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Molecular Mass Determination by Sedimentation Velocity Experiments
and Direct Fitting of the Concentration Profiles

Joachim Behike and Otto Ristau
Max Delbruck Center for Molecular Medicine, 13122 Berlin, Germany

ABSTRACT A new method for the direct molecular mass determination from sedimentation velocity experiments is
presented. It is based on a nonlinear least squares fitting procedure of the concentration profiles and simultaneous estimation
of the sedimentation and diffusion coefficients using approximate solutions of the Lamm equation. A computer program,

LAMM, was written by using five different model functions derived by Fujita (1962, 1975) to describe the sedimentation of
macromolecules during centrifugation. To compare the usefulness of these equations for the analysis of hydrodynamic
results, the approach was tested on data sets of Claverie simulations as well as experimental curves of some proteins. A
modification for one of the model functions is suggested, leading to more reliable sedimentation and diffusion coefficients
estimated by the fitting procedure. The method seems useful for the rapid molecular mass determination of proteins larger
than 10 kDa. One of the equations of the Archibald type is also suitable for compounds of low molecular mass, probably less
than 10 kDa, because this model function requires neither the plateau region nor a meniscus free of solute.

INTRODUCTION

Analytical ultracentrifugation is a powerful tool for molec-
ular mass determination of macromolecules (e.g., see mono-
graphs of Harding et al., 1992; Schuster and Laue, 1994).
Two main methods can be distinguished, the meniscus
depletion sedimentation equilibrium technique proposed by
Yphantis (1964) and the sedimentation velocity variant.
Whereas the first method can be used for direct determina-
tion of the molecular mass (M), the latter yields at least
sedimentation coefficients (s). To calculate the molecular
mass, this parameter has to be combined with the diffusion
coefficient (D) of the sample, which is usually obtained
from overlay experiments using a synthetic boundary cell
(Behlke et al., 1986) or measuring the time-dependent
boundary spreading of concentration gradients in a special
device (Muramatsu and Minton, 1988). Other methods to
get D directly from sedimentation velocity experiments
were developed by Attri and Lewis (1992) and Stafford
(1996). Attri and Lewis have used an empirical sigmoid
function to fit the concentration profiles to locate the radial
position of the square root of the second moment of the
concentration data. The approach of Stafford is based on the
time derivative dc/dt, which is converted to an apparent
sedimentation coefficient distribution function. Both meth-
ods have no direct basis as solutions of the Lamm equation.
More accurate results for s and D are expected by direct
fitting of sedimentation velocity concentration profiles us-
ing approximate solutions of the Lamm equation. Holladay
(1979a) used Eq. 2.265 of Fujita (1962; also see Materials
and Methods), an approximate Archibald-type solution, but
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without explicit consideration of the bottom region. The
results of these experiments were unsatisfactory partially
because of the very slow convergence of Fujita's solution in
the form of an infinite series. In an effort to get more
reliable results, Holladay (1979b, 1980) developed another
approximate solution of the Lamm equation. Comparing it
with the solution of Fujita and MacCosham (1959) and the
half-height method, it was found that the approach given by
Holladay (1979b) yields correct values for E < 0.02 or
high-molecular mass compounds of greater than 50 kDa.
Philo (1994, 1997) presented a method in which multiple
raw data sets of concentration profiles, taken at various
times during the run, were simultaneously fitted by a non-
linear least squares technique to appropriate solutions of the
differential equation of the ultracentrifugation. These model
functions derived by Fujita (1962, 1975) are approximate
solutions of the Lamm equation (Lamm, 1929) of the Faxen
type (Faxen, 1929). For the conventional double-sector cell,
Philo used Eq. 2.94 (Fujita, 1975; see Materials and Meth-
ods), and for the synthetic boundary cell he used Eq. 2.127
(Fujita, 1975). Because Eq. 2.94 (Fujita, 1975) used by
Philo (1994) does not fulfill the boundary condition at the
meniscus, the first records of sedimentation experiments
have to be omitted. That means it is difficult to estimate
molecular masses of less than - 15 kDa. To overcome these
difficulties, it is necessary to use model functions that fulfill
the initial condition of the cell as well as the boundary
condition at the bottom. For conventional cells, one of the
equations given by Fujita (Eq. 2.280; Fujita, 1962) fulfills
both conditions. It is the aim of the present communication
to compare the efficiency of the model functions described
by Fujita (1962, 1975) of the Fax6n type as well as the
Archibald type to estimate the sedimentation and diffusion
coefficients of low-molecular mass proteins, especially
those between 10 and 20 kDa. A computer program,
LAMM, was written using the five model functions dis-
cussed above to analyze experimental sedimentation pro-
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files. The approach was checked on calculated curves ob-
tained by the "finite-element method" (Claverie et al., 1975;
Cox and Dale 1981) as well as using sedimentation velocity
profiles of proteins with molecular masses of greater than
10 kDa. Using these model functions, which include up to
six error functions, it is possible to obtain more reliable
results also from traces with a low signal-to-noise ratio.
Application of these equations for the analysis of sedimen-
tation velocity runs will be demonstrated.

dence of the sedimentation constant:

coe (1- erf(p))eP2
1 - A (1 - erf(p))ep2 +<1 -A(1 + erf(())eV

1- (1-
_= - AIxEl-E

( - aWI
P 1-A

2D
;=1-e-T so 2 o

- A=oat (2)

I0(1-ac)
sc

COlOt-

MATERIALS AND METHODS

Sperm whale myoglobin and hen egg lysozyme were obtained from Serva
(Heidelberg, Germany), and cytochrome c was from Merck (Darmstadt,
Germany).

Sedimentation velocity runs were performed with an XL-A ultracentri-
fuge (Beckman Instruments, Palo Alto, CA) equipped with UV absorption
optics. Experiments were carried out in conventional double-sector or

synthetic boundary cells (part 331,431), respectively.
In addition to the experimental curves, noise-free data obtained by the

finite-element method (Claverie et al., 1975; Cox and Dale, 1981) were

also used for the simultaneous determination of sedimentation and diffu-
sion coefficients. Radial concentration profiles calculated for a sedimen-
tation coefficient of 2 S and a diffusion coefficient of 1 x 10-6 cm2/s
considering 42,000 or 50,000 rpm (synthetic boundary cells) and 50,000
rpm (conventional cells), respectively, were obtained by 800 or 1600 data
points between rm = 6.4 cm and rb = 7.2 cm. The accuracy of the curves

is given by a simulation time, dt, and the radial step length, dr. A time step
of dt = 1 s and a step length of dr = 0.0005 cm was formed to be optimal.

To estimate sedimentation and diffusion coefficients, sedimentation
velocity concentration profiles were fitted directly based on the five dif-
ferent equations given by Fujita (1962, 1975). A computer program,

LAMM, was written in Turbo Pascal 7, running under MS-DOS 6.0 on a

Pentium personal computer. It is able to read up to 18 XL-A data files and
fit them simultaneously (global fit). The necessary information such as

elapsed time, W2t, and rotor speed are taken from the data header. All
parameters of the model functions and, in addition, a baseline (offset) can

be estimated or held constant at the initial value. The initial boundary
values and the parts of the profiles to be included in the fitting procedure
were determined graphically on the monitor using cross-hairs. The initial
values for all other parameters were calculated by the program. The
program accepts only absorbance values of less than then 3.2 absorbance
units. The five model functions for sector-shaped cells (according to the
monograph of Fujita, 1962; 1975) are:

1) Equation 2.127 (Fujita, 1975) for synthetic boundary (also used by
Philo, 1994):
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In the monograph of Fujita (1975), only the concentration gradient of this
function is described. The symbol x has the same meaning as in Eq. 1. so
is the Svedberg constant at zero concentration. If the concentration-depen-
dent parameter a becomes zero, this function is identical to that in Eq.
2.128 (Fujita, 1975) for synthetic boundary experiments.

3) Equation 2.167 (Fujita, 1975) or 2.108 (Fujita, 1962) is applicable to
standard double-sector cells and was used by Philo (1994); it accounts for
neither a liquid-liquid nor bottom boundary:
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All symbols have the same meaning as in Eq. 2. This function accounts for
a special case of the initial condition for the synthetic boundary cell. If the
boundary moves sufficiently away from the meniscus, Eq. 3 can be used
for the analysis of experiments in conventional double-sector cells.

4) Equation 2.137 (Fujita, 1975) or 2.163 (Fujita, 1962; Fujita and
MacCosham 1959) is useful for concentration profiles in standard double-
sector cells if taking into account the liquid-air boundary. To improve this
equation, a new empirical parameter, H, is introduced, following the idea
of Holladay (1979b):
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The exact validity of Eq. 4 is limited to the earlier steps of sedimentation
experiments in which the ratio x = (r/ro)2 in the Lamm equation (ro means
the air-liquid meniscus position) should be nearly 1. This restriction also
applies to the equations developed for the synthetic boundary cell. In the
case of Eq. 4, the limitation can be reduced by introducing a time-
dependent parameter. Written in dimensionless variables, the Lamm equa-
tion reads

ao a2o ao
Ee-Z

aT az2 az

In this equation (denoted Eq. 1 here), co is the loading concentration, ro is
the liquid-liquid meniscus position, erf () is the error function, D is the
diffusion constant, w is the angular velocity, and s is the sedimentation
constant.

2) Equation 2.191 (Fujita, 1962) is also applicable for synthetic bound-
ary cells but includes an additional parameter for the concentration depen-

C
0= eT-

Co
z = ln(x) (4a)

In the presentation of Fujita and MacCosham (1959) the factor exp(-z) is
replaced by unity. However, to a first approximation, this factor must fall
below 1.0 during the time of sedimentation; therefore, replacing exp(-z)
by 1.0 leads to an overestimation of E. After having solved Eq. 4a, e has to
be corrected by time-dependent factor H, which approximately compen-
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sates for the decrease of e-Z.

1
H

+ (eT-l)p (4b)

The expression (eT - 1) in the denominator in Eq. 4b describes the shift of
the midpoint of the moving boundary caused by to the relation (r*/ro)2 =
et (Fujita, 1975, Eq. 2.107).

5) Equation 2.280 (Fujita, 1962), not included in the new monograph
(Fujita, 1975), takes into account both boundaries of the conventional cell.
(Note that Eq. 5 contains a misprint. At the exponent of the last term in the
fifth row, the factor A is neglected in Fujita's 1962 monograph.)
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Numerical methods

The time-consuming part of the fitting procedure is the numerical evalu-
ation of the error functions. Fortunately a very effective method developed
by Gautschi (1969) can be used to reduce the computing time, especially
for the error functions. The derivatives of the fitting functions are calcu-
lated algebraically to save computer time. The fitting algorithm is a
"damped least square" procedure according to Levenberg (1944) in the
version given by Wynne and Wormell (1963). The progress of the fit can
be followed on the display. Standard deviations of the parameters were
calculated in the simple linear model version. Usually this seems sufficient,
because the results differ often more between different experiments than
the confidence interval of one scan set allows. The fitting procedure to
analyze 12 data files (3300 data points) took 25 s of processing time on a
Pentium personal computer (100 MHz).

RESULTS

Fitting of noise-free synthetic data

To compare the efficiency of the five model functions to
obtain accurate sedimentation and diffusion coefficients, we
have fitted Eqs. 1-5 to calculated concentration distribution
curves. These were calculated for sedimentation and diffu-
sion coefficients of 2 S and 1 X 10-6 cm2/s using the
finite-element method. In the fitting procedure the sedimen-
tation and diffusion coefficients, the loading concentration
(co), and the radius position at the meniscus or bottom (Eq.
5) were estimated. The baseline parameter (zero offset,
common to all data sets) was held at zero.

q2= a- (x-1) qll=22a 2frT 2+
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Here, ro is the air-liquid position, and r2 is the bottom position. All other
symbols have the same meaning as before. Eq. 5 is not of the Fax6n type,
because the cell length is finite (Archibald type). Here, the term x of the
Lamm equation is approximated by the expression (1 + X)/2. Therefore,
when applying this formula, the best results for the fitting procedure can be
expected in the middle part of the concentration distribution curve or
plateau region. This equation also considers the data points at the bottom
region. Because of the low precision of the radial steps of the XL-A
ultracentrifuge, not all data points can be taken for the analysis. Our
program used all data points until a maximal slope of the concentration
profile was reached.

From the estimated sedimentation and diffusion coefficients, the mo-
lecular mass of the macromolecule under investigation can be calculated
using Eq. 6:

sRT
M=D(l-pv) (6)

where R is the gas constant, T is the absolute temperature, p is the solvent
density, and v) is the partial specific volume.

The accuracy of the fits was represented by the residuals, which were
amplified by the mentioned factor due to the concentration profiles in the
lower part of the figure.

Fitting of synthetic boundary data sets

For the fitting procedure, Eq. 1 and 2 have been used. Both
model functions yield a very good fit, with only very small
deviations given by the residuals in eightfold amplification
(Fig. 1, A and B). The parameters obtained from the fit
agreed with the expected values. In addition, Eq. 2 offers the
possibility of analyzing the concentration dependence of
sedimentation coefficients. An appropriate Claverie simula-
tion with concentration-dependent sedimentation coeffi-
cients (Cox and Dale, 1981) demonstrates the usefulness of
Eq. 2, which results in excellent values for s and D, whereas
the parameter a deviates considerably (see Fig. 2, A and B,
and Table 1).

Curve fitting of conventional double-sector cell data

In contrast to the synthetic boundary data, the curves for
conventional double-sector cells were calculated for a larger
period of 12-324 min after attaining the maximal speed of
50,000 rpm. Curves with the moving boundary at different
radial regions have been involved in the fitting procedure
for the three model functions.
When using Eq. 3, which does not account for the bound-

ary at the meniscus or bottom of the cell, we do not observe
an optimal fit to the calculated curves (Fig. 3). In particular,
gradients without meniscus depletion show stronger devia-
tions reflected in the fourfold-amplified residuals. Even
when omitting the earlier data sets, a reasonable fit to the
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FIGURE 1 Claverie simulation for s = 2 S and D = 1 x 10-6 cm2/s and
50,000 rpm (synthetic boundary). (A) Fit using Eq. 1; (B) fit using Eq. 2
with a = 0. Residuals are given in eightfold amplification. Estimated
values: (A) co = 1.0005, s = 1.991 S, D = 9.852 X 10-7 cm2/s; (B) co =
0.9999, s = 1.992 S, D = 10.001 X 10-7 cm2/s.

later data sets could not be obtained. However, despite the
poor fit, realistic sedimentation coefficients could be esti-
mated. In contrast, the diffusion coefficients were found to
be up to 7% too low (see Table 2), resulting in considerably
higher molecular masses than expected.

Equation 4, which accounts for the boundary effect at the
meniscus, fits the data very well, as shown in Fig. 4 A. To
demonstrate the quality of the fit, the residuals were pre-
sented in an eightfold amplification relative to the scale of
the concentration profiles. Despite the close fit, only the
sedimentation coefficient agreed with the expected value,
whereas the diffusion coefficient was found to be -5% too
low. Surprisingly, both parameters did not change signifi-
cantly when skipping data points close to the meniscus
position. In contrast to the original Eq. 4 the "improved"
function yields the expected parameters more closely (Fig.
4 B). In the first line this is attributable to the more accurate
determination of D. The parameter p does not depend on the
molecular mass but slightly on the distance of the moving
boundary from the meniscus. The optimal choice for p
is -0.5.
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FIGURE 2 Claverie simulation (Cox and Dale, 1981) considering a

concentration-dependent sedimentation with s = s0 (1 - ac/c0) for s = 2

S, D = 1 X 10 6 cm2/s, 50,000 rpm, and ax = 0.2. (A) Fitting procedure

by Eq. 2 with ax held at 0; (B) Fitting procedure by Eq. 2 with additional

estimation of a. Estimated values: (A) c- = 0.9942, s = 1.794 5, D =

8.500 x i0-7 cm2/s, a = (held at 0); (B) co = 1.0016, s = 2.014 5, D =

.09 X 10 7 cm2/s, a = 0.1114.

Equation 5 fits the data relatively well over a large radial

region. Although this model function accounts for both

boundary conditions of the cell, there are certain deviations

near the meniscus (Fig. 5). Both the estimated s and D

values were found to be slightly too low. Nevertheless, the

TABLE I Estimated parameters from Claverie simulation

Eq. s (S) D (107 cm2/s) co ro (cm) a

1 1.99, 9.852 1.0005 6.6972
2 1.992 10.00, 0.9999 6.6972
2* 1.794 8.500 0.9942 6.6971 0#
2* 2.014 10.090 1.0016 6.6974 0.1114

The following predetermined parameters were used: sedimentation coeffi-
cient, s = 2 S; diffusion coefficient, D = 1 X 10-6 cm2/s; loading
concentration of solute, co = 1; initial boundary position, ro = 6.6975 cm;
the concentration-dependent parameter, a = 0 or 0.2 (for indicated equa-
tion); speed, 50,000 rpm (synthetic boundary), using different equations.
*a = 0.2 (predetermined).
#a held at 0.
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FIGURE 3 Claverie simulation for s = 2 S and D = 1 X 10-6 cm2/s at
50,000 rpm (conventional double-sector cell) and fit of the data using Eq.
3. As pointed out earlier (Fujita, 1962), the fit to this function appears
insufficient near the meniscus region (residuals amplified fourfold). Esti-
mated values: co = 1.001; s = 2.012 S; D = 9.334 X 10-7 cm2/s; ro =
6.398 cm.

molecular mass obtained by these parameters is very close
to the expected value. Omitting the first data points near the
meniscus leads to a slight increase of the estimated sedi-
mentation as well as diffusion coefficients reaching the
expected values. The influence of the procedure on the
molecular mass determination seems small. In contrast to
the meniscus region, which has little effect on the results,
the data points near the cell bottom up to 3.2 absorbance
units seem critical for the accuracy of the results. Here the
limit is set by the XL-A ultracentrifuge. The accurate radial
steps of the Claverie simulation allowed one to involve all
data points in the fit procedure independent of the slope.

Altogether, comparing the five model functions using
synthetic data sets under various conditions, we can show
that the most accurate values for sedimentation and diffu-
sion coefficients can be obtained when fitting the data sets
using Eq. 1 or 2 and for standard cells with small restrictions
by Eq. 4 and 5. Eq. 3 results in reliable sedimentation data,
but the diffusion coefficients were found to be underesti-
mated. To obtain precise values for both parameters, strict
meniscus depletion is necessary, which requires a larger
column length and a higher speed of at least 60,000 rpm or
smaller diffusion coefficients.

Analysis of experimental data sets

Because of our experience derived from the Claverie sim-
ulation with respect to the accuracy of the model functions,
we have analyzed several proteins with molecular masses of
greater than 10 kDa. In most cases the substances were
tested under nearly identical conditions (protein concentra-
tion, buffer composition, speed, and column height in the
cells). On average, 10 different traces of each experiment
were used for the calculation of sedimentation and diffusion
coefficients.
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FIGURE 4 Fits of the simulation as shown in Fig. 3, by Eq. 4 (A) and
considering the improvement as given by Eq. 4a and 4b (B). P is the
"improving" parameter in Eq. 4b. Residuals are given in eightfold ampli-
fication. Estimated values: (A) co = 1.000, s = 1.991 S, D = 9.477 X 10-7
cm2/s, rO = 6.3998 cm, p = 0 (held at 0); (B) co = 0.999, s = 1.988 S,D =
9.880 x 10-7 cm2/s, rO = 6.4001 cm, p = 0.4119.

Synthetic boundary experiments

Although Claverie data sets could be fitted very well by Eq.
1 and 2 in the experiments, the first traces often have to be
omitted, because these curves are disturbed during the over-
lay procedure. Despite this disadvantage, reliable parame-
ters could be obtained with respect to s, D, and accordingly
for the molecular mass (see Table 3). Usually the experi-
ments were carried out at a very low protein concentration
at which the concentration dependence of s can be ne-
glected. Therefore, it is not useful to use the parameter a,
especially if the experimental curves are noisy.

Conventional double-sector cell experiments

As shown in Table 4 the use of model Eq. 3 and 4 yields
nearly correct sedimentation coefficients, but the diffusion
coefficients are underestimated. The modification of the
original Eq. 4 reduces these deviations. As mentioned in
Materials and Methods, part Eq. 5 fits the total radial
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FIGURE 5 Fit of the Claverie simulation for s = 2 S and D = 1 X 10-6
cm2/s at 50,000 rpm using Eq. 5. Seven of the 14 data sets obtained for a

long period are presented. Although Eq. 5 accounts for both boundaries, the
fit in the meniscus region is not optimal (residuals in twofold amplifica-
tion). Estimated values: co = 0.996; s = 1.957 S; D = 9.770 X 10-7 cm2/s;
ro = 6.3917 cm; r2 = 7.1973 cm. When omitting the first data points up
to 6.49 cm, the following results were obtained: co = 0.995; s = 1.998 S;
D = 9.997 X 10-7 cm2/s; rO = 6.3827 cm; r2 = 7.1976 cm.

concentration profile and implies some problems concern-

ing the limited accuracy of the radial steps. Therefore, the
program allows one to cut all data points above a profile
slope higher than 0.05 A/mm. This value is derived empir-
ically. In a first run the slope is calculated, and in a second
run the reduced data set is fitted again. This curve-fitting
procedure enabled us to obtain reliable sID ratios and,
therefore, suitable molecular masses. However, the isolated
parameters s and D are slightly too low. Because Eq. 5 does
not allow an optimal fit for data near the meniscus subop-
timally, it was found to be useful to remove the first part
of the traces. This procedure led to a slight increase of
both parameters s and D to the expected values (also see

Table 4).

DISCUSSION

The possibility of direct molecular mass determination from
sedimentation velocity runs based on approximate solutions

TABLE 2 Estimated parameters from Claverie simulation

Eq. s (S) D (107 cm2/s) cO ro (cm) r2 (cm) p

3 2.012 9.334 1.001 6.3980
4 1.991 9.477 1.000 6.3998 0*
4a 1.988 9.880 0.999 6.400 0.4119
5 1.957 9.770 0.996 6.3917 7.1973
5# 1.998 9.997 0.995 6.3827 7.1976

The following predetermined parameters were used: sedimentation coeffi-
cient, s = 2 S; diffusion coefficient, D = 1 x 10-6 cm2/s; loading
concentration of solute, co = 1; initial boundary position, ro = 6.4 cm;
bottom radius, r2 = 7.2 cm; speed, 50,000 rpm (synthetic boundary), using
different equations.
*p held at 0.

#Omitting data points, r < 6.49 cm.

TABLE 3 Sedimentation and diffusion coefficients of
cytochrome c and lysozyme obtained by fitting of the radial
concentration profiles using Eq. 1 or 2 and the calculated
molecular mass determined by Eq 6 with p = 1.003 g/cm3
(cytochrome c) or p = 1.0005 (lysozyme), respectively

Protein Eq. s (S) D (107 Cm2/S) MSD* AM(%)#

Cytochrome c 1 1.695 ± 0.003 11.82 ± 0.10 12,269 -0.5
Cytochrome c 2 1.692 ± 0-002 11.73 ± 0.13 12,342 +0.01
Lysozyme 1 1-906 ± 0-002 11.90 ± 0.15 14,478 +1.1
Lysozyme 2 1.899± 0-002 11.80 ± 0.18 14,547 +1.6

Mean values and SDs are calculated from six different runs. Errors are
calculated by the fitting program (in the simple linear model) are of nearly
the same order.
*v = 0.713 mllg for cytochrome c (Timchenko et al., 1981); v = 0.730
mUg for lysozyme (Schausberger and Pilz, 1977).
#Deviations from the expected molecular mass of 12,330 for cytochrome c
(Margoliash et al., 1961) or 14,316 for lysozyme (Canfield, 1963).

of the Lamm equation (Lamm, 1929) is attributable to Fujita
(Fujita and MacCosham, 1959; Fujita, 1962; Fujita, 1975),
who, a long time ago, developed different model functions
describing radial concentration profiles of high-speed sedi-
mentation experiments. For many years the fitting proce-
dure of such traces, using Fujita's equations with up to six
error functions, seemed computationally too difficult for
practical applications. However, more powerful computer
hardware and effective methods for numerical evaluation of
error functions given by Gautschi (1969) allow to use all the
five equations from Fujita (1962, 1975) for the simulta-
neous estimation of sedimentation and diffusion coefficients
routinely. These procedures permit rapid molecular mass
determination for substances that are unstable and would

TABLE 4 Sedimentation and diffusion coefficients for
cytochrome c, lysozyme, and myoglobin derived by fitting the
concentration distribution profiles using Eq. 3-6, as well as
molecular mass data and deviations from the expected values

AM
Protein Eq. s (S) D (107 cm2/s) MSD* (%)#

Cytochrome c 3 1.695 ± 0.005 11.01 ± 0.17 13,172 +6.8
Cytochrome c 4 1.670 ± 0.004 11.35 ± 0.20 12,589 +2.1
Cytochrome c 4a§ 1.672 ± 0.004 11.66 ± 0.19 12,269 -0.5
Cytochrome c 5 1.62, ± 0.003 11.60 ± 0.08 11,956 -0.3
Cytochrome c 5' 1.669 + 0O005 11.75 + 0.11 12,153 -0.15
Lysozyme 3 1.883 ± 0.004 10.57 ± 0.21 16,112 +12.5
Lysozyme 4 1.863 ± 0-002 10.82 ± 0.10 15,563 +8.7
Lysozyme 4a 1.865 ± 0.00, 11.42 ± 0.11 14,762 +3.1
Lysozyme 5 1.794 ± 0-002 11.25 ± 0.03 14,414 +0.7
Lysozyme 51 1.850 ± 0-012 11.63 ± 0.11 14,379 +0.4
Myoglobin 3 1.990 ± 0.009 10.02 ± 0.29 18,925 +6.0
Myoglobin 4 1.952 ± 0.003 10.14 ± 0.18 18,438 +3.2
Myoglobin 4a 1.958 ± 0-002 10.48 ± 0.15 17,803 -0.3
Myoglobin 5 1.887 ± 0-002 10.07 ± 0.11 17,856 -0.02
Myoglobin 5¶ 1.986 ± 0.005 10.69 ± 0.14 17,703 -0.9

*p = 1.003 g/ml; v = 0.742 ml/g (Behlke and Wandt, 1973) for myoglo-
bin.
*Molecular mass: 17,860 for myoglobin (Edmundson, 1965). All other data
are given in Table 3.
§Eq. 4a is the improved model function (Eq. 4).
"Omitting data points, r < 6.49 cm.
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not survive in sedimentation runs for a long time. Because
of possible microdisturbance in overlay experiments, we
prefer sedimentation velocity runs with the conventional
double-sector cells. With respect to the application of the
different model functions to obtain reliable results, Eq. 3-5
can be recommended. From our experience, application of
Eq. 3 requires longer columns. In contrast, the improved Eq.
4 and, in particular, Eq. 5 are suitable for experiments with
smaller column lengths. Furthermore, Eq. 5 does not require
a plateau region and fulfills the boundary conditions and is
therefore suitable for substances with lower molecular
masses. In future work we hope to eliminate the missing
capability of Eq. 5 to fit the meniscus region of the concen-
tration profiles by a small empirical alteration, as suggested
for the improvement of Eq. 4.

The authors are grateful to Dr. Walter Stafford for the Claverie simulations.
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