mgk) —mg(k — 1) of the
is quite different from these approaches. (i) We do not assumaifferent sequence89). These one-dimensional representations,
priori that there is a conserved secondary structure for all partssafch asn(k), provide a global overview of the structure and can

the sequence. Hence, we cannot simply search for the secondagyused to guide a manual reconstruction of consensus secondary
structure that maximizes the sum of the predicted base pairisgucture elements. This approach turned out to be rather tedious

probabilities. (i) We explicitly use the sequence informatiorfor the 3-non-coding regions (NCRs) of flaviviruses with a chain

contained in the multiple alignment to confirm or reject predictetength of only 200-300 nt and is certainly not feasible for the

base pairs. A flow diagram of our approach is shown in Fyure analysis of entire genomes. On the other hand, the data contained
A quick overview of the data is conveniently obtained from thén these simplified one-dimensional representations are not

mountain representation. In the mountain representatigna( detailed enough to allow for automatic reconstruction of conserved

single secondary structure is represented on a two-dimensiopalterns.
graph, in which the-coordinate is the positidnof a nucleotide

in the sequence and theoordinate the numben(k) of base pairs  Aytomatic detection of conserved structural elements
that enclose nucleotide The mountain representation allows for a

straightforward comparison of secondary structures and inspiredThe star_ting p(_)inp of amore detailed analysis_is a list of all predicted
convenient algorithm for structure-based alignments of seconddpgse pairs. This list will in general not be a valid secondary structure,

structures§7,38). Mountain representation plots, such as the one ire. it will violate one or both of the following two conditions:
Figure 3, can be used to identify conserved sub-structures. T no nucleotide takes part in more than one base pair;

consensus mountain of a sef\bequences can be defined as (i) base pairs never cross, i.e. there may not exist two base pairs

(i.j) and k) such that <k <j <I.
Therefore, we rank the individual base pairs by their ‘credibility’

m(k)1/N ZNS = 1my(k) 1 (see below). Then we go through the sorted list and weed out all



3828 Nucleic Acids Research, 1998, Vol. 26, No. 16

300

mnt

100 BNV RPN | BT I b Mt L ]
760 7800 8000 8200 8400 8800 8800 9000 9200 9400 9600
position

Figure 3. Aligned mountain representatiomgk) of the RNA secondary structure of 13 complete HCV genomes. Peaks and plateaux in the mountain representatiol
correspond to hairpins and unpaired regions in the secondary structure. The folds were computed with CalTech’s Intistieltadartemory parallel computer

with 512 nodes and roughly 12 Mbytes memory per node. The thick full line is the average mountain representation. Ip#redbtier sequence we plot the
variance of the slopes (scattered dots) and a running average (full green line). Deep minima of the green curve cooesigtertiiopredicted parts of the structure,

such as the two regions labelled A and B.

base pairs that violate conditions (i) or (ii). Clearly, the sortingii) symmetrical base pairs are more credible than other base pairs;
procedure is of crucial importance. For each predicted basgjpair ((iii) a base pair with more consistent mutations is more credible;
we store the nucleotides occurring in the corresponding positions(iir) base pairs with smaller values of pseudo-ent&@re more
the sequence alignment. We shall call a sequence non-compatigledible.
with a base paii {) if the two nucleotides at positionandj would Note that criteria (i) and (jii) make direct use of the sequence
form a non-standard base pair, such as CA or UU. A sequenceriformation without reference to frequency of a base pair.
compatible with base paitj} if the two nucleotides form one of the  Scanning the sorted list from the top, we remove a base pair if
following six combinations: GC, CG, AU, UA, GU or UG. it conflicts with a higher ranking one that has already been
When _d_lfferent standard comblnatK_)ns are foungj for a pam?“'@'ccepted. Finally, base pairs wighbelow some threshold are
base pairi(j) we may speak of consistent mutations. If we findemoyed. This ensures that structures are predicted only for regions
combinations such as GC and CG or GU and UA, where bol \hich we have a strong signal. The threshold value is a
positions are mutated at once, we ha_ve compensatory mutatiogs,sanative estimate for the reliability of the secondary structure
The occurrence of consistent and, in particular, compensat ediction ¢0). In this study a value of 0.3 gave good results. The

mutations strongly supports a prgdlcted base pair, at least in inal output can be displayed as a colour-coded dot plot (as shown
absence of non-consistent mutations.

A . . . . in Figs4 andb) or as a colour-coded mountain plot (Hy.
sal;zgg é?ig;i%lﬁgcs'eﬁevggzvgmf g pqugulg O?;?:tjr'g;ef in the The virtue of this approach can be tested quite easily. In Egure

we compare the predicted consensus structure for two sets of
Sj = 2k fik Infix =2k fij Infyj + fij Inf; 2 2-error mutants of the same wild-type sequence. Sequences in the
first set were generated by randomly mutating two positions.

where {K) and kj) are the alternative predicted base pair: : ) )
involving i andj respectively. The pseudo-entropy is a measu%.ven this small amount of sequence heterogeneity leads to a quite
iverse set of structures (although some sequences fold into the

for the reliability with which i(j) is predicted. -t fruct d h bi d
We call a base pair.jj symmetrical ifj is the most frequently wild-type struc gre) and, hence, no unambiguous secondary
structure is predicted.

predicted pairing partner bénd ifi is the most frequently predicted . .

pairing partner of. Note that for each sequence posititinere is A Seécond set was generated in the same way, but this time only

at most one symmetrical base pair invohiing symmetrical base Seduences folding into the same structure as the wild-type were
accepted. Since, by construction, all sequences fold into the same

pair (j) necessarily has a rather large valuefjfoin particular, it y R : € Sd
does not allow a large number of structural alternatives. structure, we obtain a perfect prediction for this set which is

In a first preprocessing step we remove for éamhbut the  supported by a small number of compensatory mutations.
most frequent paiti {) from the list of predicted base pairs. The The example shows that even a small number of mutations will
list is then sorted according to the following hierarchical criteriglisrupt the secondary structure in the absence of selection
[i.e. criterion (ii) is used only when two pairs are not distinguisheg@ressure to conserve the structure. Our approach is capable of
by criterion (i), and so on]: distinguishing conserved secondary structure elements from
(i) the more sequences non-compatible wih {he less credible pieces of sequence with high degrees of homology but without
is the base pair; conserved structural features.
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Figure 4. An artificial example. Two samples of 2-error mutants of the yeast RR$aquence were subjected to our procedure. A square irarmhcolumrj of

the dot plot indicates a predicted pai).(Its size and colour indicates the frequency and ‘credibility’ of the base pair. The area of the square is proporional to th
frequencyfij with which ) is predicted. Colours indicate the number of consistent mutations: red 1, yellow 2 and green 3 different types of Dassesdtsirated
colours indicate that there are only compatible sequences. Decreasing saturation of the colours indicates an increashgnonsctrapatible sequences:

i.e. sequences that cannot foiirj).(If there are more than two non-compatible sequences the entry is not displayed. (Upper right triangle) The 29 sedokhces that
into the wild-type cloverleaf structure of tRNAs lead to a perfect reconstruction of the secondary structure. Each pelitei$ Byt least one consistent mutation.
Forty-seven of the 76 sequence positions are conserved. (Lower left triangle) A sample of 20 randomly generated 2-eobthmuRiNgS"esequence does not
produce a reasonable prediction of the cloverleaf structure: one stack of the cloverleaf is not predicted at all andcndtiesr 1sbt conform to the wild-type
structure. Each helix contains several inconsistent mutations, despite the fact that 43 of the 76 positions are conselyedc@ptble signal in this data set are

the top-most three pairs of the anticodon loop.

Table 1.Predictions of 5s RNAs

Sample n Sequence identity (%) Base pairs
Predicted ‘False’ Phylogenetic

Halobacteriales 12 81.8 31 1a 31...36
Methanomicrobiales 9 75.0 29 a2 32...39
Halobacteriales + Methanomicrobiales 11 71.1 30 a 1 31...39
Methanobacteriales + Methanococciales 12 67.3 33 a 4 33...38
Eubacteria 15 60.9 16 0 2633
Eubacterifl 10 58.8 19 2 25...33
Archaea 10 58.3 23 0 3246
Eubacteria + Archaea 10 52.8 21 0 26...45

3No falsely’ predicted base pair is in conflict with the phylogenetic structure.
bDisjoint samples.



3830 Nucleic Acids Research, 1998, Vol. 26, No. 16

JLA S o 0 A5 O SO O GRSPPIP SN G5 GO OO S PP 0 I 0 I O PR O TP T I 1 T NS N

YYyYryryy

i

CCCC0(

Figure 5. Comparison of predicted minimum energy structures in region A (around position 8000) of the HCV genome. The colourtedivicpbsitis explained

in the caption to Figure 4. The lower left part of the plot shows a conventional picture of the predicted structure. Baeekgains green have non-consistent
mutations, circles indicate compensatory mutations. The extended outer stem contains a number of compensatory mutatigriss xgtemnce. Nevertheless,
there are two ‘holes’ and one bleached square that at first glance would tempt one to reject the prediction. A closenestaoniaatiowever, that the bleached green
square belongs to a base pair that is almost always predicted, exhibits three different types of standard base pairsasithigd Kéquence. The mismatches UU,
AC and GA have all been frequently observed (42), e.g. in helical regions of 16S rRNA structures (2), and do not nestsiizéytde helix. Similarly, the first
hole (shown as a light grey circle in the Figure) in this stem is AC in four sequences and forms three different tygesref basgely GC, GU and AU. The second
hole (large grey circle) is a conserved GA mismatch that might well be present in the secondary structure. The lastdg€tpaiirttefior loop, shown on the lower
left, does not appear in the dot plot because three sequences cannot form that pair. These three sequences also hanetthee A€ foli slightly differently: they
form a bulge after the yellow base pair and then a helix that is shifted by 1 base. The one sequence that cannot nrakatieeggieie among these three sequences
as well. Shifts in RNA secondary structure have so far only been reported for the RRE in lentiviruses (63).

As a second example, we applied our method to samples fronSometimes well-predicted stacked regions are interrupted by
the Berlin RNA Databank 4(), which contains 5S RNA individual ‘holes’ or show a single base pair with a few
sequences and phylogenetic structures. To investigate the influenom-compatible sequences. While in many cases these features
of sequence heterogeneity we randomly selected 9-15 sequenediect structural variability or the existence of an internal loop,
from different sub-groups (see Tablg. For a relatively they can be attributed to non-standard base pairs, like GA or UU,
homogeneous sample, such as the Halobacteriales, we obtairtteat do not necessarily disrupt the heli®)(in other cases. An
almost perfect prediction with only one small helix of 2 bpexample is shown in Figuge
missing. For heterogeneous samples such as a random selection of
five Eubacteria and five Archaea we still find most of the correghesy TS
structure without introducing any false positives. Occasionally we
find base pairs not in the phylogenetic structure. In all such casas a first application of our method we have investigated the
they only elongate a helix present in the phylogenetic structureninimum energy folding of 13 complete HCV sequences, a

The accuracy of the minimum energy predictions for thessample of 13 complete HIV-1 sequences and the S segment of 19
sequences varies widely; on averag@% of the phylogenetic strains of hantavirus (access codes are listed in the Appendix).
pairs are present in the minimum energy structure. Note, howevitinimum free energy structures of the complete HIV and HCV
that different pairs are predicted in different sequences; in fact, genomes were obtained on CalTech’s Intel Delta. For details of
pair was present in the minimum energy structures of athe parallel computerimplementation of the folding algorithm see
sequences in a sample and some minimum energy structuresttiifackeret al (5). The hantavirus sequences were folded using
not contain a single correct pair. the serial version of the folding program, which uses a slightly
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We do, however, find convincing structural motifs within the
coding region of the viral genome, two examples of which are
shown in Figure$ and 6. Although neither region has been
investigated before, the large number of compensatory mutations
clearly indicates that these structural motifs are conserved.

The minimum free energy structures of the 13 sequences
contain a total of 23 186 bp. Preprocessing leaves only 2805 list
entries, which is already slightly less thanf8850 bp predicted
in the individual minimum energy structures. Of these, 432
entries are inconsistent with higher ranking entries in the sorted
list, 572 entries are removed because there are more than two
inconsistent sequences and the frequefjcpf 298 of the
remaining base pairs is below the threshold value 0.3. This leaves
us with 1503 pairs in the dot plots, a reduction of >50% from the
original. Of these, 985 have only compatible sequences, 179 have
a single incompatible sequence and 339 have two.

The output generated for large molecules will in general still
contain a substantial number of base pairs that are at best doubtful,
such as isolated base pairs and short helices with several
inconsistent sequences. The truly promising structures are, however,
Figure 6. Predicted conserved minimum energy structure of region B (aroundeasy to detect by visual inspection of the resulting dot plot.

position 9100) of the HCV genome. The colour coding of the dot plot is
explained in the caption to Figure 4. The lower left part of the plot shows a As a second example, we have re-analysed a sample of HIV-1

conventional picture of the predicted structure. Circles indicate a compensatorpédquences from an efirlier Stuﬁy- (The number of predicted
mutation. conserved base pairs is similar to the HCV case (see J&dnle

details). In the following we discuss the automatically generated
predictions for two well-understood secondary structure motifs,
namely therans-activating responsive element (TAR) and Rev

more recent parameter set), Multiple sequence alignments were "€SPOnse element (RRE), in some detail.

obtained using CLUSTAL W. Both the folding outputs and the

multiple alignments were processed without further modification. Table 2. Predicted secondary structure elements
Hepatitis C sequences have chain length8B&00 nt. The

Sy

S G A R

main differences in length stem from tHeeBd of the genome, HCV HIV1
where a poly(U) region separates a 98 nt sequence from the r§&tmper of SequenceBl 3 3
of the genomel(8,43). This so-called X-tail is not presentinthe
published ‘complete’ genomes, with a single (very recent)Vinimum sequence 9400 9074
exception (Genbank accession no. D85516). In this sequence vigximum sequence length 9502 9292
found no long range interactions involving the X-tail and, hence Alignment length 9538 9535
no evidence for the panhandle structure postulated in figure 7B Qf ,,served positions 4919 4779
Kolykhalov et al (43). We find that the poly(U) region acts as a R
spacer causing the X-tail to fold as a separate domain. It i§Vera9e sequence identity (%) 80 83
justified, therefore, to consider the main part of the genomeifferent base pairs 23186 20 667
[before the poly(U) region] and the X-tail separately. Credible base pairs 1503 1121

The length of the CLUSTAL W alignment of the main part of 1 Consistent mutation 460 300
the genome, up to the poly(U), is 9538. Insertions or deletions  , ~cistent mutations 80 a4
appear in 267 positions before the poly(U). 4919 positions are 3 Consistent mutations 8 5
conserved; the mean pairwise identity of sequences is 80%. . .

4 Consistent mutations 2 0

The B3-NCR has recently been studied using a combination of
thermodynamic prediction and biochemical methd@s1¢,45).
Unfortunately, the sequences at theid are highly conserved At the 3-end of the viral HIV-1 RNA molecule resides the
(97% pairwise identity, 89% of the 342 positions conserved). Asans-activating responsive (TAR) elemens], which interacts
a consequence of the very small sequence variation, our approagth the regulatory Tat protein. Binding of the Tat protein to TAR
is not much better than thermodynamic predictions on a singie responsible for activation and/or elongation of transcription of
sequence in this case. We find most of hairpins appearing in tthe provirus49,50). On the basis of biochemical analysgisgnd
model of Browret al (10), but predict no longer range base pairscomputer prediction of thé-gnd of the genome it is known that

A similar situation is encountered for the X-tail: of the 98 nthe TAR region in HIV-1 forms a single isolated stem—loop
only five show any sequence variability. There are only threstructure of 50 nt with(20 bp interrupted by two bulges.
different sequences of these 98 nt among the eight databas&his structure is indeed predicted in the minimum free energy
entries currently available. Our data agree with the threstructures of 11 of the 13 sequences analysed here. The consensu
stem—loops predicted in Blight and Ridé)and Ito and Lai47)  prediction (Fig.7) is identical to the structure reported in the
based on chemical probing. It is also supported by two consistdit¢rature. The mean pairwise sequence identity of this region is
mutations in the long helix at the veryehd. 85%.
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Figure 7. The TAR structure of HIV-1. Almost all predicted base pairs are consistent with all 13 sequences, most of them are paetbetsdlih sequences. A
large number of compensatory mutations supports the thermodynamic predictions. Our computed consensus structure (lshes|éft steucture determined
by probing and phylogenetic reconstruction (4). We display here the consensus dot plot, the classical secondary strumotunet@ndepresentation. The latter
is a convenient alternative to dot plots for larger structural motifs. Base pairs are represented by slabs connectingubadepasitions. The width and colour
of a slab corresponds to size and colour of the corresponding dot plot entry.

The Rev response element (RRE) is an important conservBdnyaviridae, there is no evidence for a second non-structugl (NS
RNA structure that is located within thevgene. The interaction protein coded by the S segment. We used the 19 sequences listec
of RRE with the Rev protein reduces splicing and increases tiethe Appendix, which have a mean pairwise identity of 63.9%.
transport of unspliced and single spliced transcripts to théhe only detected structural feature in this case is a 19 bp
cytoplasm, which is necessary for the formation of new viriorstem—loop structure formed by the &d 3-ends.
particles 61). This panhandle structure is highly significant: All sequences

A long stem—loop structure (l) separates the binding regioare compatible with the structure and it is part of the minimum
from the rest of the RNA. The long stem-loop structureenergy prediction in 16 of the 19 minus strands and 14 plus
furthermore indicates that the structure is easily accessible. Thigands. There are two positions which show compensatory
consensus secondary structure of the RRE in HIV-1 is mutations (see Fid.0). The panhandle structure was postulated
multi-stem—loop structure consisting of five hairpins supporteéh the 1980s for all Bunyavirida&1,58).
by a large stem structurZ see Figs8 and9). An alternative
structure of only four hairpins, in which hairpins lll and IV of the p|scussion
consensus model merge to form one hairpin, has also been
proposed §3,54); it matches the minimum energy structure forWe have presented a combination of secondary structure
some sequences, e.g. HIVLAS). A comparison of minimum prediction based on thermodynamic criteria and sequence
energy structures(27) shows that there appears to be a thirc&comparison that is capable of reliably identifying conserved
structure in which hairpin 1ll is relatively large and a few of thestructural features in a set of related RNA molecules. The method
other hairpins have disappeared from the minimum free energmas been designed for routine investigations of large RNA
structure. A comprehensive analysis of the base pairingolecules, such as complete viral genomes. Indeed, the procedure
probabilities in the RRE shows that hairpins I, IV and V, as weltloes not require any intervention: CLUSTAL W alignments and
as the basis of hairpin 1ll, are not well defined, in the sense thatinimum energy structures [as obtained from the Vienna RNA
they allow for different structures with comparable probabilities?ackage or Zucker’s mfol&)] can be used ‘as is’. Our program
(56). currently does not support the detection of pseudo-knots.

As a final example we consider the S segment of hantavirudowever, the method is in principle suitable for this task (with
The (0L700 nt long S segment contains a single ORF encodingn@nor modifications), provided the structure prediction algorithm
nucleocapsid (N) protein. In contrast to other members of the famiélows for pseudo-knot$0,61).
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Figure 8. Colour coded mountain plot of the RRE region. The five-fingered structure is clearly visible. The peaks are, from leftdpltight, V and VI, in the
notation of Daytoret al (52). The short stem lla is not predicted for this particular data set (see Fig. 9).

Conserved secondary structures are likely to be functional, thusSince the success of the method depends on the availability of
our method can be used to find functional secondary structures.good alignment, it works best for samples with moderate
Since our method emphasizes sequence variation, it complemesgsjuence heterogeneity (say 80% identity). However, alignment
other methods for finding functional RNA secondary structuresrrors should at worst cause some structures to be missed, but are nc
based on thermodynamic prediction (for exaniilé?2). likely to lead to falsely predicted structures. For heterogeneous

We have applied this technique to complete genomes of threamples of sequences that code for proteins good quality
quite different species of RNA viruses: HIV-1, HCV and the smalilignments might be obtained by first aligning the protein
segment of hantavirus. In all cases we have been able to idensfsguences of the translation products and translating back to
most of the known secondary structure features. In addition, weicleic acid sequences.
predict a large number of conserved structural elements whichExtensive computer analysis of the RRE region of HIV-1 and
have not been described so far. HIV-2 has shown that the sequence alignment does not completely

We have designed our approach in such a way that it does oincide with the alignment at the level of the secondary structure
predict a structure for all parts of a molecule; the filtering63). This has two important implications: (i) methods that
procedure outlined in Materials and Methods is designed in sughedict secondary structure of RNA on the basis of co-variation
a way that only base pairs that may occur in almost all sequena#positions within the sequenc® €annot provide an unambiguous
and that are predicted in a sizeable fraction of the sequences witiswer here; (i) the RRE has structural versatility. As a
be accepted. Itis not surprising, therefore, that the predicted RREnsequence, we obtain slightly different predictions for the
structures in Figur@ do not contain every single base pair of theconserved structure depending on the set of sequences used fol
published, experimentally supported structures. Rather, whe analysis. This structural versatility could also play a role in a
obtain a subset of base pairs that is consistent with knovaingle HIV clone. Using McCaskill’s algorithné4) for predicting
features. This suggests that we are not producing a large numtier matrix of base pairing probabilities, we have indeed identified
of false positives. The fact that no false positives were producadspectrum of alternative structures for the RRE of HIVLAI in a
in the analysis of 5S RNA sequences supports this claim. On theevious communication5f). Similar features have been
other hand, we recover most of the structures described for batbtected in the’NCR of flaviviruses §9,65). These facts make
HIV-1 and HCV, as well as the panhandle structure of hantavirusworthwhile to generalize the present approach to using base
and the main structural features of 5S RNA. pairing probability matrices instead of minimum energy structures,
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Figure 9. Consensus structures of the HIV-1 RRE region from a set of 13 sequences and from the 21 sequences reporteckiraH@ackle main hairpins are
present in both predictions; the only difference is hairpin Ila which is supported by a single compensatory base pajeirdtita ket. The predictions agree very
well with an experimentally supported structure (52) that also contains Ila. The sequence in the lla region is consemedlen daga set and purely thermodynamic
considerations favour the short stack extending stack Il in the right hand structure [this stem is called llceinalés8) and Zemmaedt al (54)]. Interestingly,
earlier studies (5,55) indicate a substantial structural versatility in this region which may explain minor disagreementdiffeterg published structures (see for
example 52-54).
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APPENDIX

In this study we have used the following viral RNA sequences
(Genbank accession nos are given in parentheses).

HIV-1:
(L02317), HIVCAM1 (D10112, D00917), HIVD31 (X61240,

HIVANT70 (M31171, L20587), HIVBCSG3C
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X16109 U23487), HIVELI (K03454, X04414), HIVLAI Hantavirus sequences: AF004660, HNVNPSS, HVU37768,
(K02013), HIVMAL (K03456), HIVMVP5180 (L20571), HMU32591, HSU29210, KHU35255, AF005727, PHU47136,
HIVNDK (M27323), HIVOYI (M26727), HIVRF (M17451, PHVSSEG, PSU47135, PUUSNP, PUVSVIN83, PUVSVIRRT,
M12508), HIVU455 (M62320) and HIVZ2Z6 (M22639). PVSZ84204, PvU22423, VRANICAS, RMU52136, HPSNUPR
HCV: complete genomes (except for the X-tail): HCU16362and TUVS5302.
(U16362), HCU45476 (U45476), HPCCGAA (M67463), The comparison algorithm described is implemented as an
HPCCGENOM (L02836), HPCCGS (D14853), HPCEGSANSI C program alidot. It generates a text file with information on
(D17763), HPCHCJ1 (D10749), HPCJ483 (D13558, D01217xll predicted base pairs and a postscript file of the dot plot of the
HPCJRNA (D14484, D01173), HPCJTA (D11168, DO01171)predicted conserved base pairs. Alternative representations, such ac
HPCK3A (D28917), HPCPP (D30613) and HPCRNA (D10934).the aligned mountain plots, input files for XRNA&E] and
X-tail sequences (accession numbers only): D63922, D6709i9st-processing of XRNA output is handled by a collection of perl
D67092, D67093, D67094, D67095, D67096, D85516 (the lascripts. This software is available upon request from the authors.
sequence is a complete genome including the X-tail).



