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The functional impact and cellular context of mosaic structural 
variants (mSVs) in normal tissues is understudied. Utilizing Strand-seq, 
we sequenced 1,133 single-cell genomes from 19 human donors of 
increasing age, and discovered the heterogeneous mSV landscapes of 
hematopoietic stem and progenitor cells. While mSVs are continuously 
acquired throughout life, expanded subclones in our cohort are confined 
to individuals >60. Cells already harboring mSVs are more likely to 
acquire additional somatic structural variants, including megabase-scale 
segmental aneuploidies. Capitalizing on comprehensive single-cell 
micrococcal nuclease digestion with sequencing reference data, we 
conducted high-resolution cell-typing for eight hematopoietic stem and 
progenitor cells. Clonally expanded mSVs disrupt normal cellular function 
by dysregulating diverse cellular pathways, and enriching for myeloid 
progenitors. Our findings underscore the contribution of mSVs to the 
cellular and molecular phenotypes associated with the aging hematopoietic 
system, and establish a foundation for deciphering the molecular links 
between mSVs, aging and disease susceptibility in normal tissues.

Somatic subclonal (mosaic) mutations are present in nearly all tis-
sues and accumulate with age1–6, yet their role in human health and 
disease is underexplored. Somatic structural variants, which comprise 
copy-number alterations (CNAs) and copy-neutral rearrangement 
classes, are the most common class of driver mutation in cancer7,8. 
Previous studies have associated mosaic CNAs in aged donors with 
unusual blood cell counts and susceptibility to age-associated dis-
eases2,9–12, which underscores the potential for mSVs to alter molecular 
phenotypes in healthy individuals upon aging. However, the molecular 
processes behind these associations, which are anticipated to vary by 
cell type, are poorly understood.

Detecting mSVs poses an important technical challenge7,11, with 
bulk whole-genome sequencing (WGS) typically unable to differentiate 
cell types and identify mSVs present with a low variant allele frequency 
(VAF). Additionally, WGS of single-cell-derived clones is limited to mSVs 
that can be cultured long-term, potentially biasing against mSVs exhib-
iting large segmental aneuploidies7,13,14. Single-cell sequencing offers a 
solution in theory, yet most methods are suited only for detecting large 
CNAs, yielding an incomplete understanding of mSVs15.

Here we utilize Strand-seq, a haplotype-resolved single-cell 
sequencing technique14,16,17, to investigate the functional impact of 
mSVs. We focus on the blood compartment, where mosaic CNAs have 
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singleton mSVs are nearly 18 times larger on average than subclonal 
mSVs (36.9 versus 2.1 megabase pairs (Mb), respectively; P = 0.0009, 
Wilcoxon rank-sum test; Fig. 1d). These data indicate that singleton 
mSVs, detected in 1 of every 43 HSPCs, bear the characteristics of de novo 
rearrangements (Supplementary Notes), suggesting that not all mSVs 
have the same potential to form appreciable subclones.

Analyzing these data with respect to donor age shows subclonal 
mSV expansions (Pearson’s correlation; R = 0.16; P = 1.1 × 10−7) and sex 
chromosome losses (R = 0.087; P = 0.0034) are associated with increased 
age (Fig. 1e), consistent with previous studies of mosaic CNAs2,11,18,19. Con-
versely, singleton mSVs are uncorrelated with age (R = 0.008; P = 0.79; 
Fig. 1e), suggesting continuous acquisition throughout life. Instead, we 
observe elevated numbers of de novo mSVs in cells already containing a 
subclonal mosaicism versus unmutated cells (Fisher’s exact test; 4.76% 
versus 1.96%; P = 0.038; Fig. 1f), suggesting that mSV-harboring cells may 
be ‘predisposed’ to accumulate further rearrangements.

Hotspots of mSV formation
Since DNA double-strand breaks (DSBs) can trigger structural rear-
rangements7,21, we examined the correlation between DSB acquisition 
and donor age. Strand-seq enables the detection of sister chroma-
tid exchanges (SCEs) to allow systematic mapping of DSBs following 
homologous repair16. We identified 4,528 SCEs in our dataset (~4 SCEs 
per cell, consistent with previous reports22; Extended Data Fig. 1a). SCE 
abundance is inversely correlated with age (R = −0.089; P = 0.0027; 
Fig. 1g and Supplementary Fig. 3), with on average 4.6 SCEs per cell 
in individuals <60, compared with 3.9 SCEs per cell in donors >60 
(Extended Data Fig. 1a). With HSPCs exhibiting largely stable acqui-
sition of mSVs and SCEs regardless of age, these data suggest mSV 
formation occurs consistently throughout life.

Since structural rearrangements can be influenced by local 
sequence context7, we analyzed the genomic locations of SCEs and 
mSVs. The skewed distribution of SCEs along chromosomes is even 
more pronounced than that of mSVs (Fig. 1b and Supplementary Fig. 4): 
6.67% (302 of 4,528) cluster into 20 SCE ‘hotspots’ (Methods, Extended 
Data Fig. 1b and Supplementary Table 3), of which five (25%) coincide 
with common fragile sites23 (CFSs) (Supplementary Table 4). Notably, 
SCEs overlap significantly with mSV breakpoints, with 3% (133 of 4,528) 
of all SCEs intersecting an mSV breakpoint (P < 0.0001, derived from 
10,000 permutations; Fig. 1h,i, Extended Data Fig. 1c–f and Supplemen-
tary Table 3). While CFSs are enriched for both SCEs (P < 0.0002) and 
mSV breakpoints (Extended Data Fig. 1g,h), we identify additional SCE 
hotspots with similar enrichments not previously identified as CFSs 
(Fig. 1b,j, Supplementary Fig. 5 and Supplementary Tables 2–4). These 
loci may therefore represent mSV hotspots in HSPCs.

been documented in aged donors2,11,18,19. Strand-seq allows resolving 
of diverse mSV classes, including de novo structural rearrangements, 
by analyzing their unique ‘diagnostic footprints’ utilizing the scTRIP 
framework14. Additionally, Strand-seq simultaneously yields nucleo-
some occupancy profiles from each single cell, generated via micro-
coccal nuclease (MNase) digestion16, which can be used to analyze 
the functional consequences of structual variants with the scNOVA 
framework20. In 1 of every 43 hematopoietic stem and progenitor cells 
(HSPCs), we detect de novo mSVs, which emerge regardless of age. 
We resolve the cell-type identity of mSV-bearing cells, revealing they 
are commonly enriched in myeloid progenitors and exhibit aberrant 
pathway activity previously associated with aging.

Results
Single-cell-resolved mSV landscapes in HSPCs
To study mSV formation in HSPCs with cell-type-specific resolution, 
we analyzed cells from 19 healthy donors—ranging from newborn to 
92 years of age—composed of n = 3 umbilical cord blood (UCB) and 
n = 16 bone marrow samples (Fig. 1a). We isolated viable CD34+ HSPCs 
(Supplementary Fig. 1) and cultured them for one cell division to ena-
ble Strand-seq (Methods). We obtained 1,133 high-quality single-cell 
libraries, with a mean of 432,282 uniquely mapped fragments per cell 
(Supplementary Fig. 2 and Supplementary Table 1). We used scTRIP14 
to discover mSVs and whole chromosome aneuploidies (herein, col-
lectively called ‘mosaicisms’), both in single cells and in subclones. 
Altogether, we identify 51 independently arisen mosaicisms, occurring 
in 16 of 19 (84%) donors (mean per donor = 2.7; range 0–8), includ-
ing: 22 deletions, 12 duplications, 3 complex mSVs involving three or 
more breakpoints, 1 balanced inversion and 13 chromosomal losses 
(Fig. 1b and Supplementary Table 2). These mosaicisms affect 17 of 24 
chromosomes and exhibit no chromosomal enrichment except for 
the Y chromosome, which was independently lost once or multiple 
times (leading to mosaic loss of Y (LOY)) in 8 of 12 (67%) male donors.

Investigating the subclonal composition of each mosaicism (Sup-
plementary Table 2), we find 32 that are detected in only 1 cell (‘singleton 
mosaicism’), while the remaining mSVs constitute subclones with a cell 
fraction (CF) of 1.6–56.1% (‘subclonal mosaicism’). While subclones with 
sex chromosome losses (n = 12 LOY; n = 1 loss of X) reach CFs up to 46.4%, 
we do not observe whole autosomal aneuploidies. Focusing our further 
investigation on the 38 autosomal mSVs, we find notable differences 
between singleton and subclonal mosaicisms. First, 21 of 31 singleton 
mSVs (68%) exhibit terminal gains or losses, whereas all seven subclonal 
mSVs comprise interstitial alterations. Second, all complex mSVs are 
singletons. These include a breakage fusion bridge cycle-mediated14 mSV 
on chromosome 20p, and a terminal amplification of 1q (Fig. 1c). Third, 

Fig. 1 | HSPCs acquire a wide diversity of mSVs with age, without increased 
chromosomal instability. a, Cohort and experimental workflow used. For 
visualization purposes, here and below, strand- and haplotype-specific DNA 
reads are colored as follows: Watson (−) reads, orange; Crick (+) reads, blue; SNPs 
phased to haplotype 1 (H1), red circles; SNPs phased to haplotype 2 (H2), blue 
circles. b, Genome-wide karyogram of mSVs identified. Bars indicate the size 
of identified mSVs, color indicates the class and the relative size of the bubble 
linked to the middle of each mSV depicts its cell fraction (CF). Filled circles 
denote subclonal mSVs, while unfilled ones are singleton mSVs. Stars indicate 
bins significantly enriched for SCEs. c, Examples of singleton complex mSVs 
identified in the cohort. Copy-number estimates in affected regions are shown 
next to the respective segments. Black dotted lines represent mSV breakpoints. 
DNA reads are colored as described in panel a. IntDel, interstitial deletion; 
InvAmp, inverted amplification; terDel, terminal deletion; hetInv, heterozygous 
inversion. d, Singleton mSVs (n = 67 examined over 10 independent donors) 
are significantly larger, when comparing mean total affected base pairs, than 
subclonal mSVs (two-sided Wilcoxon rank-sum test; n = 10 examined over 6 
independent donors; boxplots were defined by: minima, 25th percentile − 1.5× 
interquartile range (IQR); maxima, 75th percentile + 1.5× IQR; center, median; 

and bounds of box, 25th and 75th percentiles). e,g, Jitter plots depicting trends 
in the number of subclonal and singleton mSVs (e), and SCEs (g), across age 
(R, correlation coefficient calculated from the number of mSVs/SCEs given 
the donor age; P value is based on the two-sided significance test for the 
Pearson correlation coefficient, testing the hypothesis that it is 0.). f, Barplot 
of the incidence of singleton mSVs (y axis) in cells with or without subclonal 
mosaicism. Padj computed using two-sided Fisher’s exact tests. h, Results of 
the one-sided permutation test shuffling singleton mSV breakpoints (100-kb 
confidence interval) and SCE hotspots (200-kb bin) genome-wide for 10,000 
permutations. The P value shows the significance of the difference between the 
permuted (black line) and actual (green) number of overlaps. i, Local Z-score of 
enrichment of overlaps between singleton mSV breakpoints and SCE hotspots. 
mSV breakpoints are shifted in windows of 100 kb to 10 Mb ±the bin in which an 
SCE hotspot is located, and the enrichment Z-score plotted each time. Additional 
permutations are plotted in Extended Data Fig. 1. j, Strand-seq data showing 
recurrent SCE and mSV co-occurrence at the SCE hotspot and FRA3B CFS in donor 
BM762. Haplotype-specific DNA reads and SNPs phased to H1 and H2 are  
colored as described in panel a. CN, copy number; Evob, observed overlaps;  
Evperm, expected overlaps; nPerm, number of permutations.
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High-precision cell-typing using nucleosome occupancy 
profiles
To investigate the cell-type-specific impact mSVs exert on HSPCs, we 
utilized a two-pronged approach by coupling single-cell mSV analy-
sis with nucleosome occupancy-based functional profiling20. First, 

to develop nucleosome occupancy-based cell-type classifiers20, we 
constructed single-cell nucleosome occupancy reference profiles 
for HSPCs derived from both UCB and bone marrow, covering eight 
distinct cell types: hematopoietic stem cells (HSCs), multipotent pro-
genitors (MPPs), lymphoid-primed multipotent progenitors (LMPPs), 
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common lymphoid progenitors (CLPs), plasmacytoid dendritic cells, 
common myeloid progenitors (CMPs), granulocyte–macrophage pro-
genitors and megakaryocyte–erythroid progenitors (MEPs) (Fig. 2a 
and Supplementary Fig. 6). Using well-defined immunophenotypes 
(Supplementary Table 5 and Supplementary Fig. 6) we index-sorted 
HPSCs, and devised a preamplification-free single-cell MNase sequenc-
ing (scMNase-seq) protocol (Methods) to characterize the single-cell 
nucleosome occupancy profile for each cell type.

We obtained 480 high-quality scMNase-seq libraries (Supplemen-
tary Table 6): 305 from bone marrow-derived HSPCs (1 donor) and 175 

from UCB-derived HSPCs (5 donors) (Supplementary Table 1). Using 
scNOVA, we identify 899 and 819 genes exhibiting cell-type-specific 
nucleosome occupancy in the UCB- and bone marrow-derived datasets, 
respectively (Fig. 2b and Extended Data Fig. 2a). The cell-type-specific 
gene activities inferred from nucleosome occupancy20 are broadly 
consistent with published transcriptomic datasets24 (Fig. 2c). For exam-
ple, from the bone marrow-derived nucleosome occupancy dataset, 
we infer increased activity of the canonical marker MME (CD10) only 
in CLPs25, while HDC (involved in myeloid-lineage priming26) exhibits 
increased activity in CMPs. We also observe differential nucleosome 
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Fig. 2 | scMNase-seq atlases for eight distinct HPSCs enable cell-type-aware 
single-cell multiomic profiling. a, Single-cell multiomic analysis workflow 
used to investigate mSVs in HSPCs with Strand-seq, which involves single-cell 
mSV discovery (scTRIP14), single-cell nucleosome occupancy (NO) analysis to 
infer mSV functional effects (scNOVA20) and cell-typing. GMP, granulocyte–
macrophage progenitor; pDC, plasmacytoid dendritic cell. b, Construction of 
bone marrow and UCB-specific NO reference datasets to allow for cell-typing, 
based on subjecting HSPC cell types to index sorting, and scMNase-seq. Heatmap 
of single-cell NO of gene bodies of 305 single bone marrow HSPCs (UCB-based 
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occupancy at genes not previously reported as HSPC markers, such as 
SH2D4B and FAT3 (Supplementary Table 7a,b).

Harnessing these gene sets, we utilized nucleosome occupancy 
measurements as features for developing supervised cell-type clas-
sification models using partial linear square discriminant analysis 
(PLS-DA) (Fig. 2d–f, Extended Data Fig. 2, Supplementary Table 7a,b 
and Methods). These classifiers provide excellent accuracy, with an 
average area under the curve of 0.97 for bone marrow and 1.00 for UCB, 
as estimated by leave-one-out cross-validation (Fig. 2d and Extended 
Data Fig. 2). Uniform manifold approximation and projection (UMAP) 

of the latent variables corroborate the discriminatory power of these 
classifiers compared with unsupervised classification (Fig. 2e,f and 
Extended Data Fig. 2).

Subclonal mSVs commonly exhibit a lineage bias
Having constructed nucleosome occupancy references for HSPCs, 
we next performed cell-typing of each Strand-seq library (Fig. 3a 
and Supplementary Table 8). Tissue-level cell abundances detected 
based on nucleosome occupancy show high consistency with previ-
ous studies24,27–29, including an expanded HSC frequency in older bone 
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marrow donors (from 8.1% to 80%; false discovery rate (FDR)-adjusted P 
(Padj) = 0.013; mixed linear model analysis), and a greater abundance of 
MPPs in UCB versus bone marrow24,27 (37% versus 0.1%; Padj = 2.45 × 10−33; 
Fisher’s exact test; Extended Data Fig. 2). Furthermore, the cell-type 
compositions seen in Strand-seq closely resemble estimates from 
orthogonal single-cell RNA sequencing (scRNA-seq) data generated 
from two donors (BM65, BM712), independently verifying our nucleo-
some occupancy-based classifiers (Fig. 3b and Supplementary Fig. 8).

We next explored the cellular context of mSVs. Of the 19 subclonal 
mosaicisms found, 8 (42%) show significant cell-type enrichments 
(FDR 10%; Fig. 3c,d and Supplementary Figs. 9 and 10); and, when 
considering only subclonal mSVs (that is, removing sex chromosome 
losses), 5 of 7 (71%) show significant biases. Here, we find predomi-
nantly myeloid skewing, with 5 of 5 (100%) of the cell-biased subclonal 
mSVs enriched in either myeloid or myelo-primitive cell types (Fig. 3e). 
These lineage-biased events include: a 10-Mb inversion on chromo-
some Xq12-Xq21.1 enriched in MEPs (BM65); a 1-Mb duplication at 
13q enriched in MEPs (BM70); a 300-kilobase (kb) duplication at 19q 
enriched in CMPs (BM63); and two sequentially arisen deletions at 17p 
(1.2 Mb) and 17q (500 kb) enriched in both CMPs and HSCs (BM712).

By comparison, sex chromosome losses exhibit more variability, 
with cell-type enrichments seen in only 3 of 12 (25%; all LOYs) and each 
of these exhibiting bias for a different cell type: MEP, LMPP and HSC, 
respectively (Supplementary Figs. 10 and 11). This suggests that the 
functional impact of LOY is less pronounced or more context-specific30. 
Furthermore, singleton mSVs do not show cell-type enrichment (Sup-
plementary Fig. 10), suggesting that lineage biases seen in subclonal 
mSVs are due to their impact on cellular function, rather than biased 
acquisition in a specific cell type.

Remarkably, despite the diverse genomic loci affected by sub-
clonal mSVs, there is a notable convergence on certain molecular 
phenotypes. Specifically, the Ras and JAK/STAT signaling pathways, 
as well as lipid metabolism—previously associated with clonal hemat-
opoiesis (CH) and leukemia31,32—are recurrently altered (Fig. 3d–f, 
Supplementary Figs. 12 and 13 and Supplementary Tables 9, 10 and 17). 
These data link mSVs to common changes in aging-related pathways.

Cell-type-specific impact of an inversion
The molecular consequences of mosaic inversions are underex-
plored, since most studies are biased towards CNAs7,11. We therefore 
investigated the Xq12-Xq21.1 inversion (‘Xq-Inv’), seen in 22.6% (19 of 
84) of cells from a 65-year-old female donor (BM65; Fig. 4a). Nucleo-
some occupancy analysis20 confirms the inversion lies on the active 
X-homolog (Supplementary Fig. 14), supporting its potential for medi-
ating functional effects. We refined the inversion breakpoints33 (Meth-
ods) to chrX:66753519–76960327, with confidence intervals of ~10 kb 
and ~18 kb, respectively. While neither breakpoint directly overlaps a 
gene, the inversion is predicted to fuse two topologically associating 
domains (TADs) by disrupting their annotated boundaries (Fig. 4b), 
putatively altering the respective gene regulatory environments34.

To investigate the potential impact of the inversion, we inter-
rogated haplotype-resolved nucleosome occupancy profiles at 
cis-regulatory elements (CREs) to infer chromatin accessibility for 
each homolog20. Using a haplotype-aware sliding window analysis 
(Methods), we normalized nucleosome occupancy between the active 
and inactive X, and compared Xq-Inv cells with unmutated cells from 
the same donor. We identify 13 peak regions with significantly altered 
nucleosome occupancy (10% FDR; Fig. 4b), with 4 (31%) located within 
one of the affected TADs. The strongest peak fell into an intergenic 
region and showed decreased nucleosome occupancy on the inverted 
haplotype, indicating increased chromatin accessibility20. This peak is 
located adjacent to the androgen receptor gene (AR). Closer analysis 
shows three annotated AR enhancers fall within this peak (Supple-
mentary Table 11), all residing in the fused TAD (Fig. 4b and Supple-
mentary Fig. 14). These data suggest AR as a potential target of gene 

dysregulation and contributor to subclonal expansion. Indeed, andro-
gens are used to treat bone marrow failure syndromes by inducing HSPC 
proliferation, albeit with an incompletely understood mode of action35.

To study the downstream effects of the Xq-Inv, we performed a 
genome-wide search for differential gene activity20, comparing the 
nucleosome occupancy of gene bodies between Xq-Inv and unmutated 
cells (Methods). We find 123 genes displaying differential nucleosome 
occupancy (Fig. 4c and Supplementary Table 10)—all of which reside 
outside the inversion locus—suggesting strong trans effects of Xq-Inv. 
Gene set over-representation analysis reveals dysregulation of several 
AR-related pathways, including Ras signaling and erythropoietin sign-
aling (10% FDR; Fig. 4d and Supplementary Table 12). Erythropoietin 
signaling, for example, contributes to an erythroid-bias of HSCs in 
association with elevated AR activity36,37. Finally, TF-target enrichment 
analysis20 reveals three TFs with differential activity in Xq-Inv cells: 
EGR1, RUNX1 and IKZF1—all of which are linked to AR signaling (Sup-
plementary Fig. 15). These data independently suggest AR activation 
as a result of Xq-Inv.

Notably, all three TFs have previously been reported to play critical 
roles in MEPs38–40, hinting that AR activation could be a key factor in the 
enrichment of MEPs within the Xq-Inv subclone (Fig. 4e). To explore 
this, we performed a cell-type-aware nucleosome occupancy analysis 
in the AR gene-body, revealing elevated AR activity from the rearranged 
homolog in HSCs, but not in MEPs (10% FDR; Supplementary Fig. 16). 
Likewise, upon testing AR target genes (Supplementary Table 13) we 
infer increased activity in HSCs, but not MEPs, with Xq-Inv (10% FDR; 
Fig. 4f and Supplementary Fig. 15), indicating HSC-specific AR over-
activation in Xq-Inv cells. Consistent with this, Xq-Inv HSCs contain 
unique differential nucleosome occupancy peaks (10% FDR), including 
at two AR enhancers (Fig. 4g and Supplementary Fig. 17). These enhanc-
ers, which contain binding sites for EGR1, RUNX1 and IKZF1, are more 
accessible in HSCs, suggesting cell-type-specific enhancer activities 
(Supplementary Fig. 18). Finally, where these HSCs show regulatory 
changes consistent with elevated AR signaling (with 3 of 4 differential 
nucleosome occupancy genes representing annotated AR targets), 
Xq-Inv myeloid cells (CMPs and MEPs) show a more diffuse signal (with 
23 of 105 and 12 of 55 differential nucleosome occupancy genes being 
AR targets, respectively) (Supplementary Table 9 and Supplementary 
Fig. 15). Among the MEP-specific genes, we infer high activity of RIT1 
(Padj = 0.0057), a gene whose overexpression has been implicated in 
CH with MEP expansion41. Comparing the scRNA-seq data from BM65 
with HSPCs from the Human Cell Atlas bone marrow cohort42 shows 
significant enrichment for AR activity in BM65 versus the Human Cell 
Atlas cohort in HSCs and MEPs, but not LMPPs (Supplementary Fig. 19). 
These findings are in line with androgen-mediating erythropoiesis 
through AR-dependent pathways43. They further imply HSC-specific 
AR overactivity, with a ‘priming’ role of Xq-Inv biasing cells towards 
megakaryocyte–erythroid lineages.

Stepwise accumulation of mSVs in HSPCs
While our data indicate that mSVs impact molecular phenotypes, 
how subclonal expansions are facilitated in cells harboring more than 
one co-existing mSV is unclear. We explored subclone dynamics in a 
71-year-old male donor (BM712) exhibiting five distinct subclones, three 
of which demonstrate cell-type bias (FDR 10%; Fig. 5a). Of the 123 cells 
sequenced, 103 (84%) harbor at least one subclonal mosaicism, includ-
ing two interstitial deletions and three LOYs (Fig. 5a,b). We tracked 
the subclonal evolution of BM712 using shared mSVs. One subclone 
(26% CF) shows LOY as the only mSV event and is enriched for HSCs. 
The four other subclones trace back to a ~1.2-Mb deletion at 17p11.2 
(17p-Del), seen in 56% of cells, followed by the progressive acquisition 
of a ~500-kb deletion at 17q11.2 (17q-Del) and two independent LOYs 
(Fig. 5c–e). Bulk WGS of CD34− cells verified the subclonal 17q-Del and 
17p-Del events (Fig. 5e and Supplementary Fig. 20), and revealed both 
mSVs are carried into mature blood cells.
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genes with diffNO (FDR 10% based on the hypergeometric test; Act_U, activity up; 
Act_D, activity down). e, Circle-packing plot depicting cell-type-resolved mSVs 
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mSVs; gray-colored background denotes measured cell-type enrichment. f, Violin 
plot of NO of known AR target genes, which exhibit an AR-binding motif in their 
promoter based on MsigDB75, in Xq-Inv (n = 18 cells) and WT cells (n = 66 cells), all 
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Benjamini–Hochberg multiple correction. The gray and yellow shading of violin 
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analysis of NO differences at CREs between the mSV subclone and WT cells. 
Padj values of significant peak regions (FDR < 10%) are highlighted. A red arrow 
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in which we infer increased chromatin accessibility (these two enhancers are 
highlighted in red in Supplementary Fig. 18). The red dotted lines indicate the 
significance level of haplotype-specific NO (FDR 10%).
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arm from the parent population. d,e, UCSC genome browser tracks for the 
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representation analysis using ConsensusPathDB77 for the genes identified in the 
pairwise comparison of 17p-Del and 17pq-Del subclones with WT cells (FDR 10% 
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and enrichment analysis for 17p-Del and 17pq-Del subclones in scRNA-seq data 
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To explore the functional impact of the initiating mSV (17p-Del), we 
compared the gene-body nucleosome occupancy of 17p-Del cells with 
unmutated cells from BM712 using scNOVA, identifying 76 dysregu-
lated genes (10% FDR; Fig. 5f). TF-target over-representation analysis20 
shows enrichment for the targets of seven TFs, with the most signifi-
cant being SREBF1 (Padj = 0.0047) (Supplementary Fig. 21). This gene 
is hemizygously deleted by 17p-Del, while the other six TFs fall outside 
the deletion, suggesting a potential important role for SREBF1 loss in 
the molecular phenotype of 17p-Del cells (Fig. 5d). Protein–protein 
interaction mapping of all seven dysregulated TFs using STRING44 (Sup-
plementary Methods) reveals a significant protein–protein interaction 
network connecting all TFs (P = 3.57 × 10−8; Supplementary Fig. 21), 
highlighting their functional relationship (Supplementary Notes). 
Pathway enrichment analysis shows this network is enriched for MAPK 
signaling components (Padj = 0.0028), previously linked to cell-cycle 
activation in aging HSCs45. Finally, gene set over-representation analysis 
of all 76 dysregulated genes supports MAPK activation (Fig. 5g), along 
with dysregulation of lipid homeostasis, a contributor to increased 
myelopoiesis46. Taken together, this suggests that 17p-Del triggers 
increased MAPK activity, potentially driving myeloid-biased clonal 
expansion through hemizygous SREBF1 loss.

We next investigated the consequences of 17q-Del, seen in a sub-
clone with 43.1% CF. This deletion disrupts the NF1 tumor suppressor via 
hemizygous loss of protein-coding exon 1 (Fig. 5e and Supplementary 
Figs. 22 and 23). In addition to its well-understood roles in cancer47, NF1 
has been nominated as a CH driver by single nucleotide variant (SNV) 
analysis48 (Supplementary Notes), suggesting that the 17q-Del may 
fuel HSPC clonal expansion. Using scNOVA, we find 112 dysregulated 
genes in 17q-Del cells. Pathway over-representation analysis also shows 
altered metabolism and upregulated mTOR signaling in the subclone 
(Supplementary Fig. 24). Given the known critical role of NF1 in mTOR 
signaling49, and the role of mTOR signaling in cell proliferation and 
HSPC differentiation50, these findings suggest that the 17q-Del induces 
mTOR dysregulation, potentially fostering subclonal expansion.

To further characterize these subclones, we generated 4,114 
scRNA-seq libraries from CD34+ cells isolated from BM712 (Supple-
mentary Fig. 25), and assigned HSPC cell types to the data using a 
transcriptome reference of human blood51 (Fig. 5h). To molecularly 
phenotype the deletion subclones, we capitalized on the fact that 
copy-number-imbalanced mSV classes can be utilized for targeted 
re-calling of CNAs in scRNA-seq data20 (Methods), allowing charac-
terization of mSV-bearing cells across a widened dynamic expression 
range. Using this approach, we infer that 2,571 (63%) scRNA-seq cells 
bear the 17p-Del, 1,841 (45%) contain the 17q-Del and 995 (24%) exhibit 
LOY (Supplementary Table 14)—CFs similar to the Strand-seq analyses. 
Co-occurrence analyses of these mosaicisms corroborate the subclonal 
structure identified using Strand-seq (Supplementary Fig. 26). Finally, 
the scRNA-seq data also verify the inferred lineage biases, with 17p-Del 
cells enriched for CMPs and LMPPs (Padj = 2.0 × 10−11, Padj = 0.0064; 
Fisher’s exact test), and both 17q-Del and LOY cells enriched for HSCs 
(Padj = 2.6 × 10−14, Padj = 1.0 × 10−56; Fisher’s exact test; Fig. 5i and Sup-
plementary Fig. 25).

Having located the mosaic subclones in the scRNA-seq data, we 
more deeply characterized their molecular phenotypes controlled by 
cell type. First, gene ontology analysis of the differentially expressed 
genes between HSCs with and without LOY identifies pathways linked 
to HSC quiescence52,53 (10% FDR; Supplementary Tables 15 and 16), 
potentially explaining the observed HSC enrichment of LOY in BM712. 
Next, we confirm a distinct transcriptional profile for 17q-Del cells, 
with differential activity seen for 16 pathways (Molecular Signatures 
Database (MSigDB) Hallmark; Supplementary Tables 15 and 16 and 
Supplementary Fig. 27) including those related to HSPC proliferation, 
differentiation and metabolism. These pathways include MYC and 
mTOR signaling through mTORC1—two known downstream effectors of 
somatic NF1 inactivation49,54—which can be linked to HSC expansion and 

inhibition of differentiation55,56. Indeed, we find 17q-Del cells are signifi-
cantly enriched for HSCs compared with 17p-Del cells (Padj = 2.1 × 10−5; 
Fig. 5g), potentially mediated through MYC and/or mTORC1 upregula-
tion55,56. Finally, 17q-Del cells show an altered DNA damage response, 
with decreased expression of BRCA1, BRCA2, FANCI and BLM—implying 
these cells might be prone to acquire further alterations. Together, this 
suggests that BM712 underwent a stepwise acquisition of a potentially 
‘higher-risk’ molecular phenotype; first, HSCs were enabled to exit 
quiescence and bias their differentiation (17p-Del); and, second, cells 
became more proliferative and HSC-like, and potentially more permis-
sive to acquiring further mutations.

Finally, we explored the presence and functional impact of these 
mSVs in scRNA-seq data generated from terminally differentiated 
CD34− blood cells. We annotated 2,965 cells into eight cell types using 
published reference data57 (Fig. 5j and Supplementary Fig. 28), and per-
formed targeted CNA re-calling58. Notably, we find a significant enrich-
ment for monocytes in 17p-Del cells (Fig. 5k), a circulating downstream 
progeny of CMPs. These data underscore that these mSVs, identified 
in HPSCs, could impact peripheral blood cells. In contrast, our efforts 
to re-detect CNAs within the smaller 17q-Del region were unsuccess-
ful due to its limited number of expressed genes, underscoring the 
superior capability of Strand-seq in functionally characterizing mSVs 
relative to scRNA-seq.

Functional effects of mSVs in blood samples
To extrapolate these findings to a larger cohort of blood samples, we 
interrogated the UK Biobank cohort59. The phenotypic data paired with 
whole-exome sequencing (WES) data from 469,792 donors59 provide 
the opportunity to study somatic mutations in relation to blood counts. 
Focusing on our top hits—NF1, SREBF1 and AR—we extracted rare (minor 
allele frequency (MAF) < 1%) SNVs and small (<50 bp) insertion and dele-
tion variants (INDELs) from UK Biobank samples, and classified these 
based on their predicted impact (Supplementary Table 18). Since CNA 
losses affecting both the 17p-Del and 17q-Del regions were previously 
documented2,60, we additionally made use of WES-based CNA calls60 
which we analyzed by burden testing (Methods). We first concentrated 
on the 17p-Del and 17q-Del regions, analyzing gene-disrupting SNVs. 
We find a bimodal VAF distribution for NF1 and SREBF1 predicted 
loss-of-function (pLoF) SNVs, but not for rare synonymous and rare 
missense variants (Fig. 6a). These data indicate that gene-disrupting 
pLoF SNVs represent a common source of mosaicism at these loci. 
Furthermore, they emphasize the link between gene-disrupting mSVs 
affecting SREBF1 and NF1, and clonal expansions in normal blood.

Furthermore, at the SREBF1 locus, we find CNA losses and pLOF 
SNVs are independently associated with altered blood counts (n = 2 
losses and n = 74 pLOF SNVs; Supplementary Table 18 and Supplemen-
tary Figs. 29 and 30), with the SREBF1 gene being among the strong-
est hits within the 17p-Del region for several categories, including 
elevated total leukocytes (Padj = 0.00012; loss) and elevated monocytes 
(Padj = 0.0012; loss) (Fig. 6b and Supplementary Fig. 29). These findings 
independently support that SREBF1 loss may contribute to a cell-type 
bias in leukocytes, specifically towards monocytes. When repeating the 
same analysis for all genes in the 17q-Del region, we find losses at 5 of 6 
genes are associated with elevated total leukocytes—yet, only for NF1 
do we observe that both loss and pLoF SNVs are significant (Padj = 0.042 
for both; Fig. 6c, Supplementary Table 18 and Supplementary Figs. 29 
and 30). This supports the contributions of both 17p-Del and 17q-Del 
to cell-type skewing and potentially clonal expansion in blood. Inter-
estingly, pLOF SNVs in NF1 are associated with a marked increase in 
neutrophil counts (Padj = 0.00019), strongly implicating this gene in 
myeloid-skewed hematopoiesis.

Lastly, we analyzed rare missense SNVs at the Xq-Inv locus (n = 5 
genes), motivated by earlier reports of activating somatic missense muta-
tions in AR61, which we reasoned could potentially mirror the AR activation 
molecular phenotype seen in BM65. In females, we observe a bimodal VAF 
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for missense SNVs, but neither for pLoF nor for rare synonymous SNVs, 
suggesting that AR missense SNVs, but not other SNVs, exhibit somatic 
mosaicism (Fig. 6d and Supplementary Notes). Furthermore, five rare AR 
missense SNVs, but no AR pLoF SNVs, are associated with altered blood 
cell counts (Padj < 0.05, for all five SNVs; Fig. 6e). These fall into exon 1 
(n = 3), exon 2 (n = 1) and exon 4 (n = 1), all of which also harbor missense 
SNVs in cancer that impinge on AR function61. We observe association 
with increased nucleated red blood cell count for n = 4 missense SNVs 
(Padj < 0.05, for all four), and decreased basophil count for the remaining 
SNV (Padj = 0.043). These findings independently support a link between 
AR activation and altered cell counts in UK Biobank samples.

Discussion
Our study provides an investigation into the impact of large-scale 
mosaicisms on normal HPSCs. Using the resolution of Strand-seq (Sup-
plementary Fig. 31), we identify mSVs in most (84%) donors, although 
mSV subclonal expansion is confined to older (>60) donors. Subclonal 
mSVs show myeloid cell-type bias and active proliferation pathways, 

mirroring important features of CH48. Therefore, mSVs may represent 
an important contributor to CH, with their high prevalence potentially 
accounting for ‘missing’ CH drivers62.

Subclonal mSVs are found at diverse loci, yet result in similar dys-
functional signaling pathways, with predominant myeloid-lineage 
enrichment. This is notable in light of the observation of myeloid skew-
ing in aging HSPCs28 and the involvement of myeloid cells in leukemo-
genesis63. Our findings on cell-type biases are bolstered by a recent 
preprint64, which reports an in vivo screen showing pronounced myeloid 
bias following NF1 knockout in mouse HPSCs (Supplementary Fig. 32).

The close association of SCEs and mSVs suggests that mSVs fre-
quently arise as a byproduct of DSB repair21,65. Intriguingly, mSV forma-
tion appears to occur constantly over age, akin to base substitution 
processes showing consistent activity over life66. However, SCE for-
mation slightly reduces with age, perhaps due to altered DNA repair 
pathway activities67–69. Moreover, mosaicism-bearing cells appear 
more prone to accumulate further mSVs—analogous to CH driven by 
SNVs where the presence of multiple drivers implies higher cancer 
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Fig. 6 | Functional effects of mSVs are supported by re-analysis of UK Biobank 
data. a, VAF plot for SNVs in SREBF1 and NF1, separated by mutation type, in 
the UK Biobank. b,c, Volcano plots showing burden test results for genes in the 
17p-Del (b) and 17q-Del (c) (somatic mosaic deletions on chromosomes 17p 
and 17q) candidate regions, respectively. Genes with Padj < 0.05 are labeled. A 
subset of blood count traits is depicted (see Supplementary Fig. 29 for all blood 
count traits). d, VAF plot for SNVs in AR, separated by mutation type, in females 
(see Supplementary Fig. 34 for males). e, Volcano plot showing association test 

results of single rare missense SNVs at the Xq-Inv (somatic mosaic inversion 
on chromosome Xq) locus for all 11 blood count traits (generated from female 
donors). The full respective list of missense variants analyzed is included in 
Supplementary Table 18. Variants with Padj < 0.05 are colored by gene and labeled 
by trait: NRBC, nucleated red blood cell count; basophil, basophil count; RBC, red 
blood cell count. Variants with Padj ≥ 0.05 are colored in gray. The y axes in b, c and 
e depict nominal P values. For b, c and e, P values were obtained using the two-
sided Wald test followed by the Benjamini–Hochberg multiple correction.
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susceptibility70. Conversely, newly formed singleton mSVs often result 
in large terminal alterations that do not reach appreciable CF, perhaps 
due to the detrimental consequences of segmental aneuploidy13. Col-
lectively, factors other than increased mSV formation are likely to foster 
mSV subclonal expansion during aging. The less effective purging of 
cells comprising mSVs, exhaustion of HSCs decreasing their clonal 
diversity12 or changes in the bone marrow microenvironment may 
contribute to the subclonal expansion of mSVs in aged donors.

To better understand how mSVs clonally expand in normal blood, 
additional studies are required. Given its demonstrated ability to dis-
cover and functionally characterize mSVs, conducting Strand-seq at 
scale71 could enable future studies in larger cohorts. However, limitations 
remain: Strand-seq is currently not suited to detecting mSVs <200 kb, and 
is restricted to dividing cells that can incorporate BrdU16. Furthermore, 
scalable single-cell methods that account for both mSVs and SNVs are 
lacking, highlighting an area for future technology development.

In conclusion, this study enhances our understanding of how 
mSVs alter molecular phenotypes in a cell-type-specific manner. Our 
approach paves new ways for studying mSV landscapes in diverse 
normal tissues and diseases in the future.
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Methods
Ethics declarations
For samples from the Department of Hematology and Oncology, Medi-
cal Faculty Mannheim, Heidelberg University, the use of primary human 
materials for research purposes was approved by the Medical Ethics 
Committee II of the Medical Faculty Mannheim of the Heidelberg 
University. The Ethics approval number is 2013-509N-MA. For sam-
ples from Ulm University Hospital, collection and investigation was 
approved by the Internal Review Board (Ethikkommission) at Ulm 
University (392/16). Healthy samples used in this study were obtained 
from waste bone fragments obtained from endoprosthetic surgery 
and cardiovascular surgery. Recruitment was based on availability and 
written, informed consent. The status ‘healthy’ (normal) was defined 
as being negative for HIV and hepatitis B and C, having a normal blood 
count and having no history of or currently active malignancy. For 
samples from the Department of Medicine V, Hematology, Oncology 
and Rheumatology, University of Heidelberg, bone marrow samples 
were harvested from the posterior iliac crest. The studies on aging of 
bone marrow HSPCs have been approved by the Ethics Committee 
for Human Subjects at the University of Heidelberg. Healthy human 
subjects were recruited through an announcement published in the 
Department’s Newsletter for patients and their family. Before donation, 
healthy subjects were examined and screened by an internist and blood 
examinations (complete blood count, routine panel of laboratory 
examinations) were performed to assure their ‘healthy’ status. UCB was 
collected after informed consent of the mother using the guidelines 
approved by the Ethics Committee on the use of Human Subjects. All 
donors provided written, informed consent and all interventions were 
performed in accordance with the Declaration of Helsinki.

Human samples
Healthy donor human UCB and bone marrow samples were obtained 
either as frozen aliquots of mononuclear cells (MNCs) or freshly iso-
lated from Heidelberg University Hospital, Ulm University Hospital, 
Mannheim University Hospital and ATCC (ATCC PCS-800-013), and 
were cryopreserved in liquid nitrogen until processing. Strand-seq 
library generation was initiated from cultures obtained from either 
freshly isolated or freshly thawed MNCs. For scMNase-seq and 
scRNA-seq, freshly thawed MNCs were used.

Statistics and reproducibility
All significance tests used are reported, where applied, in the main text. 
Multiple testing correction was utilized as required, indicated by Padj, 
with an FDR of 10%. No statistical method was used to predetermine 
sample size. No data were excluded from the analyses. Our targeted 
analysis of UK Biobank data employed a more stringent significance 
threshold of Padj < 0.05.

HSPC culturing and Strand-seq library preparation
UCB samples were obtained from Heidelberg University Hospital. 
Bone marrow was isolated from donor bone marrow aspirations (n = 2), 
discarded pelvis from hip replacement surgeries (n = 6) or sternum 
removed during routine heart surgeries (n = 8) (Supplementary 
Table 1). Cells were stained on ice in the dark for 30 min with CD34-APC 
(clone 581; BioLegend; 1:100), CD38-PE/Cy7 (clone HB7; eBioscience), 
CD45Ra-FITC (clone HI100; eBioscience), CD90-PE (clone 5E10; eBiosci-
ence) and LIVE/DEAD Fixable Near-IR Dead Cell Stain (ThermoFisher). 
Single, viable CD34+ cells (gating as per Supplementary Fig. 1) were 
FACS-sorted (BD FACSMelody, 100-μM nozzle, single-cell mode, gates 
determined using BD FACSDiva 8.0) directly into ice-cold complete 
medium (Stemspan serum-free expansion medium supplemented with 
100 ng ml−1 SCF and Flt3 (Stem Cell Technologies) and 20 ng ml−1 IL-3, 
IL-6, G-CSF and TPO (Stem Cell Technologies)). Cells were seeded into 
Corning Costar Ultra-Low Attachment 96-well plates (Sigma-Aldrich) at 
a density of 1–2 × 105 cells per ml and cultured for 42 h in the presence of 

BrdU (40 μM). BrdU-containing nuclei were sorted into 96-well plates 
and subjected to Strand-seq using the standard library preparation 
protocol16, which includes treatment with MNase for DNA fragmenta-
tion. Strand-seq libraries were generated using a Biomek FXP liquid 
handling robotic system16,22, and sequenced on an Illumina NextSeq 
500 sequencing platform (MID-mode, 75-base pair (bp) paired-end 
sequencing).

scMNase-seq
HSPCs from a healthy bone marrow donor were obtained from ATCC 
(ATCC PCS-800-013), and UCB samples as described above. Frozen 
MNCs were thawed and stained as per Supplementary Table 5, with 
antibodies outlined in Supplementary Table 19, to distinguish the 
eight distinct HSPC populations outlined in Supplementary Fig. 6a. 
Single, viable HSPCs (gating strategy Supplementary Fig. 6b) were 
index-sorted using a BD FACSAria Fusion Cell Sorter (100-μM nozzle, 
single-cell mode) into 96-well plates containing 5 μl of modified freeze 
buffer (0.1% NP-40, 7.5% dimethylsulfoxide, 42.5% 2X Profreeze-CDM 
(Lonza) in PBS) and frozen. ScMNase-seq78 libraries were generated 
from sorted, frozen single cells as per Strand-seq library preparation22, 
with the following modification: the Hoechst/ultraviolet treatment 
step was omitted (with scMNase-seq requiring no BrdU incorporation). 
Following single-cell sequencing, each cell had an average coverage of 
613,483 uniquely mapped fragments.

Building nucleosome occupancy reference set cell-type 
classifiers
The scNOVA framework enables cell-typing of each Strand-seq library, 
which is achieved by subjecting nucleosome occupancy patterns pro-
duced through MNase digestion to machine learning-based classifica-
tion20. While previously applied to distinguish cell lines from distinct 
tissues20, here we employed this approach to classify closely related 
HSPC cell types, based on generating single-cell nucleosome occu-
pancy reference profiles from scMNase-seq data. To achieve this, we 
index-sorted both the bone marrow- and UCB-derived CD34+ cells from 
eight HSPC cell types using previously defined immunophenotypes24 
(Supplementary Fig. 6a and Supplementary Table 5), as described 
above. Indexed scMNase-seq libraries were used as the ground-truth 
input for cell-type classifiers. In the case of bone marrow HSPCs, the 
gene-body nucleosome occupancy profiles were extracted for 305 
high-quality single cells and normalized by library size to obtain reads 
per million. These normalized values were log2-transformed and stand-
ardized, before being subjected to supervised PLS-DA79 to (1) identify 
informative feature sets, and subsequently (2) build a classification 
model. To identify informative feature (gene) sets for each cell type, we 
used variable autosomal genes to build an X-matrix (305 cells × 18,851 
genes) and a Y-matrix (305 cells × 8 cell types). These X and Y variables 
were passed to the PLS-DA feature selection process, which outputs 
variance importance in projection (VIP) scores for each feature. In 
total, 1,904 genes with a VIP score >90% of the null distribution from the 
permutation test were retained for the second stage of feature selec-
tion. In the second feature selection stage, an additional X-matrix (305 
cells × 1,904 genes) and Y-matrix (305 cells × 1 cell type; with cell type 
in this case being binary information for each cell either belonging to 
that cell type (1) or not (0), based on FACS indexes) were passed to the 
PLS-DA, and features with a VIP score >95% of the null distribution from 
the permutation test retained. This was repeated for each cell type, 
resulting in a final informative feature set of 819 marker genes (Supple-
mentary Table 7b). We repeated these steps for 175 high-quality single 
cells obtained from UCB HSPCs, which resulted in 899 marker genes 
as significant feature sets for cell-type classification (Supplementary 
Table 7a). We constructed distinct nucleosome occupancy-based classi-
fiers for bone marrow and UCB HSPCs based on nucleosome occupancy 
patterns in the gene bodies of selected marker genes for cells derived 
from each source (Supplementary Table 7a,b and Code availability).
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mSV discovery in Strand-seq data
We utilized the scTRIP computational approach14 for single-cell mSV 
discovery, to identify duplications, deletions, inversions, whole chro-
mosome aneuploidies and complex mSVs. This approach leverages 
the synergy of three distinct readouts—read depth, strand and hap-
lotype phase—retrieved from Strand-seq data, for haplotype-aware 
mSV discovery. We performed segmentation of the Strand-seq data 
by jointly processing strand-resolved binned read depth data across 
all single cells of a sample, used as a multivariate input signal with a 
squared-error assumption14. The single-cell footprints of different mSV 
classes (derived from unique combinations of read depth, strand and 
phase) were then discovered using scTRIP (achieved by running the 
‘MosaiCatcher’ pipeline with default settings)14. This approach uses a 
Bayesian framework to compute posterior probabilities for each mSV 
diagnostic footprint, and to derive haplotype-resolved mSV genotype 
likelihoods. Each diagnostic footprint translates into the expected 
number of copies sequenced in Watson (W) and Crick (C) orientation, 
contributing to a respective genomic segment. The framework distin-
guishes between WC and CW chromosomal ground states, and is thus 
haplotype-aware. It implicitly allows us to perform mSV discovery 
throughout the genome, including for chromosomes sequenced only 
on the C strand (CC ground state) or such sequenced only on the W 
strand (WW ground state), since unambiguous single-cell mSV foot-
prints exist for each ground state14. The framework estimates clonal 
frequency levels for each mSV and uses them to define prior prob-
abilities for each candidate mSV. In this way, the framework benefits 
from the observation of mSVs in more than one cell, enabling improved 
detection of mSVs in subclones14—in addition to facilitating the detec-
tion of singleton mSVs. In contrast to CNAs, balanced inversions and 
translocations must be present in at least two single cells to trigger an 
mSV call14. We verified that the frequency of singleton mSVs detected 
using Strand-seq is consistent with results from intermediate coverage 
single-cell WGS (Supplementary Fig. 33). This suggests that short-term 
cell culturing with BrdU does not introduce singleton mSVs.

Cell-type enrichment testing
We devised cell-type enrichment tests for each of the identified sub-
clones exhibiting specific mSVs, using a control group consisting of 
all individuals over the age of 60 who were not affected by mSVs. We 
performed a binomial test to determine if the number of cells in a par-
ticular cell type within the subclone was greater than expected, based 
on the cell-type composition of the control group. We then calculated 
permutation-based adjusted P values for each subclonal mSV by ran-
domly sampling the same number of HSPCs from the entire single-cell 
population 100,000 times and tallying the number of cells from given 
cell types in question belonging to that subclone.

Single-cell multiomic analysis of differential gene activities in 
HSPC subclones
Differentially active genes in subclones affected by mSVs were identi-
fied in the Strand-seq data using scNOVA20. We used scNOVA’s infer 
altered gene activity module with the PLS-DA option, which is recom-
mended for the investigation of low-CF subclones20. To regress-out 
cell-type effects in the identification of differential gene activity, we 
considered predicted cell type for each single cell as a confounding 
factor when we executed the infer altered gene activity module. Genes 
within the respective deleted region were masked, to avoid spurious 
associations80. Genes with significantly altered gene activity (10% FDR) 
were subjected to gene set over-representation analysis using Con-
sensusPathDB77. Using this approach, certain pathways may exhibit a 
significant P value for both upregulated and downregulated genes, with 
some genes contained in ConsensusPathDB functioning as activators 
and others as suppressors. Over-represented pathways (FDR 10%) were 
visualized as dot plots. When comparing 17p-cells and wild-type (WT) 
cells in BM712 in Fig. 5f, we considered all cells carrying the 17p-Del, 

including those harboring other mosaicisms in addition to 17p-Del, 
as ‘17p-cells’.

Investigation of potential cis-effects of a balanced inversion
To investigate the local effects of Xq-Inv in BM65, we employed 
scNOVA20. We utilized a sliding window approach suitable to uncover 
the cis-effects of balanced mSVs, resolved by haplotype20. We focused 
on the Xq-Inv-affected segment, including both of its rearranged TADs. 
We first defined CREs based on a previous study utilizing the assay 
for transposase-accessible chromatin with sequencing (ATAC-seq) in 
HSPCs24. We used a sliding window (300 kb in size, moving 10 kb each)20, 
analyzing CREs along chromosome X, to infer chromosome-wide 
haplotype-specific nucleosome occupancy for the mSV subclone and 
WT cells, which is predictive for chromatin accessibility20. For each 
sliding window, haplotype-specific nucleosome occupancy values 
at CREs from the mSV subclone (nucleosome occupancy in the active  
X chromosome/nucleosome occupancy in the inactive X) and WT cells 
(nucleosome occupancy in the active X/nucleosome occupancy in 
the inactive X) were compared using likelihood ratio tests to obtain 
nominal P values [P real]. As a multiple testing correction to control the 
type I error, we performed a permutation test by randomly shuffling 
genotype labels of each single cell (mSV or WT) in the single-cell reads 
per million matrix 1,000 times. For each permutation, we performed 
likelihood ratio tests to compare nucleosome occupancy between 
randomly shuffled mSV subclones and WT cells. We computed the 
number of incidences we observed with the same, or a lower, P value 
than [P real] from 1,000 permutations, and divided this value by the 
number of trials (n = 1,000) to estimate the permutation-adjusted  
P value. Sliding windows with permutation-adjusted P value lower than 
0.1 were identified as significantly altered windows, and were assigned 
to the nearest genes within the same TAD boundaries.

scRNA-seq
Bone marrow MNCs were thawed and stained as described above, with 
the following antibodies: CD34-AF488 (clone 561; BioLegend; 1:20), 
CD38-PE/Cy7 (clone HB7; eBioscience; 1:100). Cells were washed and 
resuspended as above, and stained for 5 min with DAPI before sorting. 
The gating strategy as described in Supplementary Fig. 1 was used to 
sort CD34+ cells and CD34− cells, respectively, into ice-cold 0.04% 
BSA in PBS using a BD FACSMelody cell sorter. For each donor, two 
samples were prepared: one sample of CD34+ cells and one sample a 
50:50 mixture of CD34+ and CD34− cells. scRNA-seq libraries for each 
sample were generated as per the standard 10X Genomics Chromium 
3′ (v.3.1 chemistry) protocol. Completed libraries were sequenced on 
a NextSeq5000 sequencer (HIGH mode, 75-bp paired-ends).

scRNA-seq data processing, unsupervised clustering and 
cell-type annotation
Transcripts were aligned to GRCh38 and quantified into count matri-
ces using Cellranger mkfastq and count workflows (10X Genomics, 
v.3.1.0, default parameters). Seurat81 (v.3.2.2) was used for quality 
control of single cells and unbiased clustering of the data. Briefly, cells 
with <1,000 unique molecular identifiers (UMIs) and cells with >6% of 
mitochondrial reads were removed as ‘low quality’. Normalization, 
feature selection, scaling and dimensionality reduction were carried 
out using default settings. To annotate cell types, previously reported 
scRNA-seq data from HSPCs51 were used as a reference for cell-type 
labeling using SingleR72. Differential expression analysis to identify 
cluster-/genotype-specific marker genes was carried out using the 
FindMarkers() function from Seurat.

Targeted CNA re-calling in scRNA-seq data
scRNA-seq data were normalized to counts per million (CPM) and 
transformed into log2(CPM/10 + 1) using Seurat81 (v.3.2.2). These values 
were then subject to targeted CNA re-calling using the CONICSmat 
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package58, as described previously20. For the analysis of donor BM712, 
all three subclonal mosaicisms were investigated: 17p-Del, 17q-Del and 
LOY. By default, the CONICSmat ‘plotChrEnrichment’ function consid-
ers regions with more than 100 expressed genes for CNA discovery. 
Since we performed targeted re-calling of CNAs previously identi-
fied with the high-breakpoint mapping resolution of Strand-seq, we 
considered regions with five or more expressed genes in our analysis. 
The numbers of expressed genes detected per mSV were as follows: 
17p-Del: 24 genes; 17q-Del: 5 genes; LOY: 17 genes for CD34+ dataset; 
17p-Del: 28 genes; 17q-Del: 5 genes; LOY: 38 genes for CD34− dataset 
(Supplementary Table 14). To profile CNA regions, CONICSmat gen-
erates distributions of average expression levels across single cells in 
the given regions, and then fits one-component and two-component 
mixture models to these distributions. It further compares the likeli-
hood ratios of being one-component (unimodal; that is, absence of 
CNAs) and two-component (bimodal; that is, presence of CNAs), to 
determine the most-likely state in those regions based on the Bayesian 
information criterion. Candidate CNA regions identified as likely to be 
bimodal within a 1% FDR criterion (based on a Chi-squared likelihood 
ratio test) were considered further for downstream analysis. Once the 
region was inferred to have bimodality, the posterior probability for 
each single cell to belong to the normal clone or CNA subclone was 
calculated. A posterior probability cutoff of 0.8 was used to assign 
single cells into one of the two clones. This analysis was repeated for 
each subclonal mosaicism event.

SCE mapping and locus-specific SCE enrichment
We constructed genome-wide maps of SCEs in each single cell by 
subjecting the Strand-seq data of single cells to the MosaiCatcher 
pipeline14, followed by manual inspection and curation of each call 
yielding SCE positional coordinates for each cell. Candidate SCEs were 
identified as changes in strand-state (for example, WW to WC) on a 
chromosome, whereby we conservatively focused on chromosomes 
showing only a single changepoint. Chromosomes bearing single-
ton mSVs were removed by manual inspection, unless the observed 
strand-state patterns were clearly not attributed to an mSV alone 
(for example, a terminal deletion together with a complete change in 
strand orientation, such as WW to C), signifying the co-occurrence of 
an mSV and an SCE. Coordinates were padded by 1 bp upstream and 
downstream. GRCh38 was divided into 500-kb bins using the bedtools 
makewindows command82, and overlaps between these 500-kb bins 
and our SCE callset were generated using bedtools intersect, giving 
the number of times each bin is hit by an SCE. A bin was considered 
to be hit if the majority of an SCE confidence interval fell within that 
bin, and each SCE was only counted in a single bin. To compute sig-
nificance of the calculated SCE counts per bin, the count data per 
bin genome-wide were then fit to a negative binomial distribution 
using the fitdist function from fitdistrplus83, and P values calculated 
using the qnbinom function (with size = 1.2506716, mu = 0.4823156), 
applying Benjamini–Hochberg correction. To compute overlap of 
mSV breakpoints with SCEs, we considered 200-kb-sized breakpoint 
regions (reported breakpoints ±100 kb).

Breakpoint refinement by WGS
Bulk genomic DNA was isolated from CD34− cells (viable cells from 
the donors that were not put into culture to be used for Strand-seq 
library preparation) using the QIAamp DNA Blood Maxi Kit as per 
the manufacturer’s instructions. Samples were sequenced using a 
NextSeq5000 (HIGH mode, 75-bp paired-end). Raw WGS reads were 
aligned to GRCh38 using bwa (v.0.7.15), sorted, marked for duplicates 
and indexed. mSVs were called using Delly2 (default parameters), 
combining split read, paired-end and read depth analysis76. Unfiltered 
mSV calls were compared with our callset. Since split read analysis 
failed to identify the precise breakpoints of the 17p-Del that reside 
in a repeat-rich region, we generated a single, directional composite 

bam file of this region based on our Strand-seq data to allow for 17p-Del 
breakpoint refinement with BreakpointR33.

UK Biobank analysis
Data collection. The UK Biobank is a population database of approxi-
mately half a million participants59. For SNVs and INDELs, we used the 
population-level exome OQFE variants for 469,792 individuals (UK 
Biobank field ID 23157). For autosomal large deletions, we used CNA loss 
calls on WES data that were recently generated by subjecting 200,624 
individuals from the UK Biobank to the CNest copy-number caller60. We 
considered CNA calls >1 kb. Additionally, we obtained phenotypic data 
for 11 blood count traits (UK Biobank category ID 100081), containing 
count for white blood cells, basophils, eosinophils, monocytes, neutro-
phils, lymphocytes, red blood cells, nucleated red blood cells, platelets, 
reticulocytes and high-light-scatter reticulocytes. This research was 
conducted under the application number 83497. The UK Biobank has 
ethics approval from the North West Multi-centre Research Ethics 
Committee (21/NW/0157).

Variant annotation. We annotated SNVs/INDELs from WES data using 
Variant Effect Predictor (VEP v.1.0.3) with the Loss-Of-Function Tran-
script Effect Estimator (LOFTEE v.0.3-beta) plugin. Variant annotation 
was performed using Hail v.0.2. According to annotation results, we 
grouped variants into rare loss of function variants (‘high confidence’ 
identified by LOFTEE with a MAF < 1%) and rare missense variants (mis-
sense variants annotated by VEP with MAF < 1% in the UK Biobank 
cohort). In the case of CNA losses, we considered deletions overlapping 
coding exons with MAF < 1%.

Association testing. The blood count data were rank normalized 
using the ‘RNOmni’ package in R84. Linear regression models (blood 
count ~ genotype + covariates) were used to assess the association 
between three loci of interest (17p-Del, 17q-Del and Xq-Inv) and blood 
counts adjusted for several covariates, including age, sex and the first 
five principal components derived from genotype arrays. For all genes 
at the respective 17p and 17q loci, we used gene rare pLoF burden and 
rare large CNA loss burden as genotype in the regression model. For all 
genes at the X chromosomal locus of interest, we used gene burden for 
rare pLoF variants and rare missense variants in the model. Moreover, 
since missense variants can have distinct functional impacts, we also 
performed single-variant association analysis for rare missense muta-
tions at the Xq-Inv locus by sex. The volcano plot in Fig. 6e presents 
nominal P values derived solely from female donors, since we made 
the observation of sex-biased VAF distributions at the AR locus in UK 
Biobank samples. For all data, see Supplementary Fig. 34. A minimum 
of three individuals with relevant variants was required for association 
tests of a given gene, with the exception of the 17p-Del CNA seen in only 
two UK Biobank donors based on WES. P values were obtained using 
the Wald test and the Benjamini and Hochberg method was used to 
correct for multiple hypothesis testing.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All genomics data generated in this study (Strand-seq, scMNase-seq, 
scRNA-seq, bulk WGS) are available under the following accession: 
EGAS00001006567. We re-analyzed publicly available bulk RNA-seq 
and bulk ATAC-seq data from HSPCs (GSE75384) to characterize signa-
ture genes while building the scMNase-seq-based cell-type classifier, 
and to define CREs in the HSPCs. Additionally, we utilized publicly avail-
able databases as follows: Molecular Signatures Database (MSigDB; 
https://www.gsea-msigdb.org/gsea/msigdb/), ConsensusPathDB 
(http://cpdb.molgen.mpg.de/).
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https://ega-archive.org/studies/EGAS00001006567
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE75384
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Code availability
Our study has made publicly available scMNase/nucleosome 
occupancy-based classifiers for cell-typing Strand-seq libraries in 
HSPCs. This MATLAB-based classifier can be accessed and downloaded 
from GitHub, to facilitate its use in research studies (https://github.
com/jeongdo801/NO_based_HSPC_classifier). The MATLAB code can 
be converted to other platforms (R/python) using openly accessible 
tools (such as large language models). To facilitate open access, the list 
of signature genes and their weights have also been made available in 
an open text format through the same hyperlink.
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Extended Data Fig. 1 | SCEs occur steadily over life but arise non-randomly 
across the genome. Violin plot showing the number of SCEs per single cell per 
donor, in order of increasing donor age. The age of each donor is noted below 
the violin in each case. The median SCE count (n = 4 SCEs) is indicated by a red 
line. Boxplots were defined by minima = 25th percentile - 1.5X interquartile range 
(IQR), maxima = 75th percentile + 1.5X IQR, center = median, and bounds of box 
= 25th and 75th percentile. b) Manhattan plot showing the distribution of SCEs 
genome-wide (hg38, 500 kb bins). Red line denotes the significance cutoff used 
(10% FDR). The significance of SCE counts per bin were calculated by fitting 
the permuted data of the number of overlaps per bin genome-wide (quantified 
using bedtools intersect) to a negative binomial distribution using the fitdist() 
function from the fitdistrplus package83 (evaluation of distribution of empirical 
vs theoretical data shown in Supplementary Fig. 4), and then computing the 

p-value of the actual data using the fitted negative binomial distribution as a 
null distribution. The resulting size and mu (size = 1.4013518 (standard error 
= 0.08457053), mu = 0.6714258 (standard error = 0.01213493)) were used to 
transform SCE counts per bin into p-values, followed by Benjamini-Hochberg 
correction85 to control the FDR. c, e) Permutation summary plots for 10,000 
permutations of breakpoint regions from c) all mSVs and c) subclonal mSVs vs. 
all SCE locations. d, f) Local Z-score plots showing enrichment Z-scores within a 
20 Mb window, in 2 Mb bins, for d) all mSVs and f) subclonal mSVs. g) Permutation 
summary plots for 10,000 permutations of breakpoint regions from all mSVs 
vs. previously annotated CFSs86. P-value is based on a one-sided permutation test.  
h) Local Z-score plots showing enrichment Z-scores within a 20 Mb window,  
in 2 Mb bins, for all mSVs vs previously annotated CFS regions.

http://www.nature.com/naturegenetics
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Extended Data Fig. 2 | Performance evaluation of the UCB-derived 
scMNase-seq-based cell-type classifier. a) ROC curve showing leave-one-out 
cross-validation of the cell-type classifier’s performance using single cell NO 
patterns. b) UMAP projection of latent variables from the UCB HSPC cell type 
classifier. c) Heatmap of single cell NO of gene bodies of 175 single UCB HSPCs, 
generated using scMNase-seq. The 899 signature genes depicted (rows) allow for 
discrimination between 8 UUCB HSPC cell types (columns). Cells are grouped 
and color-coded by immunophenotyped cell-type identity, determined by 
FACS (Supplementary Fig. 6). Differential NO of marker genes is represented 

by Z-scores. d) UMAP projection of scMNase-seq latent variables, coloured by 
tissue-of-origin. BM, bone marrow. e) UMAP of single-cell transcriptome data 
of HSPCs from UCB and adult bone marrow, obtained from27. f) Cell-types in the 
scRNA-seq were annotated using the singleR package72 based on the blueprint 
ref. 87. g) Cell-type composition of scRNA-seq from UCB and BM shows that MPPs 
are highly enriched in UCB compared to BM HSPCs. MPPs, CLPs, and pDCs exhibit 
a lower prevalence than other cell-types, likely reflecting their natural scarcity in 
HSPCs24 and known challenges with sustaining these cells in vitro88.
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The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
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Data analysis The computational code of our cell type classifiers is hosted on GitHub (see https://github.com/jeongdo801/Bonemarrow_HSPC_classifier). All 
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All genomics data generated in this study (Strand-seq, scMNase-seq, scRNA-seq, bulk WGS) are available under the following accession: EGAS00001006567.  
We re-analysed publicly available bulk RNA-seq and bulk ATAC-seq data from HSPCs (GSE75384) to characterise signature genes while building scMNase-seq based 
cell-type classifier, and to define cis-regulatory elements (CRE) in the HSPCs. 
Additionally, we utilised publicly available database as follows: Molecular signature database (MSigDB; https://www.gsea-msigdb.org/gsea/msigdb/), 
ConsensusPathDB (http://cpdb.molgen.mpg.de/).
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Reporting on sex and gender In this study, male and female sexes of donors were defined based on 2 layers on information: 1) the sex reported from the 
clinician who collected the samples and 2) based on the sex chromosome content of the majority of cells from a given donor. 
Donors in which all cells had a monosomy of the X chromosome, and at least 25% of cells containing a Y chromosome, were 
considered male. Donors which had a disomy of the X chromosome in the majority of cells, and no cells with a Y 
chromosome, were considered female.
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other socially relevant 
groupings

No such grouping have been made in this study.

Population characteristics No population-based characteristics have been used in this study

Recruitment Healthy human subjects were recruited either through an announcement published in the Department’s Newsletter for 
patients and their family and/or through availability and informed consent. 
We did not bias the selection of donor samples, yet, enriched our cohort for donors older than 60 given prior data showing 
an abundance of subclonal CNAs in the blood of donors from that age range.

Ethics oversight For samples from the department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, the use 
of primary human materials for research purposes was approved by the Medical Ethics Committee II of the Medical Faculty 
Mannheim of the Heidelberg University. The Ethics approval number is 2013-509N-MA. For samples from Ulm University 
Hospital, collection and investigation was approved by the Internal Review Board (Ethikkomission) at Ulm University (392/16). 
Healthy samples used in this study were obtained from waste bone fragments obtained from endoprosthetic surgery and 
cardiovascular surgery. Recruitment was based on availability and written informed consent. The status “healthy” was 
defined as being negative for HIV, Hepatitis B and C, having a normal blood count and no history or currently active 
malignancy.  For samples from the Department of Medicine V, Hematology, Oncology and Rheumatology, University of 
Heidelberg, bone marrow samples were harvested from the posterior iliac crest. The studies on aging of bone marrow HSPCs 
have been approved by the Ethics Committee for Human Subjects at the University Heidelberg. Before donation, healthy 
subjects were examined and screened by an internist and blood examinations (complete blood count, routine panel of 
laboratory examinations) were performed to assure their “healthy” status. UCB was collected after informed consent of the 
mother using the guidelines approved by the Ethics Committee on the use of Human Subjects. 
 
All donors provided written informed consent and all interventions were performed in accordance with the Declaration of 
Helsinki. 
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Sample size rather than on performing statistical tests between groups of samples. The cohort size was determined by the number of healthy BM/UCB 
samples available

Data exclusions We excluded low quality single-cell libraries that showed very low (<200,000 unique reads), uneven coverage, or an excess of 'background 
reads' yielding noisy Strand-seq data prior to analysis. scMNase-seq cells were excluded based on extremely high or low coverage, indicative 
of multiple cells or low quality. Finally, scRNA-seq cells were excluded based on having either < 1000 UMIs or > 6 % of reads mapping to the 
mitochondrial genome

Replication Since these experiments involved limited samples from healthy donors, experiments were not replicated or repeated. However, it is 
reasonable to assume that findings would be reproducible in cohorts of similar donors.

Randomization Does not apply, as there are no experimental groups defined in our study

Blinding Does not apply, as this study focuses on intra-sample comparison rather than performing statistical tests between groups of samples
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system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used ACS (clone, manufacturer, catalogue number, lot number): APC mouse anti-human CD34 (clone 581; Biolegend; #343509; Lot: 

B260867), PeCy7 mouse anti-human CD38 (clone HB7; eBioscience; #15538396; Lot: 1974952), FITC mouse anti-human CD45Ra 
(clone HI100; eBioscience; #15526406; Lot: 4329359), PE mouse anti-human CD90 (clone 5E10; eBioscience; # 15526836; 
Lot:1982684), PE-Cy5 mouse anti-human CD2 (clone RPA-2.10; BD Biosciences; #555328; Lot: 7123718), PE-Cy5 mouse anti-human 
CD3 (clone HIT3a; BD Biosciences; #561007; lot: 8163944), PE-Cy5 mouse anti-human CD4 (clone RPA-T4; BD Biosciences; 
#15840679; lot: 9016960), PE-Cy5 mouse anti-human CD7 (clone M-T701; BD Biosciences; #555362; lot: 7058673), PE-Cy5 mouse 
anti-human CD8 (RPA-T8; BD Biosciences; #15861499; lot: 7179955), APC-Cy7 mouse anti-human CD10 (clone HI10a; Biolegend; 
#312212; lot: B242546), PE-Cy5 mouse anti-human CD11b (clone ICRF44; BD Biosciences; #555389; lot: 8171911), PE-Cy5 mouse 
anti-human CD14 (clone 61D3; eBioscience; #15014942; lot: 4330408), PE-Cy5 mouse anti-human CD16 (clone 3G8; BD Biosciences; 
#555408; lot: 8261948), PE-Cy5 mouse anti-human CD19 (clone HIB19; BD Biosciences; #555414; lot: 8183956), PE-Cy5 mouse anti-
human CD20 (clone 2H7; BD Biosciences; #561761; lot: 8324650), PE-Cy5 mouse anti-human CD56 (clone B159; BD Biosciences; 
#561904; lot: 7177552), BV605 mouse anti-human CD123 (clone 7G3; BD Biosciences; #564197; lot: 8092987), PE-Cy5 mouse anti-
human GPA (clone GA-R2; BD Biosciences; #559944; lot: 7199932)

Validation All antibodies were validated for the specific application by the manufacturer and validation data is available on the manufacturer's 
website. 
FACS 
CD34 CD34    https://www.biolegend.com/fr-ch/products/apc-anti-human-cd34-antibody-6090 DOI: 10.1538/expanim.49.97 
CD38 CD38    https://www.thermofisher.com/antibody/product/CD38-Antibody-clone-HB7-Monoclonal/25-0388-42 DOI: 10.1016/
j.stem.2021.02.001 
CD45Ra PTPRC    https://www.thermofisher.com/antibody/product/CD45RA-Antibody-clone-HI100-Monoclonal/14-0458-82 
DOI: 10.1080/2162402X.2017.1371399 
CD90 THY1    https://www.thermofisher.com/antibody/product/CD90-Thy-1-Antibody-clone-eBio5E10-5E10-Monoclonal/12-0909-42  
CD2 CD2 https://www.bdbiosciences.com/en-de/products/reagents/flow-cytometry-reagents/research-reagents/single-color-
antibodies-ruo/pe-cy-5-mouse-anti-human-cd2.555328 PMCID: PMC1384357 
CD3 CD3 https://www.bdbiosciences.com/en-de/products/reagents/flow-cytometry-reagents/research-reagents/single-color-
antibodies-ruo/pe-cy-5-mouse-anti-human-cd3.561007 DOI: 10.1002/eji.1830110412 
CD4 CD4 https://www.fishersci.fr/shop/products/anti-cd4-pe-cy-5-clone-rpa-t4-bd/15840679/en PMCID: PMC1384357 
CD7 CD7 https://www.bdbiosciences.com/en-de/products/reagents/flow-cytometry-reagents/research-reagents/single-color-
antibodies-ruo/PE-Cy%25252525E2%2525252584%25252525A25-Mouse-Anti-Human-CD7.555362 PMID: 7506726 
CD8 CD8 https://www.bdbiosciences.com/en-de/products/reagents/flow-cytometry-reagents/research-reagents/single-color-
antibodies-ruo/pe-cy-5-mouse-anti-human-cd8.555368 doi: 10.1084/jem.190.11.1627 
CD10 MME  https://www.biolegend.com/en-us/products/apc-cyanine7-anti-human-cd10-antibody-4034?GroupID=BLG5905 
doi.org/10.1084/jem.181.6.2271 
CD11b CD11b https://www.bdbiosciences.com/en-de/products/reagents/flow-cytometry-reagents/research-reagents/single-color-
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antibodies-ruo/pe-cy-5-mouse-anti-human-cd11b.555389 PMID: 2416682 
CD14 CD14 https://www.thermofisher.com/antibody/product/CD14-Antibody-clone-61D3-Monoclonal/15-0149-42 DOI: 10.1128/
IAI.00381-07 
CD16 CD16 https://www.bdbiosciences.com/en-de/products/reagents/flow-cytometry-reagents/research-reagents/single-color-
antibodies-ruo/pe-cy-5-mouse-anti-human-cd16.555408 https://doi.org/10.1073/pnas.79.10.3275 
CD19 CD19 https://www.bdbiosciences.com/en-de/products/reagents/flow-cytometry-reagents/research-reagents/single-color-
antibodies-ruo/pe-cy-5-mouse-anti-human-cd19.555414 https://doi.org/10.4049/jimmunol.151.6.2915 
CD20 CD20 https://www.bdbiosciences.com/en-de/products/reagents/flow-cytometry-reagents/research-reagents/single-color-
antibodies-ruo/pe-cy-5-mouse-anti-human-cd20.555624 https://doi.org/10.1002/cyto.990140212 
CD56 NCAM-1 https://www.bdbiosciences.com/en-de/products/reagents/flow-cytometry-reagents/research-reagents/single-color-
antibodies-ruo/pe-cy-5-mouse-anti-human-cd56-ncam-1.561904 https://doi.org/10.1084/jem.184.5.1845 
CD123 CD123 https://www.bdbiosciences.com/en-de/products/reagents/flow-cytometry-reagents/research-reagents/single-color-
antibodies-ruo/bv605-mouse-anti-human-cd123.564197 https://doi.org/10.1073/pnas.90.23.11137 
GPA CD235a https://www.bdbiosciences.com/en-de/products/reagents/flow-cytometry-reagents/research-reagents/single-color-
antibodies-ruo/pe-cy-5-mouse-anti-human-cd235a.559944 https://doi.org/10.3109/10428199409049629

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, 
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the 
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe 
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor 
was applied.

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If 
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to 
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism, 
off-target gene editing) were examined.

Plants

Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Bone marrow mononuclear cells were isolated either from the sternum or hip during either heart surgery, hip replacement 
or bone marrow aspiration and frozen until processing. Umbilical cord blood was obtained from the umbilicus of normal 
births, and frozen until processing.  All samples were then processed as follows:  cryopreserved cells were thawed rapidly at 
37 C and resuspended dropwise in 10 ml warm Roswell Park Memorial Institute (RPMI) medium with 100 μg/ml Dnase I. Cells 
were centrifuged for 5 mins at 300 g, and resuspended in ice-cold phosphate buffered saline (PBS) with 2% foetal bovine 
serum (FBS) and 5mM EDTA. Samples were then stained on ice in the dark for 30 mins as follows: for Strand-seq, cells were s 
stained with CD34-APC (clone 581; Biolegend), CD38-PeCy7 (clone HB7; eBioscience), CD45Ra-FITC (clone HI100; 
eBioscience), CD90-PE (clone 5E10; eBioscience), and LIVE/DEAD™ Fixable Near-IR Dead Cell Stain (Thermofisher). For 
scMNase-seq, cells were stained with a lineage cocktail (CD2-PE-Cy5, RPA-2.10, BD Biosciences; CD3-PE-Cy5, HIT3a, BD 
Biosciences; CD4-PE-Cy5, RPA-T4, BD Biosciences; CD7-PE-Cy5, M-T701, BD Biosciences; CD8-PE-Cy5, RPA-T8, BD Biosciences; 
CD11b-PE-Cy5, ICRF44, BD Biosciences; CD14-PE-Cy5, 61D3, eBiosciences; CD16-PE-Cy5, 3G8, BD Biosciences; CD19-PE-Cy5, 
HIB19, BD Biosciences; CD20-PE-Cy5, 2H7, BD Biosciences; CD56-PE-Cy5, B159, BD Biosciences;  GPA-PE-Cy5, GA-R2, BD 
Biosciences), CD10-APC-Cy7 (clone HI10a;  Biolegend), CD123-BV605 (clone 7G3; BD Biosciences) CD34-APC (clone 581; 
Biolegend), CD38-PeCy7 (clone HB7; eBioscience), CD45Ra-FITC (clone HI100; eBioscience), CD90-PE (clone 5E10; 
eBioscience), and LIVE/DEAD™ Fixable Near-IR Dead Cell Stain (Thermofisher). After staining, cells were washed once in 4 ml 
ice-cold PBS with 2% FBS and 5 mM EDTA and centrifuged at 300 g for 5 mins. Cells were resuspended in ice-cold PBS with 
2% FBS and 5 mM EDTA for sorting. 

Instrument BD FACSAria™ Fusion Cell Sorter, BD FACSMelody™

Software FlowJo, BD FACSDiva™

Cell population abundance Due to limited sample material, post-sort purities were not re-assessed using flow cytometry. 

Gating strategy For Strand-seq: The first gate excluded any cellular debris based on FSC-A vs SSC-A. These cells were then sub-gated to 
identify only Single Cells, based on removal of outliers from the SCC-W vs SSC-A plot. Viable Cells were gated within the Single 
Cells based on a low intracellular staining for the viability stain Fixable LIVE/DEAD near-IR (Fixable LIVE/DEAD near-IR Viability 
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vs FSC-A). Finally, the ultimate sorting population of CD34+ (and CD34-) cells was gated based on a high (or low) expression of 
CD34 (CD34-APC vs CD38-PeCy7). The full gating strategy is depicted in Supplemental Figure S1. 
For scMNase-seq: The first gate excluded any cellular debris based on FSC-A vs SSC-A (. Viable Cells were gated within the 
based on a low intracellular staining for the viability stain Fixable LIVE/DEAD near-IR (Fixable LIVE/DEAD near-IR Viability vs 
FSC-A). Lineage-negative cells were isolated from the viable cells by gating for cells with the lowest expression of a custom 
lineage panel of antibodies (CD2, CD3, CD4, CD7, CD8, CD10, CD11b, CD14, CD16, CD19, CD20, CD56, GPA; Lineage-PeCy5). 
CD34+CD38+ cells were gated based on a high expression of CD34 and CD38; whereas CD34+CD38- were gated based on a 
high expression of CD34 and low expression of CD38 (CD34-APC vs CD38-PeCy7). Within the CD34+CD38+ population, the 
final gate for CLPs was defined based on a high expression of CD10 (CD45Ra-FITC vsCD10-APCCy7). CD10- cells were further 
gated into final populations of MEPs (CD45Ra-CD123-), CMPs (CD45Ra-CD123mid), GMPs (CD45Ra+CD123mid) and pDCs 
(CD45Ra+CD123hi) (CD45Ra-FITC vs CD123-BV605). Within the CD34+CD38- population, final gates were defined for HSCs 
(CD45Ra-CD90+), MPPs (CD45Ra-CD90-), and LMPPs (CD45Ra+CD90-) (CD45Ra-FITC vs CD90-PE). The full gating strategy is 
depicted in Supplemental Figure S8.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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