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Introduction

The realm of MR intervention and theranostics is experienc-
ing a rapid evolution. Within the broader scope of theranos-
tics, paradigm shifts in non-invasive and invasive therapeutic 
intervention signify an era where treatment efficacy can be 
accurately tracked and assessed. The word Theranostics is a 
fusion of therapy and diagnostics, reflecting its dual purpose 
of treating and diagnosing diseases. It epitomizes a para-
digm where treatment efficacy can be systematically moni-
tored and optimized. Initially rooted in nuclear medicine 
with applications in diagnosing and treating cancer, it has 
undergone a transformative journey. Today, it encompasses 
a broader spectrum of imaging modalities, with MRI emerg-
ing as a non-invasive, patient-friendly, and potent clinical 
tool, alongside advancements in nanotechnology [1]. Far 
from being merely a trendy term, theranostics embodies a 
long-standing aspiration among scientists and clinicians to 
enhance patient care and advance personalized medicine. 
While some may view it as a buzzword [2] perhaps for 
securing research funding or driving healthcare policies, 
its essence lies in its potential to revolutionize healthcare 
delivery and outcomes. This evolution underscores the 
pivotal role of theranostics in pushing the boundaries of 
(molecular) imaging technologies to revolutionize patient 
care. Interventional MRI also has a rich history dating back 
to soon after the introduction of clinical diagnostic MRI [3]. 
Recognizing the superior soft tissue contrast capabilities of 
MRI, radiologists began exploring its use for guidance dur-
ing interventional procedures, especially those involving 
head and neck lesions. Interventional MRI is a specialized 
domain where medical images do not only serve diagnos-
tic purposes but also guide minimally invasive surgical or 

vascular procedures. Procedures including those involving 
small incisions in the body, are aimed at diagnosing, treat-
ing, and even curing various conditions. Today, it is widely 
employed to guide various invasive and noninvasive diag-
nostic and therapeutic interventions, such as robotic in-bore-
targeted biopsies [4] and has immense theranostic potential, 
such as in deep brain stimulation [5].

As part of the program of the upcoming 2024 Annual 
Meeting of the European Society for Magnetic Resonance in 
Medicine and Biology (ESMRMB), the Congress Planning 
Committee has invited speakers from across Europe, experts 
in the field or MR theranostics and intervention, who will 
deliver plenary and educational talks in these correspond-
ing fields.

Content

The ESMRMB program divides the focus topic on MR 
theranostics and intervention into 4 main sessions: (1) Mul-
timodal imaging for theranostics, (2) Invasive interventional 
MR, (3) Noninvasive interventional MR and (4) The role of 
MRI in drug development.

The plenary will delve into recent advances and prospects 
in theranostics, covering the synthesis, delivery, and applica-
tion of new probes, designed with identifiable markers for 
precise drug localization within the body. Among preclinical 
molecular imaging methods, fluorine (19F) MRI has gained 
prominence [6], with background-free detection making 
fluorine-containing molecules ideal tracers for various MRI 
applications, including quantification of inflammatory dis-
orders [7, 8] and treatment assessment [9, 10]. However, the 
low in vivo availability of administered fluorinated materials 
limits sensitive reporting. Nonetheless, innovations in 19F 
tracer design enable precise imaging of specific cell types 
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[11] and measurement of physiologically important param-
eters like local oxygenation. Multi-targeted 19F nanotracers, 
equipped with binding molecules targeting specific immune 
cell subtypes, enable comprehensive mapping of immune 
response dynamics by whole-body MRI [8]. Conjugating 
immunomodulating drugs to these nanotracers allows their 
use as theranostic tools for modulating specific immune cell 
functions. Synthesizing therapeutic agents containing both 
active constituents and markers for in vivo visualization 
within the target organ remains a key challenge in 19F MRI 
theranostics [12]. This challenge can be addressed by utiliz-
ing iron-based nanoparticles or specific Gadolinium (Gd) or 
Manganese (Mn) complexes [13, 14]. A notable example of 
theranostics is molecular and cell therapy in the treatment of 
diabetes [15, 16]. In the clinical setting, confirmatory labe-
ling and distinctions between transplanted cells and nano-
particles will ensure specific detection of therapeutic cells 
[17, 18]. Overall, this plenary session will underscore the 
transformative potential of MR theranostics and molecular 
imaging.

The first educational session is on multimodal imaging 
for theranostics and will give an update on established and 
emerging imaging and spectroscopic modalities in theranos-
tics. Starting with methods in nuclear medicine, the nuclear 
theranostic approach aims to customize the management 
of various human diseases, improve patient selection, and 
enhance prognosis, while avoiding futile and costly diag-
nostic and therapeutic activities [19]. The aim is to engage 
a given target in dysfunctional cells or tissues. Although 
nuclear theranostics has primarily focused on oncology, 
significant novel applications are rapidly gaining traction in 
cardiology and neurology [20, 21]. The recent development 
of new radionuclide-based therapies has re-energized the 
field of targeted-radiotherapy [22]. Concomitantly, there is 
a growing recognition that theranostics can serve as conveni-
ent drug delivery systems, making theranostic strategies par-
ticularly appealing to large pharmaceutical companies seek-
ing to develop more selective and efficient therapies [23]. 
The modality of MR spectroscopy (MRS) is instrumental in 
non-invasively elucidating tumor metabolism, particularly 
in adult-type diffuse gliomas, and is proving indispensable 
in theranostic approaches for timely diagnosis and treat-
ment. Prognosis in adult-type gliomas pivots on mutations 
in isocitrate dehydrogenase (IDH) and chromosome 1p/19q 
codeletion [24]. Mescher–Garwood point-resolved spec-
troscopy (MEGA-PRESS) enables the simultaneous detec-
tion of 2–hydroxyglutarate (2HG)—a direct, downstream 
marker of IDH mutation [25]—and cystathionine, which 
accumulates preferentially in 1p/19q-codeleted gliomas 
[26], as demonstrated in both research and clinical settings 
[27]. These studies highlight the high specificity of MEGA-
PRESS for both predictors in mutated gliomas, underscoring 
the importance of understanding the neurochemical profile 

for early diagnosis, compared to current standard diagnostic 
classifications [24]. Rapid, accurate, and noninvasive prog-
nosis stratification of diffuse glioma with edited MRS will be 
essential to expedite routine workup for patients with diffuse 
gliomas, thereby facilitating access to IDH inhibitor treat-
ment. Hyperpolarization methods offer an unprecedented 
boost in MR sensitivity via non-destructive manipulation of 
quantum spin state populations (typically of 13C & 1H). This 
provides a unique promise for in-vivo drug spatial locali-
zation [28] and metabolic probing [29]. Target nuclei can 
be incorporated into drug molecules as motifs or molecular 
tags. Hyperpolarization methods include dynamic nuclear 
polarization (DNP) [30], parahydrogen-induced polarization 
(PHIP) [31] and signal amplification by reversible exchange 
(SABRE) [32]. Following hyperpolarization, drug distribu-
tion and metabolism can be tracked via MRS(I) methods. 
The enhanced signal persists for a limited time; therefore, 
the implementation of cutting-edge, rapid MR methodolo-
gies and chemical manipulation for long magnetic lifetimes 
is imperative. Mass spectrometry adds a powerful approach 
for studying drug spatial localization. Additionally, MR 
hardware can be manipulated for targeted magnetic delivery 
to increase the efficacy of therapeutics [33, 34] and comple-
ment the diagnostic potential of the discussed approaches.

The second educational session will focus on invasive 
interventional MRI methods as theranostic tools, high-
lighting MRI’s versatility for needle-based therapeutic 
interventions [35, 36]. Thermoablation treatments includ-
ing laser-induced interstitial laser therapy (LITT), radi-
ofrequency ablation (RFA), microwave ablation (MWA), 
and cryoablation (CA), established for coagulating various 
tumors, notably in the brain, liver, kidney, and prostate. 
While these procedures are typically monitored using CT 
or ultrasound, MR imaging offers real-time temperature 
monitoring through MR-thermometry, enhancing therapy 
precision. However, challenges like breathing or residual 
bleeding-induced artifacts on MR-thermometry persist. 
Technological advances, including lower field strength MR 
units, aim to enhance the utility of MR-guided needle-based 
interventions for treatments. MRI guidance is crucial for 
planning treatments in vital organs like the liver, breast, and 
prostate, aiding in biopsy, dosimetry, and improving out-
comes [37, 38]. In liver interventions, MRI even enables 
intraprocedural dosimetry during tumor radioembolization 
[39]. Leveraging interventional MRI offers distinct advan-
tages, including real-time imaging guidance, enhanced 
accuracy, and improved patient outcomes. Brain surgery is 
another aspect that benefits interventional MRI. Intraopera-
tive MRI–guided brain surgery enhances effective and safe 
tumor resection [40, 41], and the treatment of epilepsy [42]. 
Recent advances include MRI-guided focused ultrasound for 
treating tremors in parkinsonism. This innovative technique 
enables precise targeting and real-time thermal monitoring 
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using MR thermometry [43]. Despite its benefits in neuro-
surgery, intraoperative MRI remains limited due to safety 
concerns. Strict safety protocols and personnel training are 
crucial to prevent accidents [44].

The third educational session will be non-invasive inter-
ventional MRI methods as theranostic tools. MR-guided 
high-intensity focused ultrasound (MR-HIFU) is an interven-
tional treatment using HIFU that is guided by MRI for spa-
tial treatment planning as well as monitoring of tissue heat-
ing or treatment effects. Ultrasound waves can be focused 
deep within a patient’s body. Within the focus region, energy 
dissipation leads either to heating or to a mechanical disrup-
tion of tissue and cellular structures, depending on the wave 
intensity and the exact pulse sequence [45–47]. HIFU uses 
continuous sonications to thermally ablate tissue or induce 
local hyperthermia [48]. Besides offering soft tissue con-
trast, MRI is used to monitor near-real-time temperature 
mapping for feedback to the HIFU transducer. This ensures 
a defined thermal dose for tissue ablation and constant tem-
peratures during hyperthermia treatments. Current clinically 
approved MR-HIFU applications are based on thermal tis-
sue ablation, for the treatment of uterine fibroids, desmoid 
tumors, or painful bone diseases. A new clinical applica-
tion is histotripsy which is induced by pulsed HIFU and 
involves mechanical ablation of tissue without significant 
heat deposition [45]. For this, other MR contrast mecha-
nisms that monitor non-thermal tissue degradation provide 
feedback during therapy. The concepts of MR-HIFU will be 
reviewed with examples of current clinical applications and 
ongoing trials, also focusing on the translation of preclinical 
work. The potential application of histotripsy in oncology 
will be discussed. ThermalMR combines diagnostic MRI 
with targeted local thermal therapy using radiofrequency 
(RF) applicators in an integrated system [49]. Fighting fire 
with fire, hyperthermia is an adjunct treatment to enhance 
the efficacy of other anti-cancer treatments: chemotherapy, 
radiotherapy and immunotherapy [50] and has clinical 
potential in targeted drug delivery using thermo-responsive 
nano-carriers [51]. ThermalMR uses RF antenna arrays to 
selectively increase the temperature of a target region and is 
governed by RF features such as the frequency and geom-
etry of phased arrays [52, 53]. The objective is to ensure 
uniform magnetic transmission fields for MRI and MR ther-
mometry and facilitate targeted control of electric fields for 
thermal therapy. There will be a focus on ThermalMR as it 
explores temperature’s role in biology and disease, intro-
ducing thermal cancer phenotyping, to advance thermal 
theranostics [54]. MRI-guided radiation therapy (MRgRT) 
represents an unprecedented therapeutic advantage com-
pared to X-ray-based radiotherapy delivery systems by lev-
eraging real-time imaging to customize treatments to each 
patient’s tumor anatomy, ensuring precise targeting while 
sparing radiation exposure to surrounding healthy tissues 

[55]. This transformative technology brings about a para-
digm shift in the workflow of radiation oncology, demand-
ing enhanced coordination among multidisciplinary teams 
to ensure precise treatment delivery. Upon implementation, 
it opens avenues for novel applications in radiation therapy, 
enabling the safe delivery of higher doses with enhanced 
preservation of healthy tissues, ultimately optimizing patient 
outcomes. The technical intricacies of advanced linear accel-
erators capable of delivering MRgRT will be outlined, along 
with a comprehensive summary of published experiences to 
date, emphasizing oncological outcomes and highlighting 
forthcoming challenges. MRI-guided neuromodulation is 
another interventional MRI that shows significant promise in 
neurological disorders [56, 57]. It includes techniques such 
as transcranial magnetic stimulation (TMS) and transcranial 
direct/alternate current stimulation (tDCS/tACS). Structural 
MRI is essential for modelling electric fields, while con-
current measurements with functional MRI (fMRI) and/or 
electroencephalography (EEG) are increasingly attracting 
more interest. Additionally, leveraging further multimodal 
imaging, including diffusion MRI (dMRI), holds the poten-
tial for more accurate targeting through the use of structural 
connectivity, based on real-time tractography [58]. Empha-
sis will be made on the integration of technologies as this 
not only refines therapeutic interventions but also deepens 
our understanding towards diagnostics, paving the way for 
more precise and personalized treatments particularly for 
psychiatric disorders.

The fourth educational session will be on the role of MRI 
in drug development and will focus on perspectives from 
academia and industry. Particularly in industry, positron 
emission tomography (PET) remains the major player dur-
ing the drug discovery and development process, and during 
preclinical and clinical trials [59]. The use of hybrid PET-
MRI enhances pharmacokinetics and pharmacodynamics, 
by offering simultaneous structural, microstructural, and 
functional information. In rare diseases, comprehensive 
PET-MR protocols are crucial for acquiring multimodal 
information on structural and functional tissue integrity. 
Identifying disease biomarkers and treatment responses 
requires careful consideration of hardware and software 
factors, such as radiotracer selection, MR acquisition pro-
tocols, QC procedures that ensure robust acquisitions and 
post-processing reproducibility to estimate disease-related 
and treatment-response-related metrics. Next attention will 
be paid to the contribution of preclinical MRI to drug devel-
opment. Non-invasive imaging of whole organisms provides 
invaluable insights into physiology and pathology, includ-
ing immune responses, surpassing what can be achieved 
through cell culture or organoid experiments. In vivo MRI 
provides dynamic, real-time data, unlike postmortem tissue 
analysis, which offers only a snapshot at a single time point. 
MRI stands out among non-invasive imaging methods due 
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to its ability to provide a multi-parametric view, enabling the 
assessment of various physiological and metabolic param-
eters. These parameters inform on toxicity, biodistribution, 
efficacy, mode of action, immune response, and potential 
adverse effects. Despite recent advances in sensitivity and 
specificity, the role of preclinical MRI in drug development 
has evolved rather than dramatically changed in the past 
two decades [60, 61]. Nonetheless, preclinical MRI remains 
essential for adhering to the 3R principle in drug develop-
ment [62]. Advancing MRI biomarkers in drug development 
is crucial [63, 64]. MRI can influence various stages, from 
preclinical to clinical trials. During the preclinical stage, 
MRI reveals disease mechanisms, aiding target and drug 
validation. Early on, it assesses pharmacokinetics and tis-
sue distribution for safety. In clinical trials, MRI biomarkers 
quantify treatment efficacy and safety, expediting decision 
timelines when determined as early, sensitive gauges of dis-
ease progression. However, challenges persist: MRI methods 
must be sensitive and specific to the disease progression 
or treatment response; integrated with other clinical data 
early on to provide a more comprehensive overview [65]. 
Quantitative measures are essential for precise monitoring 
[66], requiring reproducible imaging protocols. Regulatory 
approval is needed for MRI as a surrogate endpoint or com-
panion diagnostic. Finally, MRI must be cost-effective and 
widely accessible for widespread use.
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