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Multiomic analyses uncover immunological 
signatures in acute and chronic coronary 
syndromes

Acute and chronic coronary syndromes (ACS and CCS) are leading causes 
of mortality. Inflammation is considered a key pathogenic driver of these 
diseases, but the underlying immune states and their clinical implications 
remain poorly understood. Multiomic factor analysis (MOFA) allows 
unsupervised data exploration across multiple data types, identifying 
major axes of variation and associating these with underlying molecular 
processes. We hypothesized that applying MOFA to multiomic data 
obtained from blood might uncover hidden sources of variance and provide 
pathophysiological insights linked to clinical needs. Here we compile 
a longitudinal multiomic dataset of the systemic immune landscape in 
both ACS and CCS (n = 62 patients in total, n = 15 women and n = 47 men) 
and validate this in an external cohort (n = 55 patients in total, n = 11 
women and n = 44 men). MOFA reveals multicellular immune signatures 
characterized by distinct monocyte, natural killer and T cell substates 
and immune-communication pathways that explain a large proportion of 
inter-patient variance. We also identify specific factors that reflect disease 
state or associate with treatment outcome in ACS as measured using left 
ventricular ejection fraction. Hence, this study provides proof-of-concept 
evidence for the ability of MOFA to uncover multicellular immune programs 
in cardiovascular disease, opening new directions for mechanistic, 
biomarker and therapeutic studies.

Myocardial ischemia is a major driver of mortality and morbidity world-
wide1. This is caused by atherosclerosis in coronary arteries, which is 
clinically subdivided into stable chronic coronary syndromes (CCS) and 
acute coronary syndromes (ACS). Myocardial infarction (MI), the most 
severe form of ACS, is primarily caused by an acute disruption of blood 
flow to the myocardium due to plaque rupture in preexisting CCS2. Local 
and systemic immune responses are a main driver of atherosclerosis 
and contribute to thrombosis as well as myocardial remodeling after 
acute myocardial ischemia3,4. However, the immunological signatures 
in these disease entities in humans remain incompletely understood.

Single-cell omics approaches allow for the characterization of 
immune signatures in an unbiased way with unprecedented resolu-
tion5. In basic research, these have been used to profile immune cells 
in atherosclerotic plaques6 and at sites of MI7. Single-cell genomics is 
increasingly applied in clinical settings8,9, and its diagnostic potential 
has been shown for oncological disorders10 but not probed in coronary 
syndromes (CS).

Multiomic factor analysis (MOFA) provides an unsupervised 
approach for data exploration across multiple data types, enabling 
the identification of major axes of variation composed of multiple 
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to a ‘sample’ as the multiomic profile of an individual patient at one 
specific timepoint.

First, we focused on Munich patients with ACS and a classical 
acute symptom onset, instant recanalization and no infectious com-
plications during their disease course within the hospital (sterile ACS) 
and compared them with patients with CCS (see ‘Munich cohort:  
ethics and patient cohort’ in Methods). The analysis of laboratory 
values (creatine kinase (CK), creatine kinase MB (CK-MB) isoenzyme 
and troponin T) confirmed the classical course of acute myocardial 
ischemia. Dynamic C-reactive protein (CRP) and leukocyte counts 
confirmed a systemic immune response (Fig. 1c and Extended Data 
Fig. 1a). Flow-cytometry-based phenotyping revealed no major changes 
in centered log ratio (CLR) transformed cell type abundances of large 
classical circulating leukocyte populations in ACS compared with CCS—
solely a gradual drop in less frequent immune cells such as dendritic 
cells, nonclassical monocytes and natural killer (NK) cells (Extended 
Data Fig. 1b, Supplementary Fig. 1a and Supplementary Table 3). 
However, although it allows a particularly high resolution of rarer 
subsets, flow cytometry only identifies predefined classical immune 
cell populations. To allow for an unsupervised detection of leukocyte 
subsets, we made use of scRNA-seq (Fig. 1d, Supplementary Fig. 2a,b 
and Supplementary Tables 4 and 5). Compared with flow cytometry, the 
granularity of scRNA-seq-defined unsupervised immune cell subsets 
revealed compositional shifts in immune subsets of T cells and clas-
sical monocytes across the disease course of MI (Fig. 1d,e, Extended 
Data Fig. 1c, Supplementary Table 6 and Supplementary Fig. 2a,b). 
CLR-transformed cell type abundance revealed that cluster 4 and 6 
CD14high classical monocyte abundances increase early during acute 
infarction. Simultaneously, cluster 0 CD4+ act 1 (CCR7low SOCS1high) 
T cell abundance and cluster 2 CD4+ act 2 (CCR7high SOCS1high) T cell 
abundance dropped during the disease course. In line with this, cluster 
1 CD8+ T cell showed altered abundance across the immune response 
to ACS (Fig. 1e and Extended Data Fig. 1c).

Factor analysis extracts signatures that explain inter-patient 
variance
To unlock the full potential of our multiomic dataset from the Munich 
cohort and to identify overarching immune signatures, we preproc-
essed, integrated and harmonized data across the different data types 
(Methods and Supplementary Fig. 3a). The complexity of the integrated 
data made the analysis of the dataset with standard methods impracti-
cal. Therefore, we hypothesized that integrative factor analysis could 
exploit inter-patient variability to discover distinct immune signa-
tures (that is, multicellular programs13) potentially allowing deduc-
tion of mechanistic and clinically relevant insights. MOFA enables the 

molecular features linking these with underlying molecular processes11. 
In contrast to analyzing the predictive potential of single variables, this 
data-driven dimensionality reduction allows for the identification of 
integrative factors, while retaining the wealth of information contained 
in the multiomic dataset.

We hypothesized that the concept of applying MOFA on patient 
blood samples might allow us to define multicellular immune signa-
tures in CS and link these signatures to disease state and outcome. Using 
a prospective multiomics strategy with an independent second-center 
validation dataset, we characterize circulating immune signatures 
and their time course in human CS at the patient level and single-cell 
resolution.

Results
Baseline characterization of immune profiles in CS
We analyzed the human immune response to myocardial ischemia in 
a cohort of patients who presented at the cardiology department of 
the Munich University Hospital (Ludwig-Maximilian University (LMU) 
Munich (Munich cohort: M)). Patients with ACS were included when 
presenting with acute ST-elevation MI (STEMI) (see Methods for the 
inclusion and exclusion criteria and Supplementary Table 1 for the 
cohort description). Patients with ACS in the Munich cohort were 
sampled longitudinally to capture all major phases of the immune 
response during MI3,4 at four sampling timepoints (TPM; Methods). 
The Munich control cohort, without acute coronary ischemia, further 
allowed comparison between patients with diagnostically secured CCS 
and patients with CCS ruled out (non-CCS; Supplementary Table 1). In 
addition, we validated the key immune signatures using a single-cell 
RNA sequencing (scRNA-seq) dataset in a second independent cohort 
of patients with ACS presenting at the University Medical Center 
Groningen (UMCG; Groningen cohort) measured at three sampling 
timepoints (TPG; Methods). The Groningen cohort has been primar-
ily sampled, analyzed and reported here12. In the Groningen control 
cohort, none of the study participants had clinically suspected CCS 
(corresponding to the Munich non-CCS cohort, further described in 
Supplementary Table 2).

Overall, we enrolled data from a combined total of 117 individu-
als: comprising samples from n = 62 patients from the Munich cohort 
(analyzing clinical blood tests, scRNA-seq, cytokine multiplex data, 
plasma proteomics and neutrophil prime sequencing (prime-seq)) 
and n = 55 patients from the external validation cohort (Groningen 
cohort, analyzing scRNA-seq and clinical data). A total of n = 838 indi-
vidual modality samples (all patient–timepoint combinations from 
independent omic modalities) were analyzed separately by multiomic 
or clinical measures (Fig. 1a,b and Methods). From hereon, we refer 

Fig. 1 | Study overview and patient characteristics. a, Study design. In the 
Munich cohort, blood was analyzed from patients with ACS (total of n = 28; 
total of four timepoints, TP1M–TP4M), patients with CCS (n = 16) and patients 
with no CCS (n = 18; single timepoint, TP0M). A joint multiomic dataset was 
created from the Munich cohort by including clinical blood tests (cl), scRNA-
seq (SC), flow cytometry, cytokine assay (cy), and plasma proteomics (p) and 
neutrophil (pmn) prime-seq. This was followed by data integration, MOFA model 
estimation (Y, input data matrices from each data modality; W, resulting weight 
matrix; Z, resulting matrix of factor values for each sample) and subsequent 
downstream analysis such as factor analysis, pathway enrichment, cell–cell 
communication and prediction. Findings from the Munich data cohort were 
evaluated in the Groningen data (V2 chemistry) as an independent validation 
cohort in which blood was analyzed longitudinally from patients with ACS 
(total of three timepoints TP1G–TP3G, total of n = 24 patients) as well as from a 
control group (TP0G, n = 31). Created with BioRender.com. b, X-ray images of a 
coronary catheterization of a patient with ACS: occlusion of the left circumflex 
artery, indicated by red arrow (left image); intervention, stent implantation 
(middle image); reperfusion (right image). c, Clinical blood tests. Individual 
timepoints for sterile ACS (TP1–TP4) compared with those for CCS (TP0M). 
Mean ± s.e.m. values are shown. d, UMAP plot of scRNA-seq data from PBMCs 

showing cell-type clusters used for subsequent analyses (n = 148,275). e, Analysis 
of CLR-transformed cell type abundance based on the scRNA-seq dataset. Data 
are shown using box–whisker plots (box, median and 25th to 75th percentile; 
whiskers, minimum to maximum). f, MOFA. Variance decomposition showing  
the percentage of explained variance per view and factor of the MOFA model  
with 20 factors. For each view, the heatmap shows the percentage of the variance 
that is explained by the respective factor. The color coding on the left indicates 
the data type of each view: green, plasma proteomics; blue, neutrophil prime-
seq; orange, cytokine measurements; dark orange, clinical values; purple,  
scRNA-seq data. The greyscale grading in the heatmap depicts the percentage  
of variance. The bar plot (right) shows the total percentage of explained variance 
by all 20 factors. In c and e, parametric-distributed data were analyzed using 
ordinary one-way ANOVA with correction for multiple comparisons by Dunnett’s 
test; nonparametric-distributed data were analyzed using the Kruskal–Wallis 
test with correction for multiple comparisons by Dunn’s test. *P ≤ 0.05; **P ≤ 0.01; 
***P ≤ 0.001. In cases in which only the ordinary one-way ANOVA or Kruskal–
Wallis test, but not the multiple comparison, was significant, graphs are marked 
with a vertical bar on top. Exact P and n values are summarized in Supplementary 
Tables 13 and 14, respectively.
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identification of major axes of variance including coordinated immune 
responses11 in a complex dataset that are not necessarily captured by 
individual features alone. Moreover, MOFA allows data integration 
across multiple data types (views). Here views represent (1) clinical 
laboratory markers, (2) cell-type-specific scRNA-seq-defined gene 
expression profiles, (3) circulating cytokines, (4) plasma-proteomics 
analysis and (5) neutrophil prime-seq14 data. MOFA extracted shared as 
well as view-specific combinations of features that describe variations 
of the circulating immune response (Fig. 1a and Supplementary Fig. 3a). 
Variance decomposition confirmed that the inferred MOFA factors 
indeed capture patterns spanning across different views (Fig. 1f and 
Supplementary Table 7). Furthermore, we analyzed the factor values 
at sample level to identify whether MOFA factors capture patterns 
that distinguish the different disease entities and timepoints (Sup-
plementary Fig. 3b). This revealed several factors with diagnostic and 
mechanistic implications.

Identifying the superordinate immune signature during MI
MOFA identified factors that align to clinically relevant patterns: Factor 
2 captured a large extent of inter-patient variance across the different 
views and explained most of the inter-patient variance in the clinical 
view (Fig. 2a and Supplementary Table 7). Factor 2 correlated with the 
development and resolution of myocardial ischemia reflected by the 
time course of clinical markers of myocardial damage and accurately 
discriminated CCS from ACS in patients with ACS with acute symptom 
onset and treatment without infectious complications (Figs. 1c and 
2b). We therefore termed Factor 2 as ‘integrative ACS ischemia (IAI)’.

Next, we sought to replicate the temporal pattern of the immune 
response captured by IAI in the independent Groningen cohort (Fig. 1a). 
After matching the cell-type annotations of the two cohorts by applying 
the automated Groningen cell-type annotation strategy on the Munich 

data (Supplementary Fig. 4) and applying the Munich preprocessing 
and normalization approach in the Groningen cohort, we computed IAI 
by applying the feature factor weights identified in the Munich cohort 
(Supplementary Figs. 5 and 6) on cell-type-specific expression data in 
the Groningen cohort (Methods). IAI in the Groningen cohort indeed 
replicated the same time pattern (Fig. 2c).

Clinical markers of myocardial damage (troponin T, CK and 
CK-MB) had high factor weights on IAI, but these factor weights were 
lower than those of many omic variables (Fig. 2a, Extended Data Fig. 2 
and Supplementary Table 8). In addition, the temporal pattern of IAI 
was reproduced after re-running MOFA without any clinical variables 
and the resulting factors did not change substantially (Supplementary 
Figs. 7 and 8), confirming that even though IAI captures a high amount 
of variance within the clinical markers and resembles the pattern of 
those, other multiomic views are important to define IAI.

Next, we dissected the molecular features contributing the highest 
factor weights to IAI. Cluster 0, 1 and 2 T cells and monocyte cluster 4 
had the largest relative amount of highly weighted features across views 
(Fig. 2a). The expression of EIF3E and HINT1 in T cells (cluster 0) were 
among the highest-ranking features (Fig. 2d). In line with this, the gene 
product of EIF3E is required for robust T cell activation and regulates a 
burst in T cell receptor signaling15. HINT1 complexed with HSP70 has 
been shown to hold strong immunomodulatory functions in NK cells16. 
HMGB1 across T cells similarly held a high factor weight in IAI. HMGB1 
promotes expansion and activation of T cells17. The normalized expres-
sion of these genes showed a comparable temporal development as IAI 
(Fig. 2d,e, Extended Data Fig. 2 and Supplementary Table 8).

Interestingly, T cell and monocyte clusters 0, 1 and 4, which con-
tribute most of the features that constitute IAI, also showed signifi-
cant alterations in cell type abundances across the disease course 
(Fig. 1e). CD4+ act 1 (CCR7low SOCS1high) T cells (cluster 0) were defined 

Fig. 2 | Multivariate integration and factor analysis reveal comprehensive 
immune signatures that explain variance among patients in ACS. a, Overview 
of IAI (Factor 2). For each view, the heatmap shows the percentage of the variance 
that is explained by the factor. The bar plots show the total amount of features 
(left) and the relative amount of features (right; in respect to the number of  
view-specific features) among the top 1% of the highest-ranking features that 
influence the factor. The color coding on the left indicates the data type of  
each view: green, plasma proteomics; blue, neutrophil prime-seq; orange, 
cytokine measurements; dark orange, clinical values; purple, scRNA-seq data. 
The greyscale grading in the heatmap depicts the percentage of variance.  
b, IAI (Factor 2). Comparison of the factor values for each timepoint for sterile 
ACS, non-CCS and CCS. Mean ± s.e.m. values are shown. c, Replication of IAI in 
the Groningen cohort. Comparison of the factor values for each timepoint for 
ACS with controls. Mean ± s.e.m. values are shown. d, IAI (Factor 2). Normalized 
expression values of the top 0.5% of features for cluster 0 CD4+ T cell for 
sterile ACS and CCS. A longitudinal comparison of the normalized expression 
values (heatmap) and the weight of the features (bar plot) are shown. Plus and 

minus signs indicate the direction of the feature factor weight. e, Longitudinal 
comparison of normalized gene expression values of selected features for 
sterile ACS and CCS. For the following comparisons, only the post hoc test 
was significant: HINT1 Treg cells (cluster 11). Plus and minus signs indicate the 
direction of the feature factor weight. f, Phenotyping by flow cytometry of 
the effects of plasma obtained from ACS and CCS on monocytes isolated from 
healthy donors. Individual timepoints for sterile ACS are compared with those 
for CCS. Mean ± s.e.m. values are shown for mean fluorescence intensities 
(MFIs). No post hoc analysis was performed when the Kruskal–Wallis test was 
not significant. For b, c, e and f, parametric-distributed data were analyzed 
using ordinary one-way ANOVA with correction for multiple comparisons 
by Dunnett’s test; nonparametric-distributed data were analyzed using the 
Kruskal–Wallis test with correction for multiple comparisons by Dunn’s test. In 
the case where only the ordinary one-way ANOVA or Kruskal–Wallis test, but not 
the multiple comparison, was significant, graphs are marked with a vertical bar 
on top. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001. Exact P and n values are summarized in 
Supplementary Tables 13 and 14, respectively.

Fig. 3 | IAI is characterized by distinct interleukin signatures in monocytes 
and T cells. a, Positively enriched REACTOME immune system pathways in IAI 
(Factor 2) across all data dimensions for which at least 50% of genes have been 
included within the feature set. False discovery rate-adjusted P < 0.05. Coverage 
indicates the percentage of genes of the pathway that have been included in the 
analysis. Greyscale depicting P values. b, Factor weights of features (top 25%) 
in IAI (Factor 2) belonging to enriched interleukin pathways averaged across all 
views in the upper part of the heatmap (‘Pathway’) and shown per view in the 
lower part of the heatmap (‘View’). Heatmap depicts factor values of pathway 
genes. c, Normalized expression values of genes and cytokines belonging to 
the interleukin-6 signaling pathway for sterile ACS (clusters 0, 2 and 5) and 
CCS. A longitudinal comparison for CD4+ T cell clusters (clusters 0, 2 and 5) and 
cytokine features is shown. In cases in which only the ordinary one-way ANOVA 
or Kruskal–Wallis test, but not the multiple comparison, was significant, graphs 
are marked with a vertical bar on top. Plus and minus signs indicate the direction 

of the feature factor weight. d, Normalized expression values of genes belonging 
to the interleukin-6 signaling pathway for sterile ACS and CCS. A longitudinal 
comparison for CD14high monocyte genes (clusters 4 and 7) is shown (plus and 
minus signs indicate the direction of the feature factor weight). In c and d, 
parametric-distributed data were analyzed using ordinary one-way ANOVA 
with correction for multiple comparisons by Dunnett’s test; nonparametric-
distributed data were analyzed using the Kruskal–Wallis test with correction for 
multiple comparisons by Dunn’s test. e, Efferocytosis (n = 7), survival (n = 8), ROS 
production (n = 12) and chemotaxis (n = 7) of monocytes activated ex vivo with 
and without IL6ST inhibition. Comparison between control and treatment with 
the IL6ST-inhibitor group (paired dataset). Parametric data were analyzed using 
paired t-test (two sided); nonparametric data were tested using the Wilcoxon 
test (two sided). *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001. Data points of paired data are 
connected by a line. Exact P and n values are summarized in Supplementary 
Tables 13 and 14, respectively.
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as activated CD4+ T cells as described before18. Monocyte cluster 4 
showed an IL-1βhigh CD14high classical, inflammatory phenotype (Fig. 1d 
and Supplementary Fig. 2a,b). In line with this, incubation of monocytes 
with ACS plasma induced a proinflammatory phenotype with increased 
expression of effector surface molecules (CD93, CD88, CD14, CD86, 
CD89, CD11a) across ACS and downregulation of CD16 in early ACS. 
Interestingly, monocyte CCR2 dropped gradually across later stages of 
ACS plasma incubation (Fig. 2f and Extended Data Fig. 3a). Functionally, 
this was accompanied by a higher efferocytotic capacity of monocytes 
in vitro, without any changes in survival or reactive oxygen species 
(ROS) production induced by ACS plasma (Extended Data Fig. 3b).

Importantly, sub-analyses revealed that IAI was not influenced by 
preexisting medication, and in vitro co-incubation of human peripheral 
blood mononuclear cells (PBMCs) with heparin and platelet inhibi-
tors (acetylsalicylic acid and prasugrel) did not reproduce the shifts 
observed in IAI, indicating that guideline-directed pharmacotherapy 
did not define the observed shifts (Extended Data Fig. 4 and Supple-
mentary Fig. 9). Hence, IAI reflects the longitudinal pattern of myocar-
dial ischemia and integrates clinical markers of myocardial damage 
with comprehensive multiomic information, summarizing the immune 
response to MI.

Distinct signaling pathways in monocytes characterize IAI
To allow for a more systematic understanding of characteristic immune 
signatures in IAI beyond the weight of individual features, we next 
sought to aggregate factor weights on the level of pathways. Across all 
our data views, several immune system pathways of the REACTOME19 
and KEGG20 database were enriched (Supplementary Tables 9 and 10), 
including the interleukin (IL)-6, IL-10, IL-12 and IL-27 signaling pathways 
(Fig. 3a,b). The enrichment of the IL-6 cytokine signaling pathway was 
driven by high factor weights of IL6ST, STAT3 and JAK1 and SOCS3 in clus-
ter 2 and 5 T cells and cluster 4 monocytes and plasma IL-6 (Fig. 3b–d, 
Supplementary Fig. 10 and Supplementary Table 8). In line with this, 

the inhibition of the intracellular IL-6 signaling cascade in monocytes 
activated ex vivo resulted in reduced effector functions such as ROS 
production, survival, efferocytosis, chemotaxis and proinflammatory 
cytokine secretion (Fig. 3e and Extended Data Fig. 5). This indicates 
that specific cell–cell or plasma–cell cytokine signaling influences 
immune shifts in ACS.

Hence, we next hypothesized that cell–cell communication 
and cytokine–cell communication pathways might account for the 
observed immune states across patients and timepoints. We therefore 
focused on identifying the underlying ligand–receptor interactions 
between immune cells and the downstream signaling of receptors 
using the NicheNet model21. We selected only features with the high-
est factor weights to define candidate target genes and investigated 
ligands that showed a high regulatory potential and correlation of 
expression levels across samples with those target genes (Methods). 
Among the circulating cytokine features, this ligand–target analysis 
identified levels of circulating IL-6 to associate with expression levels 
of proto-oncogene Pim-1 in cluster 4 monocytes (Fig. 4a–e). High IL-6 
levels also correlated negatively with monocyte CD74 expression, 
involved in antigen presentation22, but were accompanied by increased 
VCAN expression in cluster 7 monocytes (Fig. 4b–e). As we had observed 
a profound impact of IL-6 signaling on monocyte function and as a 
classical inflammatory phenotype was induced by ACS plasma, we 
analyzed the relevance of plasma IL-6 on influencing this phenotype 
in ACS (Figs. 2f and 3e, and Extended Data Figs. 3a and 5). Indeed, the 
activated monocyte phenotype induced by ACS plasma could be par-
tially reversed by IL-6 inhibition across different timepoints, whereas 
IL-6 inhibition upon CCS plasma induction showed no difference on 
monocyte phenotype (Fig. 4f and Extended Data Fig. 6a).

Specialized acquired T cell programs drive IAI
Besides IL-6, HMGB1, the gene encoding a DAMP that also showed a high 
weight on IAI, was involved in a plethora of correlated ligand–target 

Fig. 5 | Factor analysis identifies distinct immune signatures in ACS 
subtypes. a, IAI (Factor 2). Longitudinal comparison of factor values in ACS 
subtypes (sterile ACS, ACS with hospital-acquired infection, ACS with delayed 
recanalization after vessel occlusion). b, Comparison of CK, CK-MB and troponin 
at early timepoints (TP1 and TP2) of ACS subtypes. c, Comparison of CRP levels 
between patients with sterile ACS and patients with ACS with hospital-acquired 
infection. d, Comparison of good and poor outcomes during hospitalization 
using EF levels. e,f, Longitudinal comparison of IAR factor (Factor 4) values (e) 
and CK levels (f) between patients with good and poor outcomes. g, ROC AUC 
plot for prediction of good versus poor outcomes for IAR (Factor 4), GRACE 
score, normalized CK levels, normalized CRP levels and normalized troponin 
levels at TP1M. h, ROC AUC plot for validation of prediction of good versus poor 
outcomes in the Groningen cohort. A lasso model was trained on the top features 
of IAR at TP1M and applied to the Groningen cohort (TP1G good outcome and 
poor outcome). i, Overview of IAR (Factor 4): for each view, the heatmap shows 
the percentage of the variance that is explained by the factor. The bar plots  
show the total amount of features (left) and the relative amount of features  
(right, in respect to the number of view-specific features) among the top 1% of  

the highest-ranking features that influence the factor. The color coding on 
the left indicates the data type of each view: green, plasma proteomics; blue, 
neutrophil prime-seq; orange, cytokine measurements; dark orange, clinical 
values; purple, scRNA-seq data. The greyscale grading in the heatmap depicts 
the percentage of variance. j, Factor values of the top 1% of features in IAR 
(Factor 4), showing only features belonging to clinical values (indicated by an 
asterisk), cluster 3 NK cell, cytokines and plasma proteomics. k, Normalized 
expression values of selected top features from NK cells in the Munich and 
Groningen cohorts, comparing patients with good and poor outcomes at TP1. 
The minus sign indicates the direction of the feature factor weight. l, ROC AUC 
plot showing the prediction results of a logistic regression model using selected 
NK features (CD53, GZMB, TXNIP) trained on the Munich dataset and applied to 
the Groningen dataset. For a–c and f, the data were analyzed using mixed-effects 
analysis with correction for multiple comparisons by Tukey’s test (a and b) or 
Šidák’s test (c and f). For d, e and k, the parametric datasets were analyzed using 
an unpaired t-test (two sided). For a–f, mean ± s.e.m. values are shown. *P ≤ 0.05; 
**P ≤ 0.01. Exact P and n values are summarized in Supplementary Tables 13  
and 14, respectively.

Fig. 4 | T-cell- and plasma-mediated changes in monocytes in ACS.  
a,b, Spearman correlations (|cor| ≥ 0.4) between ligand and target genes across 
all samples (n = 128). Target genes are selected as belonging to the top 1%  
of features with positive (a) or negative (b) feature weight in IAI (Factor 2). 
Ligands were selected based on a minimum regulatory potential score of  
0.0012 for the shown targets according to the NicheNet model (corresponding  
to the 97% quantile of the regulatory potential score). Interactions mentioned  
in the main text are highlighted with a darker color. c, Spearman correlation 
scores (Cor) of selected ligand–target pairs from a and b. d, A longitudinal 
comparison of normalized expression values of selected genes for sterile ACS  
and CCS. Parametric-distributed data were analyzed using ordinary one-
way ANOVA with correction for multiple comparisons by Dunnett’s test; 

nonparametric-distributed data were analyzed using the Kruskal–Wallis test 
with correction for multiple comparisons by Dunn’s test. Plus and minus signs 
indicate the direction of the feature factor weight. e, Factor weights of the  
top 15 ligands with the highest factor weight in IAI (Factor 2). f, Monocyte 
phenotyping by flow cytometry after incubation with sterile ACS (TP4M) 
plasma with anti-IL-6 antibody or isotype control. All MFIs were normalized to 
the respective CCS plasma incubation average of the marker. Paired plasma 
incubation data with isotype (green dot) and IL-6 (red dot) inhibition are shown 
(TP4M n = 7). Parametric data were analyzed using the multiple paired t-test  
(two sided). *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001. Data points of paired data are 
connected by a line. Exact P and n values are summarized in Supplementary 
Tables 13 and 14, respectively.
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pairs. In detail, expression levels of the ligand encoded by the gene 
HMGB1 in resting as well as activated T cell clusters 0, 1, 2 and 5 cor-
related with expression levels of most top-ranking target genes of IAI 
(Figs. 2d and 4a–c). HMGB1 might be related to the reduction of pro-
teasome activity within the receiver cell as it showed a negative cor-
relation with expression of UBC in cluster 0, 1 and 2 T cells, suggesting 
a reduced ubiquitination potential23. Similarly, expression of HMGB1 
in activated cluster 0 and cluster 2 T cells correlated negatively with 
expression of PSME2 in cluster 4, 6 and 7 monocytes (Figs. 2d and 4c–e). 
Besides that, TGFB1 expression in cluster 1 T cells positively correlated 
with expression of ODC1 in cluster 4 monocytes, the gene product of 
which is known to inhibit inflammatory macrophage programs and 
macrophage apoptosis and induce efferocytosis24,25. ODC1 in these 
monocytes was downregulated early during ACS—however, it increased 
over time, suggesting an unleashed inflammatory monocyte state in 
early ACS (Fig. 4b–d).

Of note, cluster 2 T cell SELL (gene product: CD62L) was among 
the top-ranking ligands (Fig. 4e), which has been associated with 
a naive phenotype26—unexpected for an inflammatory response. 
However, a triphasic expression pattern of CD62L after T cell activa-
tion has been described, beginning with a fast shedding of CD62L  
(at the protein level) with subsequent re-expression within 24–48 h 
and finally a transcriptomic silencing27. Hence, the silencing of SELL 
at the transcriptomic level might not yet have occurred in early ACS. In 
line with this, the incubation of healthy PBMCs with ACS plasma from 
early timepoints resulted in an increase in CCR7− CD45RO+ effector 
memory T cells, indicating that ACS plasma at hyperacute timepoints 
initiates T cell maturation and activation, whereas ACS plasma from 
late timepoints showed a rather inhibitory effect on T cell activation 
(Extended Data Fig. 6b). Short-term overexpression of PD1 (ref. 28) and 
TIM3 (ref. 29) has been associated with T cell activation. In this setting, 
reduced expression after a short-term increase suggests subsequent 
inactivation. In summary, an early T cell maturation and activation 
state together with enhanced IL-6-dominated plasma cytokine lev-
els might fuel an inflammatory monocyte phenotype and shape the 
immune landscape in ACS.

In addition to investigating synchronized changes occurring at 
the same timepoint, we also investigated lagged responses by corre-
lating target gene expression to previous timepoint (lagged) ligand 
exposure (Methods). First, we investigated top-ranking ligands 
on IAI: this revealed that IL-6 correlated with CRP levels at later 
timepoints (Extended Data Fig. 7a–c), confirming the robustness 
of our analysis. IL-6 levels also correlated with multiple delayed 
acute-phase proteins (that is, ORM1, SAA2, HP and SERPINA3). Cel-
lular HMGB1 from cluster 0, 1 and 2 T cells negatively associated 
with the expression of multiple T cell, monocyte and NK cell target 
genes (Extended Data Fig. 7b). Upon investigation of the top-ranking 
Factor 2 target genes, the ligands IL-6, IL-10, IL-12A and IL-27A, but 
also CXCL12 and CX3CL1, were found to positively associate with 
target genes of not only T cell phenotypes but also monocyte  
or NK cell phenotypes at later timepoints (Extended Data Fig. 7a). 

In general, multiple other cytokines including CXCL9 and CXCL10, 
which negatively influenced Factor 4 (described below), exhibited 
individual changes during ACS (Extended Data Fig. 7d). These data 
suggest a multilayered and complex immune trajectory to myocar-
dial ischemia and reperfusion.

Factor analysis identifies an immune-repair signature in ACS: 
integrative ACS repair
We next tested whether our immunological MOFA approach could 
enable the detection and prediction of differences in the time from 
symptom onset to hospital presentation (that is, time of myocardial 
ischemia) as well as different clinical courses of MI (that is, recovery of 
myocardial function). IAI did not show significant differences between 
the subgroups of ACS (sterile ACS, ACS with delayed recanalization 
and ACS with hospital-acquired infection), with the latter depicting 
higher CK values (Fig. 5a–c). Yet, mechanistic and translational studies 
suggest a differential impact of immune states on myocardial healing 
and function30.

To test whether distinct factors are associated with short-term 
clinical outcome, we selected patients with acute-symptom-onset 
ACS. The cohort was divided into two outcome groups: patients 
who showed a drop in ejection fraction (EF) during hospital stay 
were considered to have a poor outcome whereas patients with a 
favorable development of EF were considered to have a good outcome 
(Fig. 5d). We hypothesized that these variable disease courses might 
be associated with and/or influenced by different immune signatures. 
Indeed, MOFA Factor 4 had particularly low levels already at the time 
of hospital admission in patients with a poor outcome compared 
with levels in patients with improved cardiac function (Fig. 5e). We 
evaluated the potential of Factor 4 to distinguish between outcome 
at TP1M using the area under the curve (AUC) of the receiver operat-
ing characteristic (ROC) curve. Here Factor 4 levels showed better 
association with the development of EF than the Global Registry of 
Acute Coronary Events (GRACE) score31 and clinical markers at TP1M 
(Fig. 5f,g, Supplementary Fig. 11 and Supplementary Tables 11 and 12). 
In synopsis with its temporal development (enhanced after the acute 
ischemia and reperfusion phase), we termed this factor integrative 
ACS repair (IAR).

To corroborate the predictive value of the top-ranking features 
included in IAR already at the earliest timepoint and to reduce the 
number of relevant features, we trained a penalized logistic regres-
sion model that predicts outcome from these features at TP1M on 
the Munich cohort. We then applied this model on the Groningen 
cohort at TP1G. Again, the cohort was divided into two outcome 
groups (Methods). A comparison of the predicted and observed 
outcomes resulted in a ROC AUC of 0.83 on the replication cohort 
(Fig. 5h and Supplementary Tables 11 and 12), thus showing the ability 
of the model to generalize beyond the Munich cohort. This indicates 
the utility of novel integrative factors for outcome prediction and 
emphasizes the functional consequences of the immune response 
to myocardial recovery.

Fig. 6 | Patients with CCS are characterized by high IC values. a, IC (Factor 1). 
Comparison of factor values for patients with CCS, coronary sclerosis (non-CCS) 
and healthy coronaries (non-CCS). Mean ± s.e.m. values are shown. b, Overview 
of IC (Factor 1). For each view, the heatmap shows the percentage of the variance 
that is explained by the factor. The bar plots show the total amount of features 
(left) and relative amount of features (right; in respect to the number of view-
specific features) among the top 1% of highest-ranking features for the factor. 
The color coding on the left indicates the data type of each view: green, plasma 
proteomics; blue, neutrophil prime-seq; orange, cytokine measurements; dark 
orange, clinical values; purple, scRNA-seq data. The greyscale grading in the 
heatmap depicts the percentage of variance. c, Factor values of the top 1% of 
features showing only features belonging to CD4+ T cells (clusters 0 and 2) in  
IC (Factor 1). d, Normalized expression values of selected top features of IC 

(Factor 1) for samples classified as CCS and non-CCS (plus or minus signs indicate 
the direction of the feature factor weight). e, Factor weights of the top 10 ligands 
with the highest factor weight in IC (Factor 1; plus or minus signs indicate the 
direction of the feature factor weight). f, Normalized expression values of 
selected top ligands of IC (Factor 1) for samples classified as CCS and non-CCS 
(plus or minus signs indicate the direction of the feature factor weight). For a, 
Parametric-distributed data were analyzed using ordinary one-way ANOVA with 
correction for multiple comparisons by Tukey’s test. For d and f, parametric  
data were analyzed using an unpaired t-test (two sided) and nonparametric 
data were tested using the Mann–Whitney test (two sided). *P ≤ 0.05; **P ≤ 0.01; 
***P ≤ 0.001. Exact P and n values are summarized in Supplementary Tables 13  
and 14, respectively.
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Distinct NK-cell- and plasma-derived immune signatures 
define IAR
Next, we investigated which features define IAR. Numerous features, 
mainly genes involving NK cell activation and cytotoxicity, such as 

TXNIP32, PRF133, LITAF34, GZMB33, FYN35, CST736 and CD5337, showed high 
negative weights on IAR (Fig. 5i,j and Extended Data Fig. 8). Moreover, 
multiple circulating cytokines strongly negatively influenced IAR: 
TRAIL (TNFS10) and CXCL9 showed high negative feature weights with 
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a temporal development, which contrasted with IAR. CXCL10, also 
showing a high negative factor weight on IAR, has been associated with 
an unleashed recruitment of proinflammatory and cytotoxic T cells, 
making it a potential immune-pharmacological target molecule38. 
CCL24, known to adversely influence inflammation and fibrosis in sev-
eral organs and to induce an M2 macrophage polarization39,40, also nega-
tively influenced the outcome factor (Fig. 5j, Extended Data Fig. 8 and 
Supplementary Fig. 12). However, the plasma proteomics view revealed 
that circulating anti-trypsin enzymes of the SERPIN family (SERPINA1, 
SERPINA2, SERPINA3), which protect cells from granzyme-mediated 
cytotoxicity41, showed high positive factor weights on IAR and hence 
were associated with a more protective immune state. Interestingly, 
general markers of inflammation (that is, CRP, SAA1, SAA2 and C9 lev-
els) were associated with an ongoing repair signature in this setting 
(importantly, patients with signs of relevant systemic inflammation 
at admission were not included in the analysis) (Fig. 5j). However, the 
isolated interpretation of single features within factors requires cau-
tion—a high rank does not necessarily correspond to the exact same 
biological behavior as the complete factor. Further prospective and 
mechanistic follow-up studies of top-ranking individual features will 
unravel their specific role in CS.

Investigating the potential of single features to distinguish out-
come, we next asked whether a reduced set of NK cell markers and 
effector molecules (CD53, GZMB and TXNIP), holding high positive 
factor values, allows early separation by outcome. Distinct single fea-
tures did not significantly differ between good- and poor-outcome 
groups at TP1M and TP1G, emphasizing the added value of composite 
signatures of multiple coordinated features to define IAR in its essence 
(Fig. 5k and Supplementary Fig. 12). Indeed, a logistic regression model 
including a combination of these few highly ranked features trained 
on the Munich data yielded an ROC AUC value of 0.79 on the Munich 
cohort as a training dataset and an ROC AUC of 0.91 in the Groningen 
validation cohort (Fig. 5l and Supplementary Tables 11 and 12). This 
highlights the potential of identifying a small subset of predictors 
among top-ranking IAR features that might serve as targeted clinical 
biomarkers for the prediction of myocardial recovery.

IC outlines the landscape of chronic coronary artery disease
Having characterized MOFA factors in ACS, we investigated which 
MOFA factor described patients with CCS compared with patients in 
whom CAD was securely ruled out (non-CCS). Factor 1 showed high 
positive values in patients with CCS, whereas patients with coronary 
sclerosis showed intermediate values. Patients with healthy coronary 
arteries showed mainly negative values of Factor 1 (Fig. 6a). We hence 
termed this factor integrative CCS (IC).

Next, we again analyzed which features dominate IC: the factor 
was defined by many features of CD4+ and CD8+ T cells and captured 
mainly the variance of those views (Fig. 6b). Expression of modulators 
of T cell antigen recognition, signal transduction and T cell activation 
such as gene products of CD3E, ICAM3 and TRAC42,43 in activated cluster 
0 T cells had a high positive weight on IC. In line with this, expression of 
PRDX2, CORO1A, JUNB and CD37 showed strong positive associations 
with IC. FOSB expression in activated cluster 0 T cells, cluster 1 T cells 
and cluster 3 NK cells had a negative weight on IC (Fig. 6c,d, Extended 
Data Fig. 9a and Supplementary Table 8).

We further explored ligand–target interactions within IC21. Inter-
estingly, ICAM3 expression in several clusters was among the top 10 
ligands with the highest weights on the factor. Simultaneously, gene 
expression of the gene product ligands CALM1 and CALM2 in similar 
clusters showed negative factor weights on IC (Fig. 6e). ICAM3 or CALM1 
from cluster 0 and 11 T cells negatively correlated with PTMA expression 
in cluster 1 T cells. Moreover, CALM1 in multiple CD4+ T cell as well as 
B cell and monocyte clusters was associated with PTMA expression in 
cluster 1 CD8+ T cells (Fig. 6e,f and Extended Data Fig. 10), which holds 
broad disease-protective effects44.

What sustains the CD4+ T cell phenotype in IC? NAMPT in cluster 9 
and 12 monocytes (negatively associating with IC) showed a negative 
correlation with JUNB and other phenotype-defining genes in T cell 
clusters (Extended Data Fig. 10b, Supplementary Fig. 13a,b and Sup-
plementary Table 8). NAMPT has been described to be a key regulator 
of monocyte differentiation particularly during inflammatory states45 
and has been described to be increased in patients with ACS as well as 
in M1 inflammatory macrophages46. In summary, the IC signature was 
associated with CCS and was defined by a dysregulated activation pat-
tern of the monocyte and T cell compartment.

Discussion
The systemic immune signatures of ACS and CCS remain incompletely 
understood in humans, but are highly relevant for atherosclerosis, 
thrombosis and myocardial remodeling. In particular, insights from 
human multiomics studies might provide leads for developing new 
strategies for accessible biomarker signatures for diagnosis and prog-
nosis as well as tailored anti-inflammatory therapies in ACS and CCS.

In line with this, IAI captured the immune response in ACS in two 
independent cohorts. It was mainly defined by features derived from 
CD4+ and CD8+ T cells and monocytes and multiple plasma–cell and 
cell–cell communication pathways: ACS plasma induced a functional 
and phenotypic proinflammatory shift in monocytes, which could be 
partially reversed by inhibition of IL-6 signaling. Similarly, T cell activa-
tion with subsequent quiescence was induced using ACS patient plasma 
depending on the timepoint. Multiple T-cell-derived ligands, such as 
TGFB1 and HMGB1, defined the communication with monocytes and 
were associated with expression of downstream targets in monocytes. 
In line with this, distinct CD4+ T cell phenotypes have been associated 
with atheroprogression or plaque rupture in CS47–50. In the OPTICO-ACS 
study, flow cytometric analysis emphasized an important role for 
T-cell-derived cytotoxic effector molecules in plaque-erosion ACS49.

Although all MOFA factors were estimated in an unsupervised 
manner, using neither explicit information on outcome nor the trajec-
tories of specific patients, IAR was associated with the functional treat-
ment outcome of patients with STEMI already at hospital admission. 
This finding enabled the training of a supervised model that could then 
be applied to a second independent cohort, providing evidence for the 
robustness and generalizability of the IAR factor. IAR was defined by 
negatively high-ranking features in NK cells such as TXNIP32, GZMB33 
and CD5337, the gene products of which implicate NK cell cytotoxicity 
as a possible predictive marker of adverse outcome. Indeed, previous 
studies on lymphocyte-mediated cytotoxicity showed a deleterious 
role on post-ischemic cardiac remodeling, atherosclerosis and pul-
monary vascular permeability51–53.

IC, again estimated in an unsupervised way, showed higher levels in 
patients with CCS than in patients without CCS, but this needs further 
validation in larger cohorts. High-ranking features contributing to 
IC indicated a dysfunctional T cell phenotype, possibly induced by a 
disrupted CD16high monocyte–NAMPT–T cell signaling axis.

Our study holds multiple important implications for clinical, 
basic and translational cardiovascular research: first, we provide 
proof-of-concept evidence that multiomic profiling of the circulat-
ing immune signature paired with MOFA has the potential to estimate 
disease state, phenotype and outcome of remote, non-accessible injury 
sites (that is, myocardium). By reducing the very large number of poten-
tial predictors to few factors, we identify overarching signatures of 
clinical significance. This implies that (1) integration and factor-based 
analysis of complex datasets can add to the crucial understanding of 
(cardiovascular) disease and (2) multiomic liquid biopsies without 
access to the tissue site of injury offer a promising concept for future 
biomarker studies. Small sets of top-ranking features (identified from 
large-scale clinical MOFA studies) could serve to identify patients at risk 
and possibly trigger early initiation of heart failure treatment, more 
extensive revascularization or prolonged intensive care monitoring54.
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From a pathophysiological perspective, our data highlight dis-
tinct plasma–cell- and cell–cell-imprinted, monocyte-, NK-cell- and 
T-cell-dominated trajectories over the disease course. In monocytes, 
these associate with a proinflammatory phenotype and function that 
can partially be ameliorated by inhibition of plasma-mediated IL-6 
signaling. In T cells, early ACS plasma induced activation and later 
ACS plasma induced deactivation. Crucially, a specific signature 
was characterized by reduced NK cell cytotoxicity and enhanced 
influence of circulating anti-trypsin SERPINs (known to protect 
from cytotoxicity41). This was associated with later repair phases of 
ACS and correlated with favorable short-term outcome. This under-
scores the possible functional importance of the identified axes and 
supports the concept of therapeutic immune modulation to limit  
cardiac damage.

However, this study also has limitations: it was designed as an 
observational proof-of-concept study allowing a comprehensive char-
acterization of immune signatures in CS using MOFA. A restriction of 
multiomics studies, such as this, is the limited sample size that reduces 
the generalizability, yet—based on the fine-grained analyses—par-
ticularly provides hypotheses for future biomarker and mechanistic 
studies. The power is not comparable to a large-scale biomarker trial, 
which is indispensable to evaluate the ultimate diagnostic performance 
of MOFA factors and to probe translation into the clinical setting. The 
methods used in this paper are highly cost-intensive, but selected 
candidate biomarkers could be assayed in a targeted way for such 
larger clinical cohorts. The study focuses on STEMI patients without 
including other forms of ACS. Furthermore, patients in the ACS cohorts 
of the Munich and Groningen study received guideline-recommended 
treatment that potentially influenced the immune signatures. Yet, 
analyses of medication-specific effects on factor values suggest no 
relevant confounding.

In summary, this multiomics study of coronary syndromes identi-
fies systemic immune states in CCS and ACS. MOFA, in combination 
with downstream analyses, reveals the underlying molecular, plasma–
cell and cell–cell communication pathways that mechanistically 
translate to functional and phenotypic shifts in monocytes and T cells 
in vitro. This underlines MOFA as an innovative approach enabling the 
dissection of multicellular immune programs with mechanistic and 
clinical implications in cardiovascular disease. Moreover, our study, as 
a globally available resource, provides novel targets for experimental 
studies and large-scale MOFA-driven biomarker trials and informs 
prioritization of novel candidate targets for immune-modulatory 
interventions in CS.
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Methods
Munich cohort: ethics and patient cohort
Munich cohort (M): Informed consent was obtained from the patients 
in accordance with the Declaration of Helsinki and with the approval 
of the Ethics Committee of LMU Munich (number 19-274). We col-
lected blood from n = 62 patients using repetitive serial sampling and 
separately analyzed the different immune cell constituents. For blood 
collection, we used heparin-anticoagulated blood (Sarstedt, catalog 
number 02.1065.001). Blood processing was performed within 2 h of 
collection on average across the Munich and Groningen cohorts. A total 
of n = 125 whole blood tests, n = 122 PBMC samples, n = 246 plasma sam-
ples and n = 121 polymorphonuclear neutrophil (PMN) samples were 
used for analyses. In the ACS group, patients with STEMI were included 
and blood was analyzed longitudinally. Blood sampling was done 
peri-interventionally (TP1M)—during catheterization to avoid time loss, 
14 h (±8 h) after intervention (TP2M), 60 h (±12 h) after the acute event 
(TP3M) and before discharge, about 5–8 days after the acute event 
(TP4M). The patients were further subdivided into those without direct 
reperfusion within 24 h after symptom onset (delayed myocardial rep-
erfusion, n = 4) and patients with direct reperfusion within 24 h due to 
coronary intervention (acute MI, n = 24). A subgroup of patients with 
evidence of infection in laboratory testing who were treated with anti-
biotics in the clinical setting defined a subgroup with hospital-acquired 
infection (n = 5), which was differentiated from the sterile group with 
STEMI and without hospital-acquired infections (n = 19). The latter was 
used for comparison with the CCS group. Patients were also subdivided 
based on clinical outcome. For this purpose, the EF measurement was 
determined according to Simpson’s method in echocardiography. A 
comparison was made between the findings on admission and during 
the hospital stay (first EF value) or before discharge (second EF value) 
(resulting in a ΔEF). Based on these, a classification was made according 
to positive and stable (good outcome) and negative (poor outcome) 
ΔEF in the acute setting.

The CCS group included patients with an initial diagnosis of  
CCS based on a cardiac catheterization (lumen reduction of >50%) 
or coronary CT scan (>75th percentile; CCS, TP0M n = 16). Coronary 
healthy patients, with CAD ruled out by catheterization or CT, were 
included as a comparison group for the CCS group (non-CCS, TP0M 
n = 18). Coronary sclerosis was defined as coronary irregularities with-
out substantial lumen obstruction (<50%).

Exclusion criteria for the Munich cohort were cardiogenic shock, 
age >85 years and <30 years, severe systemic diseases (chronic liver 
disease, active hemato-oncologic diseases, active cancer, autoimmune 
diseases, acute inflammatory event with a fever or CRP > 2 mg dl−1 
at admission (except for patients with a subacute ACS with delayed 
recanalization who regularly showed elevated CRP levels as an already 
ongoing delayed response to the infarction) and the use of immuno-
suppressants at inclusion. For the CCS cohort, patients with relevant 
elevation of troponin T levels were also excluded.

Analysis modalities for the Munich cohort (if not specified 
otherwise)
Clinical blood test. The clinical blood tests were performed as part of 
the treatment during hospitalization. We involved the following clinical 
biomarkers and blood cells: CK, CK-MB, troponin T, CRP, leukocytes 
and neutrophils.

Cytokine and chemokine assays. For the isolation of plasma, 2 × 1 ml 
whole blood was centrifuged at 2,000 × g (relative centrifugal force) 
for 20 min at 4 °C (Centrifuge 5424 R, Eppendorf AG). Afterward, the 
supernatant was carefully removed and pooled in a common Eppendorf 
reaction vessel for cryopreservation at −80 °C.

For detection and quantitation of cytokines and chemokines, sam-
ples were sent on dry ice to EveTechnologies where a Human Cytokine/
Chemokine 71-Plex Discovery Assay array (HD71) was performed. 

Within the assay, the following biomarkers were determined: 6CKine, 
BCA-1, CTACK, EGF, ENA-78, eotaxin, eotaxin-2, eotaxin-3, FGF-2, Flt3L, 
fractalkine, G-CSF, GM-CSF, GROα, I-309, IFNα2, IFNγ, IL-1α, IL-1β, 
IL-1RA, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12p40, IL-12p70, 
IL-13, IL-15, IL-16, IL-17A, IL-17E/IL-25, IL-17F, IL-18, IL-20, IL-21, IL-22, 
IL-23, IL-27, IL-28, IL-33, IP-10, LIF, MCP-1, MCP-2, MCP-3, MCP-4, M-CSF, 
MDC, MIG, MIP-1α, MIP-1β, MIP-1δ, PDGF-AA, PDGF-AB/BB, RANTES, 
sCD40L, SCF, SDF-1α + β, TARC, TGFα, TNFα, TNFβ, TPO, TRAIL, TSLP 
and VEGF-A.

Plasma proteome analysis. The isolation and storage of the plasma 
were mentioned above. The plasma in vials were slowly thawed at +4 °C 
and mixed at a ratio of 1:5 with a proteomic buffer (2% SDS (Thermo 
Scientific, catalog number J22638.AE), 2.5 mM DTT (Invitrogen, catalog 
number P2325) in 50 mM Tris (Invitrogen, catalog number AM9820)). 
Afterward, the samples were immediately boiled at 95 °C for 10 min and 
cryoconserved at −80 °C. Plasma samples were prepared by SDS lysis, 
automated SP3 cleanup and tryptic digest (as also described before)55,56. 
Samples were measured on an Orbitrap Exploris 480 instrument 
(Thermo Fisher Scientific) in label-free data-independent acquisition 
mode while separating peptides on a 44 min gradient on a nanoEASY 
1200 system (Thermo Fisher Scientific) coupled to the mass spectrom-
eter. Raw files were analyzed in Spectronaut 14 (Biognosys57) against a 
spectral library that was generated from 52 fractions measured (as also 
described before55). A false discovery rate cut-off of 0.01 was applied, 
and spectra were searched against a human Uniprot database from 
2018 including isoforms. For data filtering, the option Q value percen-
tile with a fraction of 0.2 was used and global normalization using the 
median was applied. Further downstream analysis was performed in 
R. Normalized intensities were filtered for at least 80% valid values per 
row and column; remaining missing values were median centered and 
imputed using a randomized Gaussian distribution with a downshift of 
1.8. Plasma proteomics was included into the MOFA to identify patterns 
of variance. No differential expression data were reported in the paper.

Isolation of PMNs. Initially, 400 µl of whole blood was added to a tube 
and 20 μl each of the Isolation Cocktail and RapidSpheres (EasySep 
Direct Human Neutrophil Isolation kit, STEMCELL Technologies, cata-
log number 19666) were added. After 5 min of incubation at room 
temperature, the reagent was filled up to 4 ml with PBS (Dulbecco’s 
phophate-buffered saline (1×), Thermo Fisher Scientific, catalog 
number 14190-094) + 1 mM ethylenediaminetetraacetic acid (EDTA, 
Sigma-Aldrich Chemie, catalog number 03690). Subsequently, the tube 
was placed in a magnet (EasySepMagnet, STEMCELL Technologies) for 
5 min. Then, without being removed from the magnet, the contents of 
the tube were transferred to a new tube in a continuous motion. After 
20 μl of RapidSpheres was added again, the incubation steps were 
repeated without PBS + 1 mM EDTA being added. After another decan-
tation, the new tube was placed in the magnet for 5 min without the 
addition of RapidSpheres. The newly decanted tube was centrifuged 
at 320 × g for 7 min at 4 °C (Centrifuge 5810 R, Eppendorf AG). The pel-
let was then resuspended in 100 μl of PBS. Subsequently, 10 µl of the 
suspension was used to adjust the concentration to 5 million cells ml−1. 
For this, the dead cells were stained with trypan blue (Sigma-Aldrich 
Chemie, catalog number T8.154) and the concentration was calcu-
lated using a Neubauer counting chamber (LO-Laboroptik). For cryo-
preservation at −80 °C, cell suspension was added to RLT Plus buffer 
(Qiagen, catalog number 1053393) containing 1% 2-mercaptoethanol 
(Sigma-Aldrich Chemie, catalog number M3148) at a ratio of 1:10.

Prime-seq
For the analysis of the transcriptome of PMNs, prime-seq14, an early 
barcoding bulk RNA-seq method, was used. Samples were pretreated 
with proteinase K (Life Technologies, catalog number AM2548) fol-
lowed by isolation with cleanup beads (Sigma-Aldrich, catalog number 
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GE65152105050250; ratio, 2:1 beads per sample). DNase I (Thermo 
Fisher, catalog number EN0521) was used to digest the cells to make 
the transcriptome accessible for the process of reserve transcription. 
This was done by adding 30 units of Maxima H enzyme (Thermo Fisher, 
catalog number EP0753) and 1× Maxima H buffer (Thermo Fisher, 
catalog number EP0753), 1 mM dNTPs (Thermo Fisher, catalog number 
R0186), 1 µM template-switching oligo (Integrated DNA Technologies 
(IDT)) and 1 µM barcoded oligo-dT primers (IDT), and incubating for 
90 min at 42 °C (reaction volume, 10 µl). After all samples were pooled, 
they were purified in a 1:1 ratio with cleanup beads. For the elimination 
of the leftover primers, exonuclease I (NEB, catalog number M0293L) 
was added (incubation setup: 37 °C for 20 min, then 80 °C for 10 min), 
followed by another purification with cleanup beads. The synthesis of 
the second strand of complementary DNA (cDNA) was prepared by add-
ing 1× KAPA HotStart Ready Mix (Roche, catalog number 07958935001) 
and 0.6 µM SINGV6 primer (IDT) (reaction volume, 50 µl). For amplifica-
tion, subsequent PCR cycles were performed: start: 98 °C for 3 min; 15 
cycles: 98 °C for 15 s, 65 °C for 30 s and 72 °C for 4 min; end: 72 °C for 
10 min. To repurify the sample, cleanup beads were added at a ratio of 
0.8:1 beads per sample and dissolved out in 10 µl DNase-and-RNase-free 
distilled water (Thermo Fisher, catalog number 10977-049). Quantifi-
cation and size selection of the purified cDNA were then performed 
using the Quant-iT PicoGreen dsDNA Assay Kit (Thermo Fisher, 
catalog number P7581) and the High-Sensitivity DNA Kit (Agilent, 
catalog number 5067–4627). For library preparation, a fivefold-lower 
reaction volume of the NEBNextUltra II FS Library Preparation Kit  
(NEB, catalog number E6177S) than recommended by the manufacturer 
was used. Fragmentation of cDNA was performed using the enzyme 
mix and the reaction buffer (reaction volume, 6 µl), and ligation was 
performed using Ligation Enhancer, Ligation Master Mix and a custom 
prime-seq adapter (1.5 µM, IDT; reaction volume, 12.7 µl). Solid-phase 
reversible immobilization-select beads (Beckman Coulter, catalog 
number B23317) were then used for a double size selection (ratio of 
0.5 and 0.7). For amplification, Q5 Master Mix (M0544L, NEB), 1 µl i7 
Index Primer (Sigma-Aldrich) and 1 µl i5 Index Primer (IDT) were used 
followed by PCR (start: 98 °C for 30 s; 13 cycles: 98 °C for 10 s, 65 °C 
for 75 s and 65 °C for 5 min; end: 65 °C for 4 min). After successful size 
selection with solid-phase reversible immobilization-select beads and 
a quality check, the libraries were sequenced using NextSeq (Ilumina).

The sequencing reads were processed using zUMIs pipeline using 
the Gencode human release version (https://www.gencodegenes.org/ 
human/release_35.html). Only barcodes matching the expected sam-
ples were considered and exported as count matrices, both raw counts 
and library-size normalized ones. First, the data were checked using 
fastqc (version 0.11.8 (ref. 58)). Regions on the 3′ end of the fragment 
reading into the poly-A tail were removed by Cutadapt (version 1.12 
(ref. 59)). The zUMIs pipeline (version 2.9.4d)60 was applied, filtering 
the data, with a phred threshold of 20 for 4 bases the unique molecular 
identifier and barcode, mapping the reads to the human genome with 
the Gencode annotation (v35) using STAR (version 2.7.3a); reads were 
counted using RSubread (version 1.32.4)61,62.

PBMC isolation
For isolation of PBMCs, 8 ml of whole blood was transferred to a BD 
Vacutainer CPTTM (Becton Dickinson, catalog number 362780), 
swiveled twice and centrifuged at 1,650 × g for 20 min at room tem-
perature (Centrifuge 5810 R, Eppendorf AG). After swiveling twice, 
the supernatant was transferred into a 15 ml tube and a further cen-
trifugation step with 350 × g for 7 min at 4 °C was performed. The 
resulting cell pellet was resuspended in 4 ml freezing medium and 
aliquoted. The freezing medium consisted of 45% Roswell Park Memo-
rial Institute (RPMI) medium (VLE-RPMI 1640, Bio&SELL, catalog num-
ber BS.52551528.5) with 1% glutamine (Gibco l-glutamine (200 mM), 
Thermo Fisher Scientific, catalog number BS.K0283), 45% fetal 
bovine serum (FBS; FBS SUPERIOR stabil, Bio&SELL, catalog number  

FBS.S0615) and 10% dimethyl sulfoxide (DMSO, Sigma-Aldrich Chemie, 
catalog number D2438). For cryopreservation, samples were slowly 
frozen in a Mr. Frosty freezing container (Thermo Fisher Scientific, 
catalog number 5100-0036) at −80 °C for 24 h and then transferred 
to −80 °C freezers.

FACS and scRNA-seq preparation
For scRNA-seq analysis of the frozen PBMCs, an adapted thawing pro-
tocol of 10× was used63. Samples were thawed at 37 °C for 3 min. This 
was followed by stepwise dilution (5 × 1:1) with dropwise addition of 
complete growth medium. The complete growth medium consisted 
of 10% FBS and 90% RPMI. The sample was then filtered using a 50 µm 
strainer and centrifuged at 300 × g for 5 min at room temperature. 
The supernatant was removed to the last milliliter, and the cell pel-
let was resuspended in it by using a wide-bore pipet. An additional 
9 ml of complete growth medium was slowly added, and the sample 
was split into two. A further centrifugation step at 300 × g for 5 min 
at 4 °C was performed. One-half of the sample was used for further 
processing for scRNA-seq analysis. The cell pellet was resuspended in 
100 µl Fc block (BD Pharmingen, catalog number 564200; 1:50) and 
incubated on ice for 10 min. To label the cells, TotalSeqB anti-human 
hashtag antibodies (1:500; BioLegend; Supplementary Table 15) were 
added to the sample and then incubated at 4 °C for 30 min. To maxi-
mize the performance, TotalSeqB anti-human hashtag antibodies 
were pre-centrifuged at 14,000 × g at 4 °C for 10 min. Following this, 
the sample was washed three times by adding 5 ml of FACS buffer 
(PBS with 0.5% BSA (Albumin Fraktion V, Carl Roth, catalog number 
8076.4)) and centrifugation at 250 × g for 10 min at 4 °C each time. 
After the last centrifugation step, the cell pellet was resuspended in 
0.04% BSA in PBS and the concentration was adjusted to 200 cells µl−1 
using a Neubauer counting chamber. Lastly, marked samples were 
pooled. The other half of the sample was used to prepare the FACS 
analysis. The sample was incubated with 200 µl Fc block (1:50) at 
4 °C for 10 min. Staining of the cells was done by a 20 min incuba-
tion with an antibody master mix (1:400; Supplementary Table 15). 
After centrifugation at 300 × g for 7 min at 4 °C, the cell pellet was 
resuspended in 300 µl FACS buffer. The dead cells were stained imme-
diately before flow cytometry with an LSRFortessa Flow Cytometer 
(BD Biosciences). The flow cytometry data were analyzed with FlowJo 
(BD, version 10.8.14). Flow cytometry allowed the analysis of large 
cell counts. Rare populations such as dendritic cells were captured at 
representative counts, allowing reliable detection of differences. The 
scRNA-seq captured only a fraction of these cells but was suitable for 
the performance of unsupervised immune cell profiling of more fre-
quent immune cell subsets, but not for the detection of differences in 
geometric averages of rare ones. Rather, scRNA-seq enabled an unsu-
pervised sub-clustering of more common immune cells not identified 
by canonical surface-based flow cytometry panels due to limitations 
in the number of antibodies used. The CLR-transformed flow cytom-
etry data were hence provided as a baseline characterization of the 
sub-cohorts. For the MOFA-model-based deep phenotyping, the gene 
expression profiles of the fine-grained scRNA-seq sub-clusters were 
included. The geometric averages of immune cell subsets were not 
included into the MOFA model but were used for an initial screening 
of differences in canonical immune cell subsets as a baseline charac-
terization. Previous CLR transformation was performed as described 
in the scRNA-seq compositional analysis section.

scRNA library preparation and sequencing
For single-cell sequencing, libraries were prepared using the Chro-
mium Next GEM Single Cell 3′ Reagent Kit v3.1 (CG000206 Rev D with 
with all mentioned components) from the 10x Genomics protocol. 
Barcode-based multiplexing with TotalSeqB anti-human hashtag anti-
bodies (Supplementary Table 15) was performed to reduce artefacts 
associated with batch variation. According to the manufacturer’s 
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instructions, the gel beads in emulsion were first prepared to obtain 
cDNA with reserve transcription. After purification of the cDNA, ampli-
fication and size selection were performed. After final quantification 
and quality control, the gene expression and cell surface libraries were 
constructed for sequencing. Sequencing was subsequently performed 
by IMGM Laboratories using Illumina NovaSeq 6000.

Bioinformatics analysis of the CS scRNA-seq dataset
Preprocessing. SC data preparation: cellranger. After sequencing, 
the FASTQ files for the gene and cell surface libraries were processed 
using the cellranger count pipeline (chemistry: Single Cell 3′ v3; pipe-
line version 3.1.0). Each sample was mapped to the human reference 
genome (GRCh38; version: 3.1.0). The library and reference files were 
created according to the 10x Genomics instructions and example files 
for Antibody Capture with TotalSeq B (https://support.10xgenomics.
com/single-cell-gene-expression/software/pipelines/latest/using/
feature-bc-analysis#feature-ref (17 January 2023)).

The pipeline quantified each feature (genes plus antibodies) in 
each cell and generated quality control summaries and feature barcode 
matrices for each of the 14 libraries (Supplementary Table 4).

For further analysis, we took the ‘filtered_feature_bc_matrix.h5’ 
of each library and split it up into two separate anndata objects: one 
containing the gene expression and one the antibody capture counts.

Demultiplexing and doublet identification. For the demultiplexing 
of the scRNA-seq data, we took the antibody capture count anndata 
objects of each library, converted them to Seurat objects, normalized 
the counts with CLR transformation and applied the ‘HTODemux’ 
function of the Seurat package (version: 4.1.1) as described in the 
vignette with the default 0.99 quantile threshold to classify the cells 
as positive or negative for each hashtag oligo. Cells that have been clas-
sified as positive for more than one hashtag oligo have been annotated  
as doublets.

Cell quality control and filtering. In a next step, we transferred the cell 
annotation results from the demultiplexing to the gene expression 
anndata files and applied some cell quality control criteria and filter-
ing based on the gene expression counts to remove low-quality cells. 
These steps were done for each library separately.

In a first basic filtering step, we kept only cells that have counts 
on at least 200 genes and genes that have counts in at least 3 cells. Fur-
thermore, we combined the percentage of mitochondrial gene count 
(pct_counts_mt), number of genes by count (n_genes_by_counts) and 
total count (total_counts) criteria to filter out further cells. We only 
kept cells that have:

•	 n_genes_by_counts < 5,000 ∩ total_counts < 20,000
•	 n_genes_by_counts > 500 ∩ pct_counts_mt < 15

Subsequently the data were normalized (10,000 counts per cell) 
and log transformed (log1p) using the scanpy toolkit64 1.8.1 in Python 
v.3.9.6. Furthermore, we excluded mitochondrial and ribosomal genes 
as they were not of interest for the analysis.

Data integration, clustering and cell-type annotation. To get a joint 
embedding of the complete dataset and correct for potential batch 
effects between the libraries, we took the processed data from 
the quality control and applied the Scanorama method (scano-
rama.correct_scanpy, v 1.7.1) using 2,000 highly variable genes, 
batch-size parameter of 2,000 and default parameters. This returned 
a Scanorama-corrected count matrix and a joint embedding. We 
compared the data integration before and after applying Scanorama 
by inspecting the uniform manifold approximation and projection 
(UMAP) plots before and after (Supplementary Fig. 14a–c) and by cal-
culating the local inverse Simpson’s index (LISI) score (compute_lisi) 

with the corresponding function of the LISI R Package (https://github.
com/immunogenomics/LISI).

Subsequently, we used the Scanorama embedding as input for the 
computation of a neighborhood graph (scanpy.pp.neighbors, n_neigh-
bors=10, n_pcs=50) and the subsequent clustering of the cells using the 
Leiden algorithm (scanpy.tl.leiden; default parameters).

We found 18 different clusters that we annotated manually by 
looking at the expression patterns of PBMC marker genes selected 
based on literature research and calculating differentially expressed 
genes between the clusters using a Wilcoxon rank sum test with Benja-
mini–Hochberg adjustment as implemented in the scanpy framework 
(scanpy.tl.rank_genes_groups). With this strategy, we could annotate 
all 18 clusters to all common major peripheral blood mononuclear 
immune cell types (Supplementary Fig. 2a,b).

Compositional analysis. To investigate compositional changes of the 
cell-type clusters between the different patient groups and timepoints, 
we determined the percentage of cells that have been assigned to the 
different cell-type clusters for each patient and timepoint separately 
(for each patient and timepoint: amount of cells belonging to the 
cluster/total amount of cells) and adjusted them with CLR transfor-
mation. Adjusted values were then analyzed using ordinary one-way 
ANOVA with correction for multiple comparisons by Dunnett’s test 
(*P ≤ 0.05; **P ≤ 0.01).

Multiomics data integration: MOFA
Data harmonization and integration. For the integrated and combined 
analysis of all the different data sources (single-cell data, cytokines, 
neutrophils, plasma proteomics and clinical values), we applied sev-
eral preprocessing and normalization steps separately on the features 
of the different types of data to make them comparable and adjust  
the distributions.

CS scRNA-seq data. We applied the pseudo-bulk approach to sum-
marize single-cell data on the level of cell-type (cluster) specific gene 
expression per sample because all other omics data were measured 
on the bulk level. To this end, we calculated for each of the identified  
18 cell-type clusters for each sample (=patient and timepoint) the mean 
counts across all cells. Afterward, we adjusted the gene counts of each 
sample in each cluster with a scaling factor so that each sample has 
the same amount of counts across all genes to account for technical 
differences in sequencing depth between the samples.

To ensure that we only consider reliably expressed genes, we 
applied additional filtering steps on the genes and clusters:

We excluded clusters 14–18, which had only very low numbers of 
cells per patient and timepoint (mostly less than 10 cells).

We filtered out genes based on the total number and percentage of 
cells that expressed those genes in the corresponding cluster, keeping 
only genes that fulfill one of the criteria below:

•	 Percentage of cells expressing gene > 50 ∩ total number of cells 
expressing gene > 1,200

•	 Percentage of cells expressing gene > 40 ∩ total number of cells 
expressing gene > 3,000

The thresholds were chosen considering that genes should be 
detectable in a high number of cells and in several samples, but at the 
same time, a considerable number of genes for each cluster should 
be kept.

After filtering, we log transformed the count values and applied 
quantile normalization as further normalization steps to align the 
distributions of gene expression levels between the samples.

This resulted in 11,831 features (which correspond to genes) 
across all the different clusters (ranging from 315 for cluster 13 and 
2,159 for cluster 4), which we used as input for the different cell-type 
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cluster dimensions from the single-cell data for the MOFA (Supple-
mentary Fig. 3a).

Cytokines. To prepare the cytokine data for integration with the other 
datasets we set ‘OOR’ values to 0 and log transformed the values to 
adjust the distributions after adding a pseudo-count of 1 to all values. 
Furthermore, we excluded cytokines which have valid measured values 
in less than 20% of the samples. In total this resulted in 65 different 
cytokines which have been used as input features for the integrated 
analysis (Supplementary Fig. 3a).

Neutrophils. As input features from the neutrophil dimension, we 
took the umi exon counts from the prime-seq and applied the process-
ing steps below to align the reads with the scRNA-seq data, adjust for 
potential technical effects and strictly remove samples and genes with 
low-quality reads.

In a first step, we adjusted the gene names and mapped them 
from ‘ENSEMBL’ gene ids to ‘SYMBOL’ gene ids. Then, we filtered out 
ribosomal and mitochondrial genes as we also excluded them in the 
scRNA-seq data preprocessing, and they are not relevant for the analy-
sis. Furthermore, we excluded genes that are not expressed in at least 
80% of the samples and removed samples that do not have reads in at 
least 90% of the remaining genes. In the next step, we adjusted for dif-
ferences in sequencing depth between the samples and normalized the 
counts with a scaling factor so that the sums of reads for each sample 
across all genes are the same. Then, we logarithmized the resulting 
counts. Finally, we decided to keep only highly variable genes, so we 
removed all genes whose variance lies below the 25% quantile of the 
variance distribution. This resulted in a total of 892 genes measured 
on 92 samples that are considered as input features for the neutrophil 
dimension. As for the scRNA-seq data, we applied quantile normaliza-
tion to the counts in a final normalization step (Supplementary Fig. 3a).

Plasma proteomics. For proteomics, we used the same preprocess-
ing and normalization steps as described in the previous ‘Plasma 
proteome analysis’ section and took the resulting normalized and 
median-centered intensities measured for 490 different proteins as 
input features of this dimension (Supplementary Fig. 3a).

Clinical values. As input features of the clinical data dimension, we 
used the measured CK, CRP, CK-MB and troponin values and log trans-
formed them (Supplementary Fig. 3a).

Model training. After these individual preprocessing steps, we had 
in total 13,382 features across 18 different dimensions (referred to 
as views throughout the paper) resulting from (1) clinical values,  
(2) cell-type cluster 1–14 of the scRNA-seq data, (3) cytokines, (4) plasma 
proteomics and (5) neutrophils (Supplementary Fig. 3a). We applied 
feature-wise quantile normalization onto the quantiles of the standard 
normal distribution for all data types.

Then we trained the MOFA model using the R/Bioconductor pack-
age MOFA2 (version 1.2.2) with maxiter parameter 50,000 to ensure 
convergence and 20 factors and the remaining default parameters. 
The number of estimated factors was chosen to balance the trade-off 
between explained variance and low number of factors. Also, we tested 
the influence of the specified number of factors on the model results 
by running alternative MOFA models with 5, 10, 15 and 25 factors and 
comparing them with the 20-factor model. We found that especially 
the first five inferred factors are not substantially affected by the choice 
of the number of factors (Supplementary Figs. 3a and 14d and Sup-
plementary Table 16).

To evaluate the effect of the clinical features, we trained a second 
MOFA model excluding the 4 clinical features with in total 13,378 fea-
tures and compared the resulting factor values and feature weights to 
the original model (Supplementary Figs. 7 and 8a,b).

Downstream analyses. Gene set enrichment analysis: pathways. On 
the feature weight matrix resulting from our trained MOFA model, 
we conducted pathway enrichment analysis for the first five inferred 
factors of the MOFA model using the gene set annotations from the 
REACTOME19 and KEGG65 databases. We tested all pathways belonging 
to the ‘Immune System’ category in REACTOME (n = 191) and pathways 
that are classified as ‘Immune system’ or ‘Signal transduction’ pathways 
in KEGG (n = 52).

To test the enrichment of the pathways across all our data input 
views, we generated an extended pathway gene annotation set for 
those pathways in which a feature (consisting of data dimension, and 
gene and protein code) was considered to belong to the pathway if 
the gene and protein code maps to the genes annotated to the path-
way. Features included in the MOFA but not within the pathway were 
taken as background set. To map the gene and protein codes to the 
gene-set annotations in KEGG and REACTOME (reacome.db, version 
1.76.0; ReactomePA version 1.36.0), we used the bitr function from the 
clusterProfiler package (version 4.0.5) to convert them to ENTREZID.

We removed all the pathways for which we had included less than 
20% of the total amount of genes annotated to the pathway in our fea-
ture set and ran the enrichment analysis using the ‘run_enrichment’ 
method implemented in the R/Bioconductor package MOFA2 (version 
1.2.2) with set.statistic parameter ‘rank.sum’ and default parameters 
otherwise. We ran the enrichment separately for features with only 
positive or negative weights and jointly across all features.

Pathways with an adjusted P < 0.05 (Benjamini–Hochberg adjust-
ment) have been considered to be significantly enriched.

Cell–cell communication. To analyze the potential axes of cell–cell 
communication between different cell types, we used the previous 
knowledge about potential ligand–receptor–target interactions of the 
NicheNet21 resource collected in the nichenetr package (version 1.1.0) 
and loaded the provided ligand–receptor network and ligand–target 
matrix66. Based on the classifications in those networks, we identified 
ligands, receptors and potential targets among the 13,382 features 
included in our integrated dataset resulting from the ‘data harmoniza-
tion and integration step’. We calculated Spearman correlation between 
all identified ligand–target pairs within this dataset.

For the further analysis of the calculated ligand–target correla-
tions in combination with the corresponding regulatory potential 
score, we only considered ligand–target pairs:

•	 Between the ligands and targets of different cell types (for exam-
ple, between monocytes and T cells) and different views (for 
example, between cytokines and the different cell-type clusters)

•	 Where we have reliably measured a receptor in the target 
cell-type cluster to which the ligand might potentially bind 
as specified by ligand–receptor network provided by the 
NicheNet21 resource to affect the target gene (in case the target 
belongs to one of the cell-type cluster views from the scRNA-seq 
data). We consider a receptor gene to be reliably measured in 
case it fulfills one of the thresholds below:
•	 Percentage of cells expressing the receptor gene in the cell-type 

cluster > 30 ∩ total amount of cells expressing the receptor gene 
in cell-type cluster > 600

•	 Percentage of cells expressing the receptor gene in the cell-type 
cluster > 10 ∩ total amount of cells expressing the receptor gene 
in the cell-type cluster > 1,200

Subsequently, we focused on pairs with high correlation and regu-
latory potential scores where the target gene has a high feature weight 
on the analyzed MOFA factor.

For the lagged analysis of ligand–receptor target gene interac-
tions, we applied the same analysis with the modification that we 
calculated Spearman correlation between the identified ligand–target 
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pairs based on mapping lagged ligand expression to the corresponding 
target gene expression for ACS samples. This resulted in the following 
mapping across timepoints for each patient that was then used for 
the calculation of Spearman correlation and further processing as 
explained above:

Predictions. To evaluate the prediction potential of our MOFA factors 
to distinguish our different patient groups, we calculated ROC curves 
contrasting the prediction power of the inferred factors to established 
clinical markers.

For Factor 4 predictions, we only considered factor values from 
samples measured at TP1M that could be classified to have a ‘good’ 
or ‘poor’ outcome. We compared the prediction potential of the fac-
tor values to the value of the clinical markers (CK, troponin, CRP) for 
those samples at TP1M. For the benchmarking against the prediction 
power across the complete time course of the clinical values, we took 
the maximum and mean values of those markers across all measured 
timepoints. In both cases, we scaled the clinical values as well as the 
factor values to be in a range between 0 and 1 and used them as input 
for the ROC curve calculation giving the probability of a sample being 
classified as ‘good’ versus ‘poor’ outcome.

Replication in the validation cohort: Groningen dataset
To validate our approach and findings, we used an independent sec-
ond external dataset including n = 24 patients measured across three 
different timepoints (TP1G, at the heart catheterization; TP2G, 24 h 
after admission; TP3G, after 6–8 weeks) and a control group (TP0G, 
n = 31) contained within the Groningen study and described in detail 
in the original publication12. Data collected in the Groningen cohort 
were part of the CardioLines biobank67 study that investigated factors 
influencing diagnosis and treatment outcomes. It was approved by the 
UMCG ethics committee (document number METC UMCG 2012/296), 
and all patients provided informed consent68,69.

Further specifications of the dataset and the processing can be 
found within the corresponding paper12. The data in the Groningen 
study12 were measured with two different chemistries: v2 10X chem-
istry and v3 10X chemistry, which showed technical differences in 
gene expression profiles between the samples that were prepared 
with different chemistries. Therefore, a separate processing of both 
datasets was necessary. In our replication, we focused on samples 
measured with the v2 10X chemistry as this cohort included a higher 
number of samples (v2, n = 55; v3, n = 21). The V3 10X chemistry cohort 
did not include a sufficient number of samples that could be divided 
into poor or good outcome groups and would have therefore been 
underpowered. Classification into long-term good- and poor-outcome 
groups in the Groningen cohort was performed to subdivide the cohort 
into two outcome sub-cohorts based on long-term development of EF. 
Based on the ΔEF from echocardiography results (during the hospital 
stay and follow-up), a classification was made according to positive 
(good outcome, n = 7) and negative or stable (poor outcome, n = 5) 
long-term values.

For the replication, in a first step, we evaluated the alignment of 
the different strategies for cell-type annotations that were applied in 
the two different studies. Subsequently, we harmonized annotations 
between both datasets and applied the Munich data preprocessing 
strategy on the Groningen data. MOFA Factor 1 (IC) could not be evalu-
ated in the Groningen cohort as this dataset does not include the dif-
ferentiation of the control group into ‘CCS’ and ‘non-CCS’ patients.

Alignment of cell-type annotations. In the Groningen study, cell-type 
annotation was done using the automated Azimuth method from 
the R Azimuth library (version 0.4.6; for more details, see paper12). 

As our data were processed and annotated in a different way, we first 
compared clusters and annotations resulting from our study to those 
of the Groningen study. For this, we ran the preprocessing and auto-
mated annotation strategy as described in the Groningen study12 on 
our data and compared the resulting annotations of the single cells 
with the annotations resulting from our initial clustering and manual 
annotation strategy (Supplementary Fig. 4). In general, our clustering 
and the automated azimuth annotation resulted for some cell types 
in more granular (for example, B cell cluster 10 would be distributed 
across ‘B naive’, ‘B memory’ and ‘B intermediate’ azimuth annotations) 
or more aggregated annotations (for example, CD14high monocyte 
clusters 4, 6 and 7 would all be aggregated as CD14high monocytes), but 
on a more aggregated level, annotations aligned well except for some 
T cell clusters (namely, cluster 1 CD8+ T cells, cluster 11 CD4+ T cells and 
cluster 5 CD4+ T cells).

Rerun of MOFA with harmonized cell-type annotations. As described 
in the section ‘Alignment of cell-type annotations’, the Munich and 
Groningen datasets initially were annotated using two different strate-
gies. To be able to apply a model trained on the Munich cohort to the 
data from Groningen, the same harmonized definition of cell types 
and features needed be used in both datasets. Thus, we applied the 
Azimuth automated cell type annotation approach that was used in 
the Groningen cohort to the data from the Munich cohort. This led 
to a new annotation with a different level of granularity, which might 
impact on the downstream MOFA. To assess this effect, we ran the same 
MOFA as outlined above on the Munich data with the new Azimuth 
annotations (Supplementary Fig. 5a). We evaluated whether the result-
ing factors were able to capture the same patterns as found with our 
original strategy and whether factor and feature weights of the newly 
inferred factors and the factors presented in the paper aligned well 
by correlating them (Supplementary Figs. 5b and 6a,b). Overall, the 
same patterns presented previously were also visible with the alter-
native annotations (Supplementary Fig. 5b) and the inferred factor 
and feature weights of the presented factors were highly correlated 
(|cor| > 0.8; Supplementary Fig. 6a,b).

Processing of the Groningen scRNA-seq data. In the next step, we 
applied the preprocessing steps as described in ‘CS scRNA-seq data’ for 
the MOFA analysis also on the Groningen scRNA-seq dataset resulting in 
normalized pseudo-bulk-aggregated features per annotated azimuth 
cell type in the Groningen data.

As the expression values of the genes were notably lower in the 
Groningen dataset, we made some minor adjustments to the require-
ments with regard to the percentage of cells expressing a gene and 
the total amount of cells expressing a gene to get a comparable set of 
features as in our data:

•	 Percentage of cells expressing gene > 30 ∩ total amount of cells 
expressing gene > 1,000

•	 Percentage of cells expressing gene > 20 ∩ total amount of cells 
expressing gene > 2,500

After applying these preprocessing steps on the Groningen data, 
we had in total 6,353 features across the 13 different dimensions (azi-
muth cell types 1–13).

Factor 2: time pattern replication. To replicate Factor 2 on the Gron-
ingen dataset in a first step, we mapped input features from the Munich 
dataset to the Groningen dataset and kept only features available in 
both datasets after the preprocessing (therefore, cytokine, clinical, 
proteomics and neutrophil features as well as some genes from the 
scRNA-seq dataset not within both datasets were removed). We used 
the resulting feature-weight matrix for features from the well-aligned 
cell types (B cell, CD4TCM, cDC2, CD16Mono, CD14Mono, NK) from the 
Munich azimuth MOFA estimation (WMU) (Supplementary Fig. 5) and 

Ligand gene TP1M TP2M TP3M

Target gene TP2M TP3M TP4M
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calculated the right inverse to then apply it on the normalized input 
data (YGR) from the Groningen cohort to infer the corresponding sam-
ple factor matrix (ZGR) for the Groningen cohort as shown below. The 
pattern across timepoints of the resulting sample factor matrix (ZGR) 
was then compared with the pattern given within the Munich dataset.

ZGR = YGR(WMU)−1 with (WMU)−1 = WT(WWT)
−1

GR, Groningen cohort; MU, Munich cohort.

Factor 4: prediction replication. For Factor 4, the main goal of 
our replication was to evaluate the potential of top-ranking fea-
tures on Factor 4 to predict the outcome already at an early stage 
(TP1). As Factor 4 is derived based on the pattern across all four 
timepoints measured in our data and top-ranking Factor 4 features 
are characterized not only by the variation at TP1 between ‘good’ 
and ‘poor’ outcome samples but also by the variation across the 
different timepoints, we chose to add another step to our analysis 
to identify those features within the top-ranking features that have 
high prediction potential only looking at their TP1 values. For this, 
we chose to select the intersection of the top 280 features of IAR (cor-
responding to roughly 20% of the total amount of features) between 
the MOFA models estimated on the Munich data with the manual and 
the harmonized automated azimuth annotations. Subsequently, we 
trained a lasso model (logistic regression) with 8-fold cross validation 
using the cv.glmnet function of the R package glmnet (version 4.1.6; 
alpha=1; family = ‘binomial’; nfolds = 8; other, default parameters) 
on the Munich data taking as input only the value of those features 
at TP1M and predicting the outcome of the samples. We selected the 
best model given by ‘lambda.min’, the value of lambda that minimizes 
the cross-validation error.

Then, we applied this trained model on the same set of features 
with their values at TP1G on the Groningen dataset considering this 
dataset our holdout test dataset and evaluated prediction performance 
for those samples calculating AUC values.

In addition to the lasso-selected top-ranking feature set of Fac-
tor 4, we also evaluated the prediction potential of features that we 
highlighted in the paper, based on their potential biological mecha-
nisms, namely NK cell features CD74, TXNIP and GZMB. Again, we 
trained a logistic regression model (glm function; family = binomial 
(link = ‘logit’)) for these features on the Munich data. Subsequently, 
we applied this model to the Groningen cohort for the evaluation of 
the performance on the validation set.

In vitro treatment of healthy PBMCs with heparin, aspirin and 
prasugrel with subsequent scRNA-seq
Human PBMCs were isolated from healthy donors as described above 
and freshly processed for scRNA-seq. A total of 2 × 105 PBMCs were 
seeded in a 96-well plate and incubated with heparin (1.5 IU ml−1, Rati-
opharm), prasugrel (0.012 mg ml−1, Substipharm SAS) and acetylsali-
cylic acid (0.1 mg ml−1). After 3 h of incubation at 37 °C and 5% CO2, the 
cells were washed and subsequently treated with Fc-Block (Human 
BD Fc Block, BD Biosciences, catalog number 564200) for 10 min at 
4 °C. Afterward, the respective hashtag master mix (final antibody 
concentration, 1:100) was added, and the cells were incubated for 
30 min at 4 °C. Subsequently, 5 ml of buffer (0.5% BSA (Albumin Frak-
tion V, 8076.4, Carl Roth) plus DPBS (4190-094, Thermo Fisher)) was 
added and the mixture was centrifuged at 250 × g for 10 min at 4 °C. 
This washing step was repeated twice. After the last centrifugation 
step, the pellet was resuspended in 50 µl buffer (0.5% BSA (Albumin 
Fraktion V, Carl Roth, catalog number 5642008076.4)). Cell counts 
were adjusted to 1,000 cells µl−1 using a Neubauer counting chamber 
and then pooled. A total of 60 µl of the single-cell suspension was used 
for library preparation (input, 60,000 cells).

Bioinformatic analysis of the in vitro scRNA-seq dataset
For the analysis of the effect of medication on the identified MOFA 
factors and the underlying expression changes of individual genes, 
we preprocessed the in vitro (IV) scRNA-seq data in the same way as 
described within the sections for the preprocessing of the CS dataset: 
‘SC data preparation: cellranger’, ‘Demultiplexing and doublet identi-
fication’ and ‘Cell quality control and filtering’.

Subsequently, we took the log-normalized data, identified highly 
variable genes (scanpy.pp.highly_variable_genes; default parameters), 
regressed out the effects of total counts and the percentage of mito-
chondrial gene counts (scanpy.pp.regress_out; default parameters) 
and scaled the gene expression values (sc.pp.scale; max_value = 10). 
We used these data to do a principal component analysis of the 
variables (sc.tl.pca; default parameters) and used the embedding 
of the first 50 principal components as input for the computation 
of a neighborhood graph (scanpy.pp.neighbors; n_neighbors=10, 
n_pcs=50) and the subsequent clustering of the cells using the Leiden 
algorithm (scanpy.tl.leiden; Resolution=0.25; default parameters). 
The resulting clusters were visualized in a UMAP plot (Supplemen-
tary Fig. 9a). For cell-type annotation, we ran the automated Azimuth 
strategy as described for the replication on the Groningen dataset and 
compared them with the identified clusters on the same UMAP plot  
(Supplementary Fig. 9a).

In the next step, we applied the preprocessing steps as described 
within ‘CS scRNA-seq data’ for the MOFA also on the IV scRNA-seq 
dataset resulting in normalized pseudo-bulk-aggregated features per 
annotated azimuth cell type in the IV scRNA-seq data.

As the number of samples in the IV scRNA-seq dataset was lower 
compared with that in the CS dataset, we made some adjustments to 
the requirements with regard to the total amount of cells expressing a 
gene to get a comparable set of features to those in the CS data:

•	 Percentage of cells expressing gene > 50 ∩ total amount of cells 
expressing gene > 60

•	 Percentage of cells expressing gene > 40 ∩ total amount of cells 
expressing gene > 150

After applying these preprocessing steps on the IV scRNA-seq data, 
we had in total 13,676 features across the 13 different views (azimuth 
cell types 1–13, YIV).

To evaluate the effect of the medication on Factor 2 values, we 
computed Factor 2 on the IV dataset by applying the same strategy 
as in the Groningen replication: first, we mapped input features from 
the Munich CS dataset to the Munich IV dataset and kept only features 
available in both datasets after applying the preprocessing as indicated. 
We used the feature-weight matrix from the Munich CS azimuth MOFA 
estimation (WMU) and calculated the right inverse to then apply it on 
the normalized input data (YIV) from the IV scRNA-seq data to infer the 
corresponding sample factor matrix (ZIV) for the IV dataset. We then 
evaluated the difference of Factor 2 values between medication-treated 
and untreated samples (Supplementary Fig. 9b).

In addition, we also investigated how effect sizes of ACS at TP2M 
compared with those of CCS of single genes that we outlined in the 
main figures by violin plots compared with the effect sizes introduced 
by the medication, comparing treated samples with untreated samples. 
For that, we took the pseudo-bulk-aggregated and normalized gene 
expression based on the azimuth annotation of the Munich IV 
scRNA-seq dataset (Y IV

i ) and the Munich CS dataset (Y CS
i ) and calculated 

a linear model estimating the effect of the medication treatment (βT) 
compared with the untreated samples and the effect of ACS at TP2M 
(βTP2M) compared with the CCS samples, correspondingly (Supplemen-
tary Fig. 9c).

For the comparison, we evaluated the effect sizes of the pseudo- 
bulk-aggregated gene expression values for cells annotated as CD4.
TCM or CD14.Mono cells according to the azimuth annotation as these 
aligned best with the clusters (cluster 0 CD4+ T cells; cluster 4, 6 and 
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7 CD14high monocytes) in which we observed the effects of ACS TP2M 
outlined in the main figures (Fig. 3c,d).

Echocardiographic assessment of left ventricular function in 
the Munich cohort
Echocardiographic assessment of left ventricular EF as a proxy for 
systolic function was performed according to current guidelines70. In 
brief, B-mode echocardiography was performed by cardiac intensive 
care unit (C-ICU) fellows and, following discharge from the ICU, by 
cardiology residents. Left ventricular EF was then measured using the 
biplane summation-of-disks method in apical four-chamber and api-
cal two-chamber views by an experienced cardiology fellow who was 
unaware of patient outcomes at the time of measurement.

IV assays
IV monocyte survival, apoptotic Jurkat cell generation and mono-
cyte efferocytosis assay. PBMCs from healthy donors who gave 
informed consent were used (with the approval of the Ethics Com-
mittee of LMU Munich (number 19-274)) using BD Vacutainer CPT 
tubes and subsequently stored at −80 °C. Monocytes were isolated 
(CD14 MicroBeads, Miltenyi), kept in monocyte RPMI 1640 medium 
(Sigma-Aldrich, catalog number R8758) supplemented with 10% 
FBS (Biosell, catalog number S0613) and 1% penicillin–streptomycin 
(Sigma-Aldrich, catalog number P4333), and subsequently labeled with 
CellTracker green (CMDFA, catalog number C7025), and cells were 
seeded in a 24-well plate at a concentration of 100,000 cells per well. 
Selective gp130 (IL6ST) inhibitor SC144 10 µM (MedChemExpress, 
catalog number HY-15614) in 1% DMSO or DMSO 1% (Sigma-Aldrich, 
catalog number D2438-10ML) was supplemented to the different condi-
tions for the inhibitor experiments. For patient plasma assays, diluted 
plasma from randomly selected patients from the Munich cohort with 
CCS (TP0M) or sterile ACS (TP1M–TP4M) (1:1 dilution with RPMI 1640 
(Sigma-Aldrich, catalog number R8758)) was added to the respective 
wells. Images were taken at timepoints 0 h and 24 h.

Efferocytosis assay was performed similarly to the murine mac-
rophage efferocytosis assay previously described71: in short, cultured 
Jurkat cells (Merck, catalog number 88042803) were centrifuged 
and resuspended at a concentration of 2.5 × 105 ml−1. Apoptosis was 
induced using UV light radiation for 15 min. Next, Jurkat cells were 
placed in the incubator for 3.5 h. A total of 100,000 apoptotic Jurkat 
cells (labeled with far-red cell Proliferation Dye eFluor 670 (eBiosci-
ence, catalog number 65-0840-85)) were added to the monocytes 
24 h after addition of the selective gp130 (IL6ST) inhibitor SC144, 
10 µM (MedChemExpress, catalog number HY-15614) in 1% DMSO or 
only DMSO 1% (Sigma-Aldrich, catalog number D2438), and 24 h after 
adding the respective diluted patient plasma. Cells were subsequently 
co-incubated for 8 h and washed before image acquisition. Cells were 
incubated at 37 °C and 5% CO2. The resulting images were analyzed in 
FIJI (ImageJ) using the automated cell counting function.

IV monocyte chemotaxis. Human monocytes were isolated as 
described above. Following counting, 2 × 105 monocytes were seeded 
into a 96-well plate and treated with either DMSO 1% (Sigma, catalog 
number D2438) or SC144 (10 µM, Selleckchem, catalog number S7124) 
in monocyte medium for 2 h at 37 °C and 5% CO2. For chemotaxis, 
after the incubation period, 1 × 105 monocytes were stained using 
CellTracker Red CMTPX (1:1,000, Invitrogen, catalog number C34552) 
for 10 min. Subsequently, monocytes were allowed to attach to the 
upper part of a 5 µm transwell insert (Sarstedt), and the transwell 
insert was transferred to an ultra-low-attachment 24-well plate (Corn-
ing) containing monocyte medium (mentioned above) mixed with 
CCL2 (100 µg ml−1, Bio-Techne, catalog number 279-MC/CF). After 
incubation for 2 h at 37 °C and 5% CO2, cells were harvested from the 
lower chamber. To allow further detachment of cells, 5 mM EDTA 
was added. Subsequently, the number of transmigrated cells was 

measured with flow cytometry and standardized to counting beads 
(CountBright, Invitrogen).

IV monocyte ROS production. Following counting, 2 × 105 monocytes 
were seeded into a 96-well plate and treated with either DMSO 1% 
(Sigma, catalog number D2438) or SC144 (10 µM, Selleckchem, cata-
log number S7124) in monocyte medium for 2 h, or were treated with 
randomly selected CCS (TP0M) or sterile ACS plasma at different time-
points for 12 h at 37 °C and 5% CO2. Afterward, monocytes were loaded 
with 2′,7′-dichlorodihydrofluorescein diacetate (2′,7′ DCFDA; 5 µM, 
Sigma) and incubated for 15 min at 37 °C and 5% CO2. Subsequently, 
cells were exposed to PMA (200 nM, Sigma) for 1 h at 37 °C and 5% CO2, 
followed by immediate flow cytometric analysis. SYTOX Red (1:1,000, 
Invitrogen, catalog number S34859) was added for live or dead staining.

IV monocyte phenotyping. Human monocytes were isolated from 
healthy donors as described above. A total of 1 × 105 monocytes were 
seeded in a 96-well plate and co-incubated with plasma from randomly 
selected patients with CCS (TP0M) or sterile ACS (at the different 
timepoints: TP1M–TP4M) either in the presence of anti-hIL-6 (1 µg ml−1, 
Invivogen, catalog number mabg-hil6-3) or isotype control (1 µg ml−1, 
Invivogen, catalog number mabg1-ctrlm), or in the absence of any 
additional treatment. After a 12 h incubation at 37 °C and 5% CO2, the 
cells underwent a washing step and were then incubated with Fc-Block 
(1:100, BD Biosciences, catalog number 564220) for 10 min, followed 
by incubation with the respective primary antibodies (1:100; Sup-
plementary Table 15) for 20 min on ice in the dark. Following another 
wash step, flow cytometric analysis was conducted. Before FACS, live 
and dead staining was added.

IV T cell phenotyping. After isolation (as described above), PBMCs 
were stained with carboxyfluorescein succinimidyl ester prolifera-
tion dye according to the manufacturer’s instruction (Invitrogen, 
catalog number C34554). Upon completion of the staining, cells were 
resuspended in RPMI 1640 medium supplemented with 10% FBS, 
l-glutamine, nonessential amino acids, sodium pyruvate and penicil-
lin–streptomycin, and plated in 96-well flat-bottom plates.

Plasma derived from randomly selected patients with CCS (TP0M) 
or sterile ACS (at the different timepoints: TP1M–TP4M) was then added 
to each well at a plasma ratio of 1:3. PBMCs were incubated with the 
respective plasma for 96 h. T cell activation and phenotypical changes 
were then analyzed by flow cytometry, and the average of at least five 
PBMC donors was calculated per incubated plasma.

Flow cytometry was performed as recently described72,73. In brief, 
after 96 h of incubation of isolated PBMCs with plasma, cells were 
transferred into a 96-well round-bottom plate and centrifuged for 
5 min at 400 × g. Cells were then washed twice with ice-cold PBS and 
incubated with human TrueStain FcX and fixable viability dye (eFluor 
780, eBioscience) for 15 min at room temperature. Next, cells were 
stained with the respective antibodies (Supplementary Table 15) for 
30 min at 4 °C. After 30 min, cells were again washed with ice-cold PBS 
fixed with 1% paraformaldehyde solution. Flow cytometric data were 
analyzed using FlowJo V10.9.0 software.

Monocyte cytokine secretion upon inhibition of IL-6 signaling
Human monocytes were isolated according to the monocyte isolation 
protocol described above. Following counting, 1 × 105 monocytes 
were seeded into a 96-well plate, treated with either DMSO (1%, Sigma, 
catalog number D2438) or SC144 (10 µM, Selleckchem, catalog num-
ber S7124) and afterward activated with PMA (200 nM, Sigma) and 
subsequently incubated in monocyte medium (described above) for 
18 h at 37 °C and 5% CO2.

After the incubation period, the cells were centrifuged at 350 × g 
for 10 min and the cell culture supernatant was immediately used 
for cytokine analysis. Cytokine levels of cultured supernatants were 
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determined with LEGENDplex Human Inflammation Panel 1 (Biolegend, 
catalog number 740809) according to the manufacturer’s protocol. In 
short, supernatants were incubated for 2 h at room temperature with 
capture beads on a plate shaker. After washing, the detection antibod-
ies were added and incubated for another 1 h at room temperature. 
Once the beads were stained, the samples were measured using a 
CytoFLEX flow cytometer (Beckman Coulter). Based on the standard 
curve, the cytokine concentration was calculated using BioLegend’s 
LEGENDplex data analysis software (analyzed with the newest ver-
sion in September 2023). For every sample, a duplicate was measured 
simultaneously, and the mean value was calculated and used for sta-
tistical analysis.

Flow cytometry of all analyses in Methods were carried out with 
BD LSRFortessa.

Statistical analysis
The statistical analysis and the graphical illustration were performed 
with GraphPad Prism (versions 9.2.0 and 10.0.3). The data were 
tested for normal distribution using the Shapiro–Wilk normality test. 
Parametric tests were used only when all involved groups showed a 
parametric distribution; otherwise, a nonparametric test was used. 
Parametric-distributed data with several subgroups were analyzed 
using ordinary one-way ANOVA, with correction for multiple compari-
sons (for example, the single timepoints) by Dunnett’s test per feature 
individually. Nonparametric-distributed data with several subgroups 
were analyzed using the Kruskal–Wallis test, with correction for mul-
tiple comparisons (for example, the single timepoints) by Dunn’s 
test per feature individually. Comparisons between two groups were 
performed using unpaired t-test (two sided) for parametric data and 
Mann–Whitney U test (two sided) for nonparametric data. For paired 
nonparametric analyses, the Wilcoxon rank sum test (two sided) was 
used; for paired parametric analyses, a paired t-test (two sided) was 
used. In the good-versus-poor outcome comparison across timepoints, 
a mixed-effects analysis with correction for multiple comparisons by 
Šidák test was used. If only three groups were compared, the Tukey 
test was used to correct for multiple comparison. In case only the 
mixed-effects analysis, ordinary one-way ANOVA or Kruskal–Wallis test, 
but not the multiple comparison, was significant, graphs are marked 
with a vertical bar on top. Graphs in which only the post hoc test was 
significant were marked in the figure captions.

Figure alignment
Figures were aligned by Adobe Illustrator (version 25.4.1).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All mapped data (bulk proteomics, cytokine measurements, biomark-
ers of inflammation and myocardial damage, ejection fraction, bulk 
and scRNA-seq count matrices) from the Munich cohort are avail-
able via Zenodo upon approval for immunological research purposes 
(https://doi.org/10.5281/zenodo.10815146 (ref. 74)). Processed path-
way annotations and auxiliary data are also provided via Zenodo. Raw 
sequencing data of the Groningen cohort are available from the Euro-
pean Genome–Phenome Archive (https://ega-archive.org/datasets/
EGAD00001010064), and processed data are available from https://
eqtlgen.org/sc/datasets/blokland2024-dataset.html. Ligand receptor 
data and regulatory potential scores from the NicheNet model21 were 
downloaded from https://doi.org/10.5281/zenodo.3260758 (ligand 
receptor network and regulatory potential scores)66. Reference data 
for the azimuth mapping were a previously annotated and published 
multimodal CITE-seq (combined scRNA-seq and protein expression) 
reference dataset of 162,000 PBMCs75.

Code availability
All code is available via GitHub at https://github.com/heiniglab/ 
stemi_mofa.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Changes in clinical values and cell-type abundance 
across time. (a) Clinical blood tests. Individual timepoints for sterile ACS 
(TP1-4M) compared to CCS (TP0M). CRP; Neutrophils. Parametric distributed 
data were analyzed using the Ordinary One-Way ANOVA with correction for 
multiple comparisons by Dunnett’s test; non-parametric distributed data were 
analyzed using the Kruskal-Wallis test with correction for multiple comparisons 
by Dunn’s test. *p≤0.05, **p≤0.01, ***p≤0.001. Mean values with +/- SEM are 
shown. (b) Analysis of centered log ratio (CLR) transformed cell type abundance 
of phenotypically defined immune cells to CD45+ leukocytes in PBMCs based 
on flow cytometry. Individual timepoints of sterile ACS compared to CCS. 
Parametric distributed data were analyzed using the ordinary one-way ANOVA 
with correction for multiple comparisons by Dunnett’s test; non-parametric 
distributed data were analyzed using the Kruskal-Wallis test with correction  
for multiple comparisons by Dunn’s test. *p≤0.05, **p≤0.01, ***p≤0.001.  

Mean values with +/- SEM are shown. In case only the ordinary one-way ANOVA 
or Kruskal–Wallis test was significant, graphs are marked with a vertical bar on 
top. (c) Analysis of centered log ratio (CLR) transformed cell type abundance 
based on scRNA-seq dataset. Individual timepoints of sterile ACS compared to 
patients with CCS. Parametric distributed data were analyzed using the Ordinary 
One-Way ANOVA with correction for multiple comparisons by Dunnett’s test; 
non-parametric distributed data were analyzed using the Kruskal-Wallis test 
with correction for multiple comparisons by Dunn’s test. For the following 
comparisons, only the post hoc was significant: CD4+ T cells – cluster 5. *p≤0.05). 
Data are shown as a Box-Whiskers plot (box: median, 25th to 75th percentile; 
whiskers: minimum to maximum). (a)-(c) Exact p-values (Supplementary 
Table 13) and n-numbers (Supplementary Table 14) were summarized in the 
supplementary tables.
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Extended Data Fig. 2 | Gene expression changes across time and disease 
states in IAI. (a) Integrative ACS Ischemia (Factor 2). Normalized expression 
values of top 1% features for sterile ACS and CCS patients in longitudinal 

comparison visualized within heatmap and weight of the features visualized 
as barplot (+/- indicates the direction of the feature factor weight). N-numbers 
(Supplementary Table 14) were summarized in the supplementary tables.
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Extended Data Fig. 3 | In vitro ACS plasma induced changes in monocyte 
phenotype and function. (a) Monocytes isolated from healthy donors 
incubated with patient plasma, and phenotyped by flow cytometry. Individual 
timepoints of sterile ACS compared to CCS. Parametric distributed data were 
analyzed using the ordinary one-way ANOVA with correction for multiple 
comparisons by Dunnett’s test; non-parametric distributed data were analyzed 
using the Kruskal–Wallis test with correction for multiple comparisons by Dunn’s 
test. *p≤0.05. In case only the ordinary one-way ANOVA or Kruskal–Wallis test 

was significant, graphs are marked with a vertical bar on top. Mean values with 
+/- SEM are shown. (b) Monocyte efferocytosis, ROS production and survival 
after plasma incubation. Individual timepoints of sterile ACS compared to CCS. 
Non-parametric distributed data were analyzed using the Kruskal-Wallis test 
with correction for multiple comparisons by Dunn’s test. *p≤0.05, **p≤0.01, 
***p≤0.001. Mean values with +/- SEM are shown. (a) – (b) Exact p-values 
(Supplementary Table 13) and n-numbers (Supplementary Table 14) were 
summarized in the supplementary tables.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Analysis of medication mediated effects on IAI.  
(a) Longitudinal comparison of the factor value of Integrative ACS Ischemia 
between patients with sterile ACS with and without pre-medication. ASA, 
ß-Blocker, ACE/AT1-inhibitor, Statin. The dataset was analyzed using the 
Mixed-effects analysis with correction for multiple comparisons by Šidák test. 
*p≤0.05. Mean values with +/- SEM are shown. (b) Integrative ACS Ischemia 
(Factor 2). Comparison of the factor values of each timepoint of sterile ACS 
(TP1-4M) and non-CCS (TP0M) with CCS (TP0M) patients. Only patients without 
pre-medication (upper part) of: ASA, ß-Blocker, ACE/AT1-inhibitor, Statin. 
Only patients with pre-medication (lower part) of: ASA, ß-Blocker, ACE/AT1-
inhibitor, Statin. Parametric distributed data were analyzed using the Ordinary 
One-Way ANOVA with correction for multiple comparisons by Dunnett’s test; 
non-parametric distributed data were analyzed using the Kruskal-Wallis test 
with correction for multiple comparisons by Dunn’s test. *p≤0.05, **p≤0.01, 
***p≤0.001. Mean values with +/- SEM are shown. (c) Comparison of the factor 

value (Integrative ACS Ischemia, Factor 2) in patients without ACS (pooled 
non-CCS and CCS) between with and without respective pre-medication: ASA, 
ß-Blocker, ACE/AT1-inhibitor, Statin. The parametric dataset was analyzed using 
an unpaired t-test (two-sided). *p≤0.05. Mean values with +/- SEM are shown.  
(d) Integrative ACS Ischemia (Factor 2). Comparison of the factor values of  
TP1-3M with TP4M of patients with sterile ACS. Only patients without pre-
medication (upper part) of: ASA, ß-Blocker, ACE/AT1-inhibitor, Statin. Only 
patients with pre-medication (lower part) of: ASA, ß-Blocker, ACE/AT1-inhibitor, 
Statin. Parametric distributed data were analyzed using the Ordinary One-
Way ANOVA with correction for multiple comparisons by Dunnett’s test; 
non-parametric distributed data were analyzed using the Kruskal-Wallis test 
with correction for multiple comparisons by Dunn’s test. *p≤0.05, **p≤0.01, 
***p≤0.001. Mean values with +/- SEM are shown. (a) – (d) Exact p-values 
(Supplementary Table 13) and n-numbers (Supplementary Table 14) were 
summarized in the supplementary tables.
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Extended Data Fig. 5 | The effects of IL6ST inhibition on monocyte-driven 
cytokine secretion. (a) Monocyte cytokine secretion upon inhibition of 
IL6 signaling analyzed by flow cytometry. Comparison between control and 
treatment with IL6ST-inhibitor group (paired dataset, n=8). Parametric data 

were analyzed using the paired t-test (two-sided), non-parametric data were 
tested using the Wilcoxon test (two-sided). *p≤0.05, **p≤0.01. Illustration of 
paired data by connecting the data points. Exact p-values were summarized in 
Supplementary Table 13.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Cytokine driven or further effects of ACS plasma on 
immune cells. (a) Monocyte phenotyping after incubation with sterile ACS 
(TP1-3M) or CCS (TP0M) plasma upon IL6 inhibition by flow cytometry. All 
MFIs were normalized to the respective CCS plasma average of the marker. 
Comparison between isotype and IL6 inhibition (paired dataset). Parametric data 
were analyzed using the multiple paired t-test (two-sided). *p≤0.05, **p≤0.01, 
***p≤0.001. Illustration of paired data by connecting the data points. (b) T cell 
phenotyping after incubation with sterile ACS (TP1-4M) or CCS (TP0M) plasma 
by flow cytometry. Individual timepoints of sterile ACS plasma (randomized n=8) 
compared to CCS, mean value of at least 5 PBMC donors incubated with each 

patient plasma. Parametric distributed data were analyzed using the Ordinary 
One-Way ANOVA with correction for multiple comparisons by Dunnett’s test; 
non-parametric distributed data were analyzed using the Kruskal-Wallis test with 
correction for multiple comparisons by Dunn’s test. In case only the ordinary 
one-way ANOVA or Kruskal–Wallis test was significant, graphs are marked 
with a vertical bar on top. For the following comparisons, only the post hoc 
was significant: T effector memory: CD4+ CCR7- CD45RO+. *p≤0.05, **p≤0.01. 
Mean values with +/- SEM are shown. (a) – (b) Exact p-values (Supplementary 
Table 13) and n-numbers (Supplementary Table 14) were summarized in the 
supplementary tables.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Lagged plasma–cell or cell–cell-mediated ligand–
target interactions in IAI. (a) Lagged spearman correlations (|cor| ≥0.4) 
between ligand and target genes across ACS samples (n=84). Ligand-target pairs 
have been lagged and mapped as follows before calculating the correlation: 
Ligand_TP1M ~ Target_TP2M; Ligand_TP2M ~ Target_TP3M; Ligand_TP3M ~ 
Target_TP4M [Target_TP1M and Ligand_TP4M values have not been mapped 
and included]. Shown target genes selected as top 2.5% of features with positive 
feature weight on Integrative ACS Ischemia. Shown ligands selected based on 
minimum regulatory potential score of 0.0012 for those targets according to the 
NicheNet Model (corresponding to 97% quantile of regulatory potential score). 
(b) Lagged spearman correlations (|cor| ≥0.4) between ligand and target genes 
across ACS samples (n=84). Ligand-target pairs have been lagged and mapped 
as follows before calculating the correlation: Ligand_TP1M ~ Target_TP2M; 
Ligand_TP2M ~ Target_TP3M; Ligand_TP3M ~ Target_TP4M [Target_TP1M and 
Ligand_TP4M values have not been mapped and included]. Shown ligand genes 
selected as top 2.5% of features with positive feature weight on Integrative ACS 
Ischemia. Shown targets selected based on a minimum regulatory potential score 
of 0.0012 of the selected ligands to the targets according to the NicheNet Model 
(corresponding to 97% quantile of regulatory potential score). (c) Exemplary 

visualization of lagged associations shown in circoplot in (b): Left: Violin plots 
showing normalized expression values of selected features for sterile ACS 
patients in longitudinal comparison. Timepoints were mapped as visualized 
by the violin plots: Ligand_TP1M ~ Target_TP2M; Ligand_TP2M ~ Target_TP3M; 
Ligand_TP3M ~ Target_TP4M. [Target_TP1M and Ligand_TP4M values have not 
been mapped and included as no corresponding ligand/target value is available, 
indicated by gray color]. Right: Scatter plots showing spearman correlation score 
of the visualized example based on mapping target molecule expression (CRP) 
to lagged ligand expression (IL6) as indicated by the violin plots. (d) Normalized 
expression values of cytokines are shown in comparison of individual timepoints 
of sterile ACS with CCS. Parametric distributed data were analyzed using 
the Ordinary One-Way ANOVA with correction for multiple comparisons by 
Dunnett’s test; non-parametric distributed data were analyzed using the Kruskal-
Wallis test with correction for multiple comparisons by Dunn’s test. *p≤0.05, 
**p≤0.01, ***p≤0.001. In case only the ordinary one-way ANOVA or Kruskal–Wallis 
was significant, graphs are marked with a vertical bar on top. (+/- indicates 
the direction of the feature factor weight). Exact p-values (Supplementary 
Table 13) were summarized in the supplementary tables. (c) – (d) N-numbers 
(Supplementary Table 14) were summarized in the supplementary tables.
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Extended Data Fig. 8 | Gene expression changes across time and outcome in 
IAR. (a) Integrative ACS Repair (Factor 4). Normalized expression values of top 1% 
features in longitudinal comparison visualized within heatmap and weight of the 

features visualized as barplot, all samples included (n=128). Divided by outcome; 
‘NA’ in case no EF value has been available for the ACS samples (n=7) and for CCS 
and non-CCS samples. (+/- indicates the direction of the feature factor weight).
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Extended Data Fig. 9 | Gene expression changes across time and disease states in IC. (a) Integrative CCS (Factor 1). Normalized expression values of top 1% features 
in longitudinal comparison visualized within heatmap and weight of the features visualized as barplot, all samples included (n=128). (+/- indicates the direction of the 
feature factor weight).
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Extended Data Fig. 10 | Ligand–target interactions in IC. (a) Spearman 
correlations (|cor| ≥0.4) between ligand and target genes across all samples 
(n=128). Target genes selected as top 1% of features with negative feature weight 
on Integrative CCS (Factor 1). Ligands selected based on minimum regulatory 
potential score of 0.0012 on those targets according to the NicheNet Model 
(corresponding to 97% quantile of regulatory potential score). Interactions 
mentioned in the main text highlighted by darker color. (b) Spearman 

correlations (|cor| ≥0.4) between ligand and target genes across all samples 
(n=128). Target genes selected as top 1% of features with positive feature weight 
on Integrative CCS (Factor 1). Ligands selected based on minimum regulatory 
potential score of 0.0012 on those targets according to the NicheNet Model 
(corresponding to 97% quantile of regulatory potential score). Interactions 
mentioned in the main text highlighted by darker color.
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