
REVIEW

Recent advances in understanding apicomplexan parasites 

[version 1; peer review: 2 approved]
Frank Seeber1, Svenja Steinfelder2

1FG16: Mycotic and parasitic agents and mycobacteria, Robert Koch-Institute, Berlin, Germany 
2Institute of Immunology, Center of Infection Medicine, Free University Berlin, Berlin, Germany 

First published: 14 Jun 2016, 5(F1000 Faculty Rev):1369  
https://doi.org/10.12688/f1000research.7924.1
Latest published: 14 Jun 2016, 5(F1000 Faculty Rev):1369  
https://doi.org/10.12688/f1000research.7924.1

v1

 
Abstract 
Intracellular single-celled parasites belonging to the large phylum 
Apicomplexa are amongst the most prevalent and morbidity-causing 
pathogens worldwide. In this review, we highlight a few of the many 
recent advances in the field that helped to clarify some important 
aspects of their fascinating biology and interaction with their hosts. 
Plasmodium falciparum causes malaria, and thus the recent 
emergence of resistance against the currently used drug 
combinations based on artemisinin has been of major interest for the 
scientific community. It resulted in great advances in understanding 
the resistance mechanisms that can hopefully be translated into 
altered future drug regimens. Apicomplexa are also experts in host 
cell manipulation and immune evasion. Toxoplasma gondii and 
Theileria sp., besides Plasmodium sp., are species that secrete effector 
molecules into the host cell to reach this aim. The underlying 
molecular mechanisms for how these proteins are trafficked to the 
host cytosol (T. gondii and Plasmodium) and how a secreted protein 
can immortalize the host cell (Theileria sp.) have been illuminated 
recently. Moreover, how such secreted proteins affect the host innate 
immune responses against T. gondii and the liver stages of 
Plasmodium has also been unraveled at the genetic and molecular 
level, leading to unexpected insights. 
Methodological advances in metabolomics and molecular biology 
have been instrumental to solving some fundamental puzzles of 
mitochondrial carbon metabolism in Apicomplexa. Also, for the first 
time, the generation of stably transfected Cryptosporidium parasites 
was achieved, which opens up a wide variety of experimental 
possibilities for this understudied, important apicomplexan pathogen.
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Introduction
Apicomplexa comprise a large phylum of single-celled, obligate 
intracellular protozoan organisms that all have a parasitic lifestyle. 
Among the more than 6000 named and probably more than one 
million unnamed species1 are some of great public health and 
economic relevance, since they cause severe diseases in humans 
and livestock, affecting millions each year2–6. Therefore, increased 
knowledge about their biology in general, e.g. to exploit vulner-
abilities, and their interaction with the host organism, e.g. to 
stimulate the immune system, is of great importance and prom-
ises major benefits in understanding and combating the diseases 
they cause. In addition, they possess a fascinating biology as 
intracellular eukaryotes thriving within another eukaryotic cell  
(Figure 1), which clearly sets them apart from other pathogens like 
bacteria and viruses. Taken together, these are all good reasons to 
pay attention to these fascinating organisms. This review will focus 
on four important genera.

Plasmodium falciparum and four other Plasmodium species that 
affect humans cause malaria, a mosquito-transmitted, poten-
tially deadly disease. According to the latest data from the World 
Health Organization (WHO), the number of deaths due to malaria 
has declined by 48% between 2000 and 2015 but the disease still 
causes the loss of ca. 438,000 lives each year of the 218 million 
people infected, mostly children under 5 years of age5.

An estimated one-third of the human population is chronically 
infected with Toxoplasma gondii leading to toxoplasmosis. It can 
cause severe symptoms in newborns (e.g. encephalitis and ocular 
disease) when a previously non-infected mother contracts the  
infection during pregnancy by ingesting infectious stages  
of T. gondii via contaminated food, water, or dust7. The latest 
numbers from WHO rank toxoplasmosis highest with respect  
to the overall lifelong disease burden among those foodborne  
diseases caused by protozoan parasites8.

The same study identified cryptosporidiosis (caused by two 
Cryptosporidium species, Cryptosporidium hominis and Crypt-
osporidium parvum) as the second most important disease in 
this class. Worldwide, each of these species infects 8–10 million  
people per year, but in addition they also cause considerable  
disease in livestock.

Lastly, Theileria parva, a tick-transmitted apicomplexan of rumi-
nants, leads to the death of more than 1 million cattle per year 
in sub-Saharan Africa, causing costs of >300 million US$. This  
has severe socio-economic consequences for those regions4.

T. gondii, and to a lesser extent Plasmodium sp., has also gained 
increased attention from cell biologists owing to a number of 
unique mechanisms of host cell entry, division, motility, etc., 

Figure 1. Morphology of intracellular Toxoplasma gondii tachyzoites. Transmission electron micrograph of the intracellular Toxoplasma 
gondii tachyzoite stage as one example of Apicomplexa. Shown are parasites inside an infected fibroblast host cell, residing within a 
parasitophorous vacuole (PV), which is surrounded by a membrane (parasitophorous vacuolar membrane, PVM, in blue) (left). On the right, 
some host and parasite organelles are outlined. The apicoplast is a plastid-derived organelle harboring some essential metabolic pathways. 
Micronemes are specialized secretory organelles at the apical end that store proteins important for gliding motility and host cell invasion130. 
The role of dense granules and rhoptries are detailed in the text. This basic organellar setup is shared with Plasmodium sp.
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thereby becoming model organisms for such aspects9. Both medi-
cal importance and model character are reflected by the overall  
citations in PubMed (several thousands from January 2013– 
December 2015 for the four taxa), making it impossible to cover 
even the most interesting discoveries of the last 2–3 years in all 
areas of apicomplexan research in reasonable depth. Consequently, 
only a few, admittedly subjective highlights in the fields of cell 
and molecular biology, biochemistry, and immunology as well 
as aspects concerning drugs will be mentioned here. These were 
selected because they are expected to make a major impact in the 
following years or offer explanations for puzzling unexplained 
observations in apicomplexan biology.

Methodological advances as game-changers
Many new findings require new technologies at first, and with 
the advent of next-generation sequencing (NGS) techniques10, 
the number and quality of apicomplexan genome sequences 
and respective transcriptomes have been growing considerably, 
allowing insights and discoveries that would have been hard or 
impossible to gain a few years ago11–13. The genetic tools are most 
advanced for T. gondii and Plasmodium, and further specifics can 
be found in recent articles14–17. Moreover, the Clustered Regu-
larly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-
associated protein 9 (Cas9) genome editing system18 and related 
techniques started a wave in 201219,20 that swept over the life sci-
ences and since then has also reached the Apicomplexa. It has 
allowed targeted deletions, mutations, or gene additions so far in 
Plasmodium, T. gondii, and Cryptosporidium with unprecedented 
ease21–25, as will be illustrated here for the latter.

Cryptosporidium sp. have some unique biological aspects within  
the phylum, which are of great evolutionary interest, like the pres-
ence of only a rudimentary mitochondrion (mitosome) or the 
absence of the secondary plastid called apicoplast26,27. However, 
the lack of protocols for efficient long-term propagation in cell cul-
ture, reverse genetics, and thus methods to mark the parasites with  
fluorescent proteins has long precluded a broader analysis of many 
of those aspects. Application of CRISPR/Cas9, together with a 
number of smart optimizations of established techniques, plus the 
transfer of transfected parasites directly into the intestine of immune-
deficient mice and their subsequent selection therein, changed the 
game22. This allowed for the first time the establishment of stably 
transfected C. parvum parasites and opens up a whole variety of 
options. For example, parasites expressing a reporter enzyme like 
luciferase will enable comprehensive drug screening efforts, allow-
ing the tackling of an urgent need. Likewise, generation of geneti-
cally attenuated parasites by multi-gene deletions can be envisaged 
as a means to develop oral vaccines for livestock (or even humans). 
Effective vaccines for the former would minimize the contamina-
tion of the environment with excreted infectious oocysts. Finally, 
many fascinating cell biological aspects can now be followed and 
analyzed using fluorescent sporozoites.

All about artemisinin in a nutshell: biotechnological 
production, mode of action, and the emergence and 
nature of Plasmodium drug resistance
In 2015, the Nobel Prize in Physiology or Medicine was in part 
awarded to Chinese scientist Youyou Tu for her major contributions 

to the discovery of artemisinin in the 1970s28,29. It is the ingredi-
ent of a traditional Chinese herbal anti-malarial treatment that, 
when metabolized in situ to dihydroartemisinin, very efficiently 
kills Plasmodium sp.. Artemisinin combination therapies (ACTs) 
are currently the drugs of choice and recommended by WHO for 
treating P. falciparum infections worldwide, largely because drug 
resistance against other available compounds precludes their  
further use in many areas of Africa and South-East Asia (SEA)30. 
ACTs consist of fast-acting artemisinin (or its derivatives) and  
less-potent, long-acting partner drugs. Artemisinin’s mode of action 
is unique in the sense that not a single protein or cell component 
but a multitude of parasite molecules are targeted by the com-
pound via the generation of highly reactive endoperoxide-derived 
radicals31. These affect at least 124 parasites but few, if any, host pro-
teins (at the level of currently applied experimental resolution), as a 
recent study reported32. This probably leads to the observed cellular 
stress response and increased molecular tagging of the affected pro-
teins for disposal by the “cellular garbage can”, the proteasome33. 
Many of these proteins are known or suspected to be essential for par-
asite growth, and their concerted damage by an unselective mech-
anism like oxidative damage could be expected to make it fairly 
difficult for the parasite to develop resistance (see below).

Only one plant is known to produce artemisinin, Artemisia annua L.,  
and extraction yields do not exceed 0.5%. Therefore, the molecular 
deciphering of its biosynthesis34 and the subsequent biotechnologi-
cal production of artemisinic acid, the key precursor from which 
artemisinin and other derivatives can be derived by straightfor-
ward chemical synthesis, was a major breakthrough35,36. The genes 
required for this pathway were engineered into a yeast strain that 
can now produce artemisinic acid with a yield of 25 g/L of fer-
mentation broth36. Notably, although developed by a company, all  
intellectual property rights have been provided free of charge.

Unfortunately, this success story has recently been dampened by 
the emergence (again!) of resistance phenotypes in SEA37,38. Resist-
ance is defined as a parasite clearance half-life of at least 5 hours 
following ACT treatment, whereas non-resistant Plasmodium para-
sites are all killed earlier. The problem lies in the fact that delayed 
clearance (parasites are still killed, but slower) exposes the surviv-
ing organisms to the second drug in ACT, increasing the chance that 
resistance to this partner compound develops. Clearly, understand-
ing the mechanism of artemisinin resistance is of utmost importance 
to be able to counteract and change drug regimens or composition.

Here, NGS and related techniques come into play. Sequencing 
resistant P. falciparum isolates directly from patients, a number of 
recent studies provided solid evidence for multiple mutations in 
a gene called kelch13 (K13), which are associated with increased 
resistance39–42. Transcriptomics identified an additional protein 
presumably involved, phosphatidylinositol-3 kinase (PI3K)43 (for 
details, see Figure 2).

Another transcriptomics study of 1000 (!) clinical P. falciparum 
isolates provided evidence that a population of parasites exists 
that is slowed down in growth and shows an upregulated so-called 
“unfolded protein response” pathway44. This might allow parasites 
to repair proteins that were oxidatively damaged by artemisinin’s 
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mode of action (see above) and progress through the rest of their 
lifecycle in red blood cells. The reduced growth would give them 
more time to do so. Puzzlingly, this report found no associa-
tion between PI3K transcript levels and either parasite clearance  
half-life or K13 mutations. Evidently, more efforts are required to 
reconcile all the observations and to fully understand resistance 
development. Nevertheless, in a very short time, from the initial 
observation of delayed clearance times of ACT in SEA to the 
current studies, immense progress has been made in understanding 
the obviously very complex artemisinin resistance mechanism(s). 
Technological breakthroughs were just there at the right time to 
face this challenge.

Mitochondrial metabolism – similar but still 
significantly different
Condensing parasitism to the meaning of the Greek word 
παράσιτος (parásitos; person who eats at someone else’s table), 
and regarding biochemistry as the underlying science to reveal 
this eating behavior, there is an obvious and long-standing inter-
est in understanding apicomplexan metabolism, not least because 

enzymes can make good drug targets45. Again, technological 
advances in the field of metabolomics, together with gene knock-
outs, have greatly helped finding some answers to who eats what, 
when, and how.

Mitochondrial carbon metabolism in Apicomplexa is central to 
the generation of energy and several precursors of other pathways 
that occur outside the organelle, like pyrimidine and heme bio-
synthesis46–49. One fundamental energy-generating system in most 
eukaryotes is the tricarboxylic acid (TCA) cycle in this organelle. 
It leads to complete oxidation of carbohydrates, lipids, and amino 
acids, thus allowing much greater ATP generation through the 
electron transport chain (ETC) than e.g. breakdown of glucose 
via glycolysis. T. gondii and Plasmodium sp. can get along with 
an energy supply derived only from glycolysis as long as they 
are living in glucose-rich environments. In fact, most (but not all) 
TCA cycle enzymes in P. falciparum could be knocked out with 
only little influence on the blood stage forms50. Nevertheless, for 
a number of reasons, it seemed that a TCA cycle and ETC were 
operating in both organisms. For instance, several recent studies50–55 

Figure 2. Proposed artemisinin-resistance mechanisms. In wild-type (wt) parasites, binding of K13 (blue, based on 10.2210/pdb4yy8/pdb) 
to an as-yet-unknown transcription factor (TF, red) usually leads to the tagging of TF with ubiquitin, followed by its subsequent degradation 
via the proteasome (a). This regulatory mechanism is abolished when mutated K13 is no longer able to bind efficiently to TF, thereby 
preventing ubiquitin tagging and subsequent proteasomal degradation (b). This results in increased transcription of genes and production of 
the corresponding proteins involved in antioxidant defense. Their activity allows counteracting the oxidative damage brought upon them by 
artemisinin. In an alternative model43, the low phosphatidylinositol-3-phosphate (PI3P) levels usually found in artemisinin-sensitive parasites 
is maintained by K13 binding to its kinase phosphatidylinositol-3-kinase (PI3PK, blue), its ubiquitination (similar to TF) and subsequent 
degradation (a). Loss of this regulation leads to increased PI3PK levels, followed by a buildup of PI3P (c). Higher levels are presumably 
responsible for parasite growth in the schizont stage via promoting membrane biogenesis and fusion events during parasite growth. In 
addition, artemisinin combination therapy (ACT) is able to directly inhibit PI3PK. Both mechanisms could also benefit from the observed 
slowed-down growth and upregulation of the unfolded protein response pathway44, giving treated parasites more time to repair damaged 
proteins before they progress through the rest of their lifecycle in red blood cells. Figure adapted from 37.
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have shown that the development of Plasmodium berghei (a rodent 
model for P. falciparum) in the mosquito is not possible without a 
functional TCA cycle or ETC (summarized in 47). These studies 
have highlighted the great flexibility of both Plasmodium sp. and  
T. gondii with regard to substrate utilization and adaptation of  
carbon metabolism to different host environments.

However, an unresolved mystery was the experimentally well-
proven absence of a key enzyme complex, pyruvate dehydrogenase 
(PDH), in the mitochondrion of Apicomplexa that would allow these 
organisms to feed glucose-derived pyruvate into the TCA cycle47,48 
(Figure 3a). This longstanding conundrum has now been solved, 
and it could be shown that a structurally related mitochondrial 
enzyme complex, branched-chain alpha-ketoacid dehydrogenase 
(BCKDH) usually involved in the degradation of branched-chain 
amino acids (BCAAs), has evolved to also take over the PDH task, 
generating acetyl-CoA from pyruvate51 (Figure 3a). Since pyruvate 
and the usual substrates for BCKDH are structurally quite similar 
(Figure 3b), it is likely that only few (so far unknown) mutations 
were necessary to acquire the required substrate specificity. It is an 

illuminating example that holes in metabolic pathways predicted 
from genome data are not necessarily an annotation problem but 
can reflect evolutionary processes of reductive evolution46,48.

Reductive evolution aims to reduce the considerable metabolic 
burden of gene and protein synthesis when the function of lost 
genes can be fulfilled otherwise56,57. Importantly, in this case, para-
sitism wasn’t the driving force, since free-living dinoflagellates 
that share a common ancestor with Apicomplexa are also devoid 
of a mitochondrial PDH but possess BCKDH46. Interestingly, while  
Plasmodium sp. have lost the entire BCAA degradation pathway 
of enzymes operating before and after BCKDH46,48, thus saving 
even more on gene and protein synthesis, T. gondii as well as non- 
parasitic photosynthetic algae related to Apicomplexa have kept it58. 

Understanding apicomplexan host cell manipulation – it 
all depends on protein export
One of the most fascinating aspects of the biology of Apicomplexa 
in general is their remarkable capacity to manipulate their respec-
tive host cells to suit their own demands. This causes changes in 

Figure 3. Feeding of the mitochondrial carbon metabolism. a) Current model of how the tricarboxylic acid (TCA) cycle is fed with substrates 
in both Toxoplasma gondii (blue) and Plasmodium berghei (red; in common with T. gondii) and converted to acetyl-CoA. The latter then enters 
the TCA cycle. BCAA degradation in T. gondii can lead to toxic propionyl-CoA, which could be detoxified by the 2-methylcitrate (MC) cycle. 
Its physiological importance for the different T. gondii stages is currently ill defined, as both BCAA degradation and MC cycle are dispensable 
in tachyzoites131. Abbreviations: α-KG, α-ketoglutarate; BCAT, branched-chain amino acid transferase; BCKDH, branched-chain keto acid 
dehydrogenase; Fum, fumarate; Cit, citrate; iCit, isocitrate; Mal, malate; OAA, oxaloacetic acid; PEP, phosphoenolpyruvate; Suc, succinate. 
Figure adapted and redrawn from 51. b) Structural similarities of substrates for pyruvate dehydrogenase (PDH) and branched-chain keto acid 
dehydrogenase (BCKDH), respectively. The framed reaction scheme illustrates the overall generation of CoA compounds and CO2 from the 
substrates catalyzed by the two enzymes.

a) b)
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host cell signaling, nutrient delivery to the parasite, and evasion 
of host immunity59–62. Amongst the many strategies leading to  
this outcome, unique examples are provided by T. parva and  
Theileria annulata.

Both species have the ability to immortalize (transform) their host 
cells, which resembles in many aspects cancerous cell transforma-
tion. T. parva transforms bovine B and T lymphocytes, whereas 
T. annulata, besides B cells, also transforms macrophages and 
dendritic cells63. Activation of the c-Jun pathway, a signaling 
cascade involved in controlling many cellular processes includ-
ing proliferation64, has been shown previously to be required for  
Theileria-induced transformation65,66. However, how this is  
accomplished at the molecular level has long been elusive.

Now, Marsolier et al.67 have reported the identification of a parasite- 
encoded enzyme called peptidyl-prolyl isomerase (PPIase), a 
homologue of human parvulin (hPIN1), as the transforming agent. 
Upon export into the host cell, the Theileria PPIase, like the human 
homolog, binds to a host protein (an ubiquitin ligase that controls 
the levels of c-Jun), leading to its destabilization and subsequent 
degradation. This in turn results in higher levels of c-Jun and even-
tually leads to cell transformation. These surprising findings go 
beyond parasite biology, as they also define prolyl-isomerization as 
a conserved mechanism that is important in cancer development.

T. gondii, amongst other Apicomplexa, is also a known expert in 
manipulation of the host cell at various levels via the secretion 
upon host cell entry of effector proteins68,69, the number of which 
(currently around 8058) is still increasing70–72. The so-called rhoptry 
proteins (ROPs) are injected into the host cell cytosol during the 
actual invasion process via special organelles called rhoptries73. A 
number of so-called GRA proteins derive from other organelles, 
the dense granules, and are delivered into the host cytosol after the 
parasite has formed its vacuole wherein it resides74. Consequently, 
and in contrast to the ROPs, their mechanism of trafficking must 
include a way to pass this membrane structure. This aspect recently 
gained increased attention75.

Precedence for this transport pathway came from the one that had 
been described for erythrocytic stages of Plasmodium. There, one 
molecular entity in the vacuolar membrane named “Plasmodium 
translocon of exported proteins” (PTEX) was recently described, 
which transports many parasite proteins into the cytosol of the red 
blood cell76–79. Delivery to PTEX depends in turn on prior export 
of proteins out of the parasite cell into the vacuolar space, which 
requires cleavage by a specific protease (plasmepsin 5) at a particu-
lar sequence motif called “Plasmodium export element” (PEXEL)79. 
This PEXEL motif allows the identification of many but not all  
proteins that are to be exported into the host cytosol80.

It made sense to also look for such a motif in T. gondii – and it was 
found for numerous known GRA proteins75. Now, several groups 
recently reported the importance of export of T. gondii aspartyl 
protease ASP5 (the homolog to plasmepsin 5 in Plasmodium), 
which resides in the parasite’s Golgi and processes those GRA 
proteins containing the PEXEL-like motif70,72,81. However, not all 

GRAs that depend on ASP5 for export contain a PEXEL-like motif.  
In Plasmodium, plasmepsin 5 is an essential gene already under 
in vitro growth conditions. This fact allowed the development of 
a very potent inhibitor of this crucial enzyme and that was subse-
quently used for structural studies82. In contrast, T. gondii parasites 
with a deleted ASP5 grow fine in cell culture but are much less 
virulent in a mouse model than the highly virulent parental strain. 
The very same phenotype has been described for a knockout strain 
of the ASP5-processed GRA1483. Together, this indicates the cru-
cial importance of a repertoire of exported proteins during a natural 
infection. One reason for this might be the observed reduced migra-
tion of infected dendritic cells (which are known to be misused by 
T. gondii as Trojan horses to reach the brain84), thereby lowering 
the dissemination within the host72. Interestingly, this disparate phe-
notype upon gene deletion of in vitro and in vivo growth, together 
with a severe impact on protein export into the host, is shared 
with another recently reported T. gondii parasitophorous vacuolar 
membrane (PVM)-resident protein, Myc regulation 1 (MYR1)85. 
Whether MYR1 is part of the T. gondii “translocon of exported 
proteins” needs to be determined, since e.g. Plasmodium sp. lack 
a homolog of MYR1. In addition, a T. gondii homolog of the puta-
tive PTEX pore protein EXP286, GRA17, is involved in the trans-
location of only small molecules through the PVM but apparently 
not of proteins87. This indicates that both species use very different 
molecular complexes for protein export into the host cell.

Another distinctive difference to Plasmodium sp. is that in the 
absence of ASP5, certain GRA proteins fail to be exported into the 
host’s cytosol and then further on into its nucleus. Here, they cause 
large disturbances in the transcriptome of the infected cell70,72.  
Plasmodium sporozoites, the stage that infects hepatocytes, appar-
ently do not possess dense granules61. Nevertheless, large transcrip-
tomic changes in liver cells occur upon infection88. Apparently, in 
both parasite species different effectors accomplish similar things, 
i.e. they modify their host cells to optimize their own survival 
therein.

The T. gondii studies further indicate that many more exported 
effector proteins besides the known ROPs and GRAs need to be 
identified to fully understand the ways this parasite manipulates 
its host cell. The ASP5 mutants will be a valuable source in this 
respect. More studies will be required to understand the details and 
evolution of this crucial mechanism in the Apicomplexa89.

Innate immune defense always starts at the host-
parasite interface
Innate immune responses are the immediate answer to an  
infection. They are triggered by the recognition of pathogen-
derived molecules via evolutionarily conserved host receptors90. In 
the last two decades, numerous studies found that innate sensing 
of apicomplexan infection is mediated by membrane-bound and 
cytoplasmic so-called pathogen recognition receptors (PRRs) such 
as Toll-like receptors (TLRs) and Nod-like receptors (NLRs)91,92. 
Early sensing of infection by these pathways in antigen- 
presenting cells bridges the innate and adaptive immune responses 
by licensing them to interact with naïve, antigen-specific CD4+ and 
CD8+ T cells to stimulate them to become effector cells capable of  
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producing cytokines and/or cytotoxic molecules. Efficient control 
of T. gondii and Plasmodium sp. infections is mediated by T and  
NK cell-derived interferon-gamma (IFN-γ)93,94. This cytokine 
triggers the activation of very diverse effector pathways, e.g. NO  
production in infected host cells95 or induction of immunity-
related GTPase (IRG) proteins (a family of rodent IFN-γ-induced 
GTPases) or GBP proteins (IFNγ-inducible guanylate-binding  
proteins) that damage the PVM (Figure 1), thereby mediating 
parasite death96–101. Recent studies emphasized the importance of 
GBP1100, GBP2101, and the cooperation of IRGs with GBPs99 in  
cell-autonomous immunity and anti-parasitic resistance.

While the effects of IRGs on T. gondii in infected mice were known 
for some time, it became only recently apparent that laboratory 
mice and wild Mus musculus show enormous sequence diver-
sity in particular genes of this family, with great and unexpected 
consequences for infection102. For decades, T. gondii strains were 
defined as being highly virulent in various strains of common labo-
ratory mice because even a single parasite could kill them within 
days. Unexpectedly, those strains totally failed to reproduce this  
phenotype in wild mice. This is largely due to a highly polymor-
phic IRG allele that confers resistance against virulent parasites 
by interfering with their virulence factors of the ROP family of  
protein kinases102. The study is a striking example that lab mice 
and their wild counterparts can show very different responses to  
identical immunological challenges.

Protective immunity against T. gondii is governed by an  
IL-12-triggered Th1-type immune response, which involves NK 
cells, CD4+ effector cells, and CD8+ cytotoxic T cells as sources 
of IFN-γ93. In order to induce its production by these cells, the 
innate arm of the immune system needs to sense the infection and  
relay this information into IL-12 production as an igniting factor for 
the ensuing Th1 response. Control of the infection is dependent on 
MYD88103, an adaptor molecule common to several TLRs, and the 
parasite-derived TLR-ligand T. gondii profilin (TgPRF). The latter 
binds TLR11, which triggers a signaling cascade that stimulates  
IL-12 production by dendritic cells59,104. However, TLR11 defi-
ciency only modestly affects the survival of T. gondii-infected mice. 
Only recently was TLR12 shown to be involved in host resistance 
to T. gondii by recognizing TgPRF105 and cooperating with TLR11  
to induce IL-12 in macrophages and dendritic cells106.

Other studies demonstrate the involvement of additional pathogen- 
derived molecules and PRRs in starting an immune response 
by contributing to the stimulation of IL-12 production. A recent 
study employed mice carrying a mutation in UNC93B1, a mol-
ecule involved in subcellular trafficking of endosomal TLRs107. 
These mice are highly susceptible to experimental toxoplasmo-
sis and their phenotype is not recapitulated by mice deficient in 
nucleic acid sensing (TLR3-/TLR7-/TLR9-deficient) but rather by 
mice deficient in TLR7/TLR9 and TLR11, highlighting the redun-
dancy of pathogen recognition in those animals108 (Figure 4a). 
Humans lack TLR12 and harbor TLR11 as a pseudogene but pro-
duce high levels of pro-inflammatory cytokines in response to live  

phagocytosed parasites and parasite RNA and DNA. Thus,  
nucleic-acid-sensing TLRs seem to be the PRR operating in 
both hosts108,109, while recognition of TgPRF by the TLR11/12  
pathway is most likely an adaptation of rodents being a major  
intermediate host for T. gondii109.

In contrast to T. gondii, which can infect virtually any nucleated cell, 
Plasmodium sp. are restricted to infecting hepatocytes and erythro-
cytes. Upon injection of Plasmodium sporozoites by the mosquito 
vector into the skin of the host, they first migrate to the liver and 
invade hepatocytes where they massively replicate. Early work on 
innate sensing of Plasmodium revealed that hemozoin-containing 
parasite DNA is recognized by TLR9 and mediates proinflamma-
tory cytokine production by dendritic cells110, but little was known 
about the hepatic immune response. Strikingly, and in stark con-
trast to the erythrocytic cycle, which causes the well-known malaria 
symptoms like recurrent fever, this initial contact between the 
parasite and its host cell is without clinical signs. This could be 
taken as evidence for an immunologically silent hepatic stage of 
the infection. However, recently it was shown that hepatocytes 
do respond to P. berghei sporozoite invasion with induction of a 
type I IFN response. Parasitemia in liver and red blood cells was 
increased and leucocyte recruitment was decreased in type I IFN 
receptor-deficient (Ifnar-/-) mice, highlighting the important role of 
type I IFN at this early phase of infection111. The authors proposed 
a mechanism involving sensing of Plasmodium RNA by the cyto-
plasmic RNA receptor Mda5 and signaling via the mitochondrial 
antiviral signaling protein (Mavs) and the transcription factors Irf3 
and Irf7, finally leading to transcription of IFN-α and IFN-β 
(Figure 4b). A potential link among IFN-α, cell recruitment, and 
parasite elimination could be IFN-γ-secreting NK T cells, sug-
gested by a recent study using the related species Plasmodium 
yoelii112. However, a successful immune response often comes at 
a price, since a type I IFN response also causes malaria-associated 
immunopathology, such as liver damage and brain pathology113,114.

Outlook
Obviously, we could give only a subjective glimpse of the recent 
exciting developments in understanding apicomplexan biology. 
What will come next?

One can probably barely overestimate the impact that CRISPR/Cas9 
technology will have on Apicomplexa research. It is expected that 
genome-wide CRISPR/Cas9 gene knockouts, similar to what has 
been described for mammals115, will also be published soon for 
Apicomplexa (preliminary data have been reported already for  
T. gondii116). This will allow researchers to qualify genes as being 
either essential or not under different in situ conditions and to dis-
cover so far unknown phenotypes. For instance, parasites deficient 
in molecules known to target the innate immune system (but also 
knockdown of host PRRs, especially in primary human cells) will 
reveal pathways that are necessary for innate sensing and hence par-
asite control in rodents and humans and help to answer the question 
of whether actual infection, phagocytosis, or mere contact (“kiss 
and spit”) is required for CD4+ and CD8+ T cell responses.
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Moreover, microscopy-based genome-wide screens on CRISPR/
Cas9-generated knockouts or fluorescently tagged proteins can 
be envisaged to follow117. It would allow testing for function and  
localization of proteins that could not be achieved with this  
precision, speed, and coverage so far.

In particular, the less-studied stages (e.g. sexual stages within the 
mosquito [Plasmodium] or the cat [T. gondii]) will be of scientific 
interest. For the latter, establishing feline organoid cultures that 
would allow in vitro culture of the sexual stages will be crucial118. 
One of the most eminent questions in this respect is why does sex 
only take place in cats when this parasite is otherwise so extremely 
promiscuous in its host range? Together with the advent of  
modern metabolomics and gene knockouts, the answer to this and 
other questions might be within reach in the next few years.

Since Apicomplexa are pathogens, the development of new drugs 
and drug target candidates will of course remain a major driver for 
studying these parasites, and it is inevitable that there will be a big 
gain in understanding of the underlying molecular processes. Recent 

studies on crucial metabolic pathways for lipids119,120, sugars121, and 
isoprenoids122 have shown more potential metabolic vulnerabili-
ties of apicomplexan parasites. Moreover, a new class of highly 
active anti-malarial compounds has already been described123,124, 
and one of them, the spiroindolone KAE609, has shown very 
promising results in recent phase II clinical trials against uncom-
plicated malaria125–127. Although drug resistance in the laboratory 
has already been described for spiroindolones, knowledge about its 
reported mechanism123,128,129 will hopefully help in designing strate-
gies to pre-emptively delay the spread of resistance in nature once 
KAE609 has been brought onto the market. However, the race is 
bound to start all over again – winner currently unknown.
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