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A subset of neuroendocrine tumors (NETs) can cause an excessive secretion of

hormones, neuropeptides, and biogenic amines into the bloodstream. These so-

called functional NETs evoke a hormone-related disease and lead to several

different syndromes, depending on the factors released. One of the most

common functional syndromes, carcinoid syndrome, is characterized mainly

by over-secretion of serotonin. However, what distinguishes functional from

non-functional tumors on a molecular level remains unknown. Here, we

demonstrate that the expression of sortilin, a widely expressed transmembrane

receptor involved in intracellular protein sorting, is significantly increased in

functional compared to non-functional NETs and thus can be used as a

biomarker for functional NETs. Furthermore, using a cell line model of

functional NETs, as well as organoids, we demonstrate that inhibition of sortilin

reduces cellular serotonin concentrations and may therefore serve as a novel

therapeutic target to treat patients with carcinoid syndrome.
KEYWORDS

neuroendocrine tumors, functional syndrome, carcinoid syndrome, serotonin, sortilin,
organoids, enteroendocrine cells
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Introduction

Neuroendocrine tumors (NETs) are rare malignant neoplasms

that can occur as primary tumors in every organ but are most

frequently found in the gastroenteropancreatic (GEP) system.

NETs consist of cells displaying neuronal and endocrine

characteristics (1, 2). Since 1975, the age-adjusted incidence rate

of GEP-NETs in the US has increased by 6.4 times to 5.45 per

100,000 persons (3). In approximately one-third of cases, NETs

secrete excessive amounts of peptidic hormones and biogenic

amines into the circulation, resulting in a hormone-mediated

disease. These tumors are called “functional”. One of the most

common hormone-mediated disease is carcinoid syndrome,

caused primarily by over-secretion of serotonin, which occurs

in 32% of all small intestinal NETs (4). Metastatic grade small

intestinal NET patients suffering from this syndrome have

a significantly shorter median overall survival (4.7 years,

Confidence interval 4.0-5.4) than those without functional

syndrome (7.1 years, CI 5.2-8.1) (4, 5). It is widely accepted that

in order to cause carcinoid syndrome, cells need to evade the first-

pass effect of the liver (e.g., due to liver metastases, widespread

retroperitoneal metastases, ovarian metastases, or bronchial

primaries). However, morphologically it is not possible to

discriminate functional from non-functional tumors and

comparative molecular analyses have so far failed to reveal

obvious cellular markers of functional tumors. Identification of

specific features of functional cells may not only provide insights

into the tumor biology of NETs but also reveal novel and highly

needed therapeutic targets.

Sortilin, also known as neurotensin receptor 3, is a member of

the VPS10P domain receptor family - a group of transmembrane

receptors involved in uptake as well as intracellular sorting of a

broad range of protein ligands (6). Recent studies focusing on the

role of sortilin in cancer uncovered that this receptor is expressed in

many cancer cells, including breast and lung cancer. Its expression

has been associated with a variety of effects, ranging from pro-

tumorigenic to tumor-suppressive (7–9). Expression of sortilin was

also detected in NETs and linked to cell migration and adhesion

(10). Interestingly, only a fraction of tested NET samples was

positive for sortilin expression, raising the question of what

distinguishes sortilin-positive and sortilin-negative tumors. As

sortilin plays an important role in regulating secretion of

neurotrophins in neurons (11, 12), we hypothesized that this

receptor may be essential for the ability of NETs to produce and

secrete hormones and thereby serves as a key factor in the

development of functional syndrome.

In this study we aim to demonstrate that elevated sortilin

expression is a novel feature of hormonally active NETs. By

comparative sortilin-immunostaining we could indeed confirm

this hypothesis. Furthermore, we demonstrated that sortilin

inhibition causes reduced levels of serotonin in cell culture

systems. Thereby, sortilin serves as a novel potential target in

treatment of the functional syndrome of NETs.
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Methods

Neuroendocrine tumor tissue

Paraffin-embedded tissue of neuroendocrine tumor samples was

used for this study. The collection of tissue samples for this study was

approved by the Ethics Committee of the Charité - Universitätsmedizin

Berlin (No EA1/229/17). 1 mm punches with a thickness of 2 µm were

obtained and plated on tissue microarrays (TMA). For each sample, 3

replicates were taken. Tissue was rehydrated, antigen retrieval was

performed using 10 mM citrate buffer and incubated for 20 min in

Avidin/Biotin Blocking Solution (Dako, X0590). Slides were washed in

phosphate-buffered saline (PBS, Gibco) and incubated for 10 min in

0.1% Triton X-100 in PBS. After further washing steps, the tissue was

incubated overnight at 4°C with anti-sortilin antibody (1:100, af3154,

R&D systems). After repeated washing steps, tissue was incubated for

30 min at room temperature with a secondary biotin-linked anti-goat

antibody (1:300, Dako, E0466), followed by incubation with ABC

complex solution (Vector, PK-6100) for 30 min. After an additional

washing step with PBS, a DAB buffer solution (Dako, 3468) was

applied according to the manufacturer’s instruction until a color

change occurred (approx. 10 min) before stopping the reaction with

distilled H2O. Staining with hematoxylin was performed and tissue

embedded in glycerin-gelatine.

In total, 49 tumor samples [21 neuroendocrine primary tumors

(7 pancreatic NETs and 14 small intestinal NETs; of these 14

functional and 7 non-functional) and 28 liver metastases of

neuroendocrine tumors (10 pancreatic, 1 lung, 15 small intestinal,

and 2 NETs of unknown origin; of these, 16 functional and 12 non-

functional)] were included in this study. To exclude the possibility of

high hormonal secretion without symptoms in small intestinal NETs

due to the first-pass effect of the liver, only primary tumors that

caused hepatic metastases were included. Tissue was examined under

brightfield microscopy and immunoreactivity scores were obtained

by multiplication of the staining intensity (0, no staining; 1, weak

staining; 2, moderate staining; 3, strong staining) and the percentage

of positively stained cells (0, no positive cells; 1, 0%-10% positive; 2,

11%-50% positive; 3, 51%-100% positive). Each sample consisted of

three replicates and the final score for each sample was obtained by

averaging the immune reactivity scores of all three. Negative controls

without primary antibody were established for every sample.
Cell culture

BON cells, a kind gift from Courtney Townsend (University of

Texas, Galveston, TX), were cultured in RPMI 1640 medium

containing L-glutamine (Gibco) supplemented with 10% FBS at 37°C

with 5% CO2 in O2. During the exponential growth phase, cells were

treated with the sortilin inhibitor AF38469 (10 µM, MedChemExpress)

for 24 h. In order to exclude toxic effects, cell viability measurements

were performed. After 24 h incubation with 10 µMAF38469 or vehicle,

cells were harvested and counted using Countess II™ (Invitrogen).
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They were further treated with trypan blue (Invitrogen) and

alamarBlue™ (Thermo Fisher Scientific) to determine the percentage

of live cells and cell proliferation, respectively.
Western blot assay

NET tissue or BON cells were washed with PBS (Gibco), lysed

with RIPA buffer (Thermo Fischer Scientific) containing a protease

inhibitor cocktail (cOmplete™ Mini, Roche) and sonication (10s,

60% intensity). The proteins were separated by SDS-PAGE (10-12%

Tris-Glycin, WedgeWell™, Invitrogen) and transferred onto PVDF

membranes (Bio-Rad). After blocking with 5% nonfat dry milk, the

membranes were incubated with primary antibodies against sortilin

(1:250, AK BD#612101, Becton Dickenson) and a-tubulin (1:1000,

#T9026, Sigma) overnight at 4°C, followed by incubation with

secondary anti-mouse IgG antibody (1:10000, #AB_2340061,

Jackson Immuno Research) for 1 h at room temperature.

Detection was performed with SuperSignal™ West Dura

Extended Duration Substrate (Thermo Fisher Scientific) using the

Molecular Imager® VersaDoc™ and quantified with Image Lab™

software (Bio-Rad).
Primary mouse small intestinal
organoid culture

Experiments and animal maintenance were performed in

accordance with local (LaGeSo, Berlin, T-CH0032/20), national

(German Animal Welfare Act), and international guidelines (EU

Directive 2010/63/EU). Male 6 to 12-week-old C57BL/6 mice

obtained from Charles River Laboratory were used for this study.

For the generation of murine small intestinal organoids, animals were

sacrificed by cervical dislocation, the ileum was dissected, washed with

ice-cold PBS (Gibco), and opened longitudinally. The villi were gently

removed using a glass coverslip. 5 mm-long pieces were washed 10

times in ice-cold PBS, followed by incubation for 5 min in 10 mM

EDTA (Invitrogen)/PBS at room temperature and 30 min in 2 mM

EDTA/PBS supplemented with 2.5 µM DTT (Sigma) at 4°C on a

rotating shaker. After removing the supernatant, the pieces were

shaken vigorously with 5 ml HBSS containing magnesium and

calcium chloride (Gibco) and 10 ml PBS. The supernatant was

filtered through a 70 µm filter (Greiner Bio-One) and centrifuged at

200 x g for 3 min at 4°C. The pellet was resuspended with 3 ml 0.1%

BSA/PBS and the number of crypts determined. After a repeated

centrifugation step, 2,000 crypts per 10 µl Cultrex Basement

Membrane Extract Type 2 (R&D systems) were seeded in 48-well

plates. The organoids were cultured in Advanced Dulbecco’s Modified

Eagle’s Medium/F12 (Gibco) consisting of 10 mM HEPES (Gibco), 2

mM GlutaMAX (Gibco), and 10% penicillin/streptomycin (Gibco),

supplemented with 1.25 mM N-acetylcysteine (Sigma), 25% R-

spondin 1 conditioned medium, 1× B-27 (Gibco), 1× N2 (Gibco),

50 ng/ml mEGF (Invitrogen), and 100 ng/ml mNoggin (PeproTech).

The medium was replaced every 2-3 d and the organoids were

passaged mechanically after 5-7 d using a syringe and needle.
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EEC differentiation

Three days after passaging, ileal organoids were treated with the

above-described medium but without mEGF and supplemented

with a Notch inhibitor (10 µM DAPT, Sigma) and a MEK1 and 2

inhibitor (1 µM PD0325901, Sigma) for four days. To confirm the

enrichment of EECs, expression of the marker synaptophysin was

determined using immunofluorescence staining. Organoids were

harvested, washed with PBS, and fixed with 3.7% paraformaldehyde

overnight at 4°C, followed by incubation in 0.1% BSA/PBS for at

least 30 minutes. After embedding in 2% agarose, organoids were

dehydrated, embedded in paraffin, and cut into 4 µm sections.

Sections were deparaffinized and rehydrated, followed by antigen

retrieval in 10 mM citrate buffer (pH 6). To avoid unspecific

antibody binding, sections were incubated with blocking buffer

(0.1% Tween/PBS supplemented with 5% FBS) for 2 h at room

temperature, followed by incubation with the primary antibody

against synaptophysin (1:100, ab178412, clone EPR1097-2, Abcam)

overnight at 4°C. Sections were washed three times with 0.1%

Tween/PBS, incubated with the secondary antibody AlexaFluor

647 donkey anti-rabbit IgG (1:400, Jackson Immunoresearch,

711-606-152) and DAPI for 2 h at room temperature, mounted

by using an aqueous mounting medium and covered with a glass

cover slip.
Immunofluorescence staining of serotonin

For immunofluorescence staining of serotonin after sortilin

inhibition, 2,000 BON cells were trypsinized, seeded onto glass

slides, and fixed with methanol/acetone (1:1) for 2 min at room

temperature. After washing with PBS and blocking with 5% goat

serum in PBS (Biochrom) for 30 min at room temperature, the

cells were incubated with the primary antibody against serotonin

(1:400, #M0758, clone 5HT-H209, Dako) for 1 h at room

temperature. The cells were washed three times for 2 min with

PBS and incubated with Cy3-Goat anti-mouse IgG (1:1000,

Jackson Immuno Research, 111-225-144) for 30 min at room

temperature. After repeated washing with PBS, the cells were

incubated with ethanol for 2 min and mounted in Immu-Mount™

(#9990402, Epredia).

All immunofluorescence images were acquired with the

confocal laser scanning microscope TCS SP8 (Leica) or Observer

7 microscope (Zeiss). Images were collected and analyzed with Leica

Application Suite X 3.5.6.21594 (LAS X, Leica) and ZEN 3.4 (Zeiss).

Five images were collected per sample.
Serotonin quantification

For quantification of serotonin concentrations, BON

cells were treated with sortilin inhibitor AF38469 (10µM,

MedChemExpress) or vehicle for 24 h and cultured in serum-

free DMEM/HamsF12 (Biochrom), supplemented with 0.1% BSA

and 1% penicillin/streptomycin. After 24 h, the supernatant (200
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µl) was removed, precipitated with the HPLC lysis buffer

containing 1.68% perchloric acid and 0.1 mg/ml ascorbic acid

(both from Sigma-Aldrich) in H2O, and stored at -80°C. The cell

layer was harvested with 200 µl HPLC lysis buffer. After

centrifugation (20,000g for 20 minutes at 4°C), the supernatants

containing the cell lysates were stored at -80°C.

Murine ileal organoids were cultured and differentiated as

described above and treated without or with sortilin inhibitor

AF38469 (10 µM, MedChemExpress) for 96 h during EEC

differentiation. For the last 24 h of the experiment, organoids

were kept in serum-free DMEM/HamsF12 (Biochrom) instead of

Advanced Dulbecco’s Modified Eagle’s Medium/F12 without

HEPES and Glutamax. Afterwards, the medium was removed and

the organoids dissociated into single cells by incubating in TryplE

(Gibco) for 5 min at 37°C followed by washing in PBS/BSA. After

centrifugation, cells were counted and transferred to the HPLC lysis

buffer. After centrifugation (14,000 g for 20 min at 4°C) the

supernatants were stored at -80°C.

Serotonin measurements were performed using high-sensitive

reversed-phase high-performance liquid chromatography (HPLC)

with fluorometric detection as previously described (13). Briefly,

separation of samples was performed over a C18 reversed phase

column (LipoMare C18, AppliChrom, Oranienburg, and ProntoSIL

120 C18 SH, VDS Optilab, Berlin) in a 10 mM potassium phosphate

buffer (pH 5.0) (Sigma-Aldrich, Steinheim, Germany) including 5%

methanol (Roth, Karlsruhe, Germany) with a flow rate of 0.8-1.0

mL/min at 20°C. The excitation wavelength was 295 nm and the

fluorescent signal was measured at 345 nm. Analyses of peak

parameters of chromatographic spectra and quantification of

substance levels, based on comparative calculations with

alternately measured external standards, were performed by using

the CLASS-VP software (Shimadzu, Tokyo, Japan).
RNA isolation and quantitative reverse
transcriptase PCR

Total RNA from BON cells or EEC-enriched ileal organoids was

isolated with the NucleoSpin® RNA kit (Macherey-Nagel) according

to the manufacturer’s instructions. RNA concentration and purity were

determined with a NanoDrop™ OneC (Thermo Fisher Scientific).

cDNA synthesis was performed using the iScript™ cDNA Synthesis

Kit (Bio-Rad) and qRT-PCR performed using the PowerUp™ SYBR®

Green Master Mix (Thermo Fisher Scientific) on a QuantStudio™ 3

(Thermo Fisher Scientific). The qRT-PCR conditions were as follows:

42 cycles of 15s at 95°C, 15s at 58°C, and 30s at 72°C. Relative

quantification was calculated with the DD Ct method with human

hypoxanthine phosphoribosyltransferase 1 (HPRT1) and murin beta-

microglobulin (ßMgi) as reference genes (Table 1).
Statistical analysis

Data are presented as mean ± standard error of the mean

(SEM). Statistical analysis was performed using Student’s t-test
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when comparing pairs of means, one-way ANOVA with

Bonferoni’s Test when comparing more than two groups, and

Spearman correlation for correlation analyses of ordinal data (*p <

0.05; ** p < 0.01; *** p < 0.001) with the GraphPad Prism 8

software (GraphPad Software, Inc., La Jolla, USA). Additionally,

Welch’s correction was performed to compare the means

of immunoreactivity in functional vs. non-functional

NETs (Figure 1).
Results

Sortilin is a marker of functional NETs

First, we performed immunohistochemical analysis of a cohort

of 49 well-differentiated NET samples for sortilin expression. This

cohort was derived from 41 patients (22 male and 19 female,

median age 58.4 years) and included 14 intestinal and 7

pancreatic primary tumors as well as 28 hepatic metastases of 15

intestinal, 10 pancreatic, 1 lung, and 2 unknown primary tumors. Of

these, 30 tumors were functional and 19 non-functional. Staining

intensity was estimated by an immunoreactivity score as previously

described (10). We found high sortilin immunoreactivity in a

subpopulation of NETs. Expression did not correlate with tumor

site, sex, or Ki67 index (Supplementary Figures 1A-E). Interestingly,

sortilin expression was twice as high in tumors that caused

hormone-associated disease (Figures 1A, B). To exclude that the

difference was due to bias between primary tumors and metastases,

we performed a subgroup analysis of primary tumors only and

confirmed about two times higher expression in primary tumors of

patients with functional syndrome (Figure 1C). To further exclude

bias due to the tissue origin of the NETs, we re-analyzed the

subgroup of small intestinal tumors and again confirmed a

twofold higher sortilin expression in functional NETs.

(Figure 1D). The same result was observed for subgroup analysis

of liver metastases of all NETs (Figure 1E) and of liver metastases

from patients with small intestinal NETs only (Figure 1F). To

confirm these findings, we performed Western blot analysis of six

different liver metastases of small intestinal NETs and found higher

sortilin expression in functional tumors (Figure 1G). Thus, our data
TABLE 1 Primer sequences for gene expression analysis by qRT-PCR.

Target fw rv

hTPH1 TACTGGCGCCCGAG
TTTTAG

GCACAATGGTCCAG
GTCAGA

hHPRT1 CCCTGGCGTCGTGA
TTAGTG

CGAGCAAGACGTTC
AGTCCT

mSyn TTGGCTTCGTGA
AGGTGC

CTGCCGCACGTA
GCAAAG

mChga AGAAGTGTTTGAGAAC
CAGAGCCC

TTGGTGATTGGGTATTGG
TGGCTG

mßMgi TTCTGGTGCTTGTCTC
ACTGA

CAGTATGTTCGGCTTC
CCATTC
h, human; m, murine.
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indicate that high sorti l in expression is a marker of

functional NETs.

We also observed a moderate correlation between sortilin

expression and patient age. This effect was attributed to the
Frontiers in Endocrinology 05
lower age of patients with a functional syndrome in our cohort,

as no correlation with age was found when the analysis was

restricted to functional tumor samples only (Supplementary

Figures 1F-H).
B

C D

E F

G

A

FIGURE 1

Sortilin expression in functional and non-functional neuroendocrine tumors (NETs). Neuroendocrine primary tumor tissue sections (n=21) and liver
metastases of neuroendocrine tumors (n=28) were stained with an anti-sortilin antibody. Immunoreactivity scores (the product of staining intensity
(0, no staining; 1, weak staining; 2, moderate staining; 3, strong staining) and percentage of positive staining cells (0, no positive; 1, 0%-10% positive;
2, 11%-50% positive; 3, 51%-100% positive)) were compared between functional (f) and non-functional (nf) NETs. Representative image of a non-
functional (A) and a functional (B) liver metastasis of a small intestinal NET. (C-F) Immunoreactivity in functional and non-functional (C) primary NETs
(7 pancreatic NETs and 14 small intestinal NETs, 7 nf vs. 14 f) (D) well-differentiated small intestinal NETs (n=14, 4 nf vs. 10 f), (E) liver metastases of
NETs (10 pancreatic, 1 lung, 15 small intestinal and 2 NETs of unknown origin, 12 nf vs. 16 f), and (F) liver metastases of well-differentiated small
intestinal NETs (n=15, 4 nf vs. 11 f). (G) Sortilin expression analyzed by Western blot of 3 non-functional (nf) and 3 functional (f) liver metastases of
well-differentiated small intestinal NETs. **p<0.01, ***p<0.001.
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Sortilin inhibition decreases serotonin
production in functional NET cell cultures

To examine if sortilin is directly involved in hormone

production or secretion from NETs, we next analyzed the

functional consequences of sortilin inhibition. For this, we

focused on one of the most common functional syndromes,

carcinoid syndrome, which occurs mainly due to the

overproduction and secretion of serotonin (14). As a model

system, we used the serotonin-secreting neuroendocrine BON cell

line (15). Western blot analysis confirmed that these cells express

sortilin (Figure 2A), as reported previously (10). Next, BON cells

were cultured for 24 h in serotonin-free medium with or without

addition (10 µM) of the small molecule sortilin inhibitor AF38469

(16). Immunofluorescence labeling for serotonin revealed that cells

treated with the inhibitor contained less serotonin than untreated

control cells (Figure 2B: control, Figure 2C: 24h sortilin inhibition).

To quantify the results, we measured the serotonin content in cell

lysates (Figure 2D) using high-performance liquid chromatography

(HPLC). Compared to control cells, the cellular serotonin content

was 60% lower in cells treated with sortilin inhibitor (80.17 ± 11.58

vs. 31.5 ± 4.28 ng/ml). Reduced intracellular serotonin

concentration could be caused by reduced production or

increased metabolism or secretion. To rule out the latter
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possibility, we quantified serotonin concentrations in the cell

culture medium and could not detect any amount after sortilin

inhibition (Figure 2E). Furthermore, we quantified 5-

hydroxyindoleacetic acid (5-HIAA), the main metabolite of

serotonin, in the supernatant and found a 67% decrease of 5-

HIAA levels after sortilin inhibition indicating that an increased

metabolism of serotonin is not the reason for reduced cellular

serotonin concentrations (Supplementary Figure 2). To rule out

that the reduced serotonin production resulted from any toxic

effects of sortilin inhibition, we quantified the number of live cells

by using the trypan blue assay but did not observe any effects on

total cell number or the percent of live cells upon AF38469

treatment (Supplementary Figures 3A, B). Furthermore,

inhibition of sortilin did not affect cell proliferation, as shown by

the alamar blue proliferation assay (Supplementary Figure 3C).

To corroborate impaired serotonin production in cells treated

with sortilin inhibitor, we performed qPCR for tryptophan

hydroxylase 1 (TPH1), the key enzyme of serotonin synthesis. We

observed a significant reduction of TPH1 expression by

approximately 75% after 6 h and by approximately 60% after 8 h

of sortilin inhibition compared to untreated cells (Figure 2F). This

effect was restored after 24 h. In summary, sortilin inhibition leads

to impaired serotonin production through decreased expression

of TPH1.
B C

D E F

A

FIGURE 2

Impact of sortilin inhibition on serotonin content of NET cells. BON cells as a model of serotonin-expressing and -secreting NETs were treated for
24 h with the sortilin inhibitor AF38469 (10 µM). (A) Sortilin expression was analyzed by Western blot in BON cells (n=1). (B, C) BON cells stained for
serotonin (B) without and (C) with 24 h sortilin inhibition. (D) Quantification of serotonin in BON cell lysates with and without 24 h sortilin inhibition
(n=6 for each). (E) Quantification of serotonin in BON cell supernatants with and without 24 h sortilin inhibition (n=12 for each). (F) Relative TPH1
expression in relation to untreated BON cells 6, 8, and 24 h after addition of the sortilin inhibitor (n=3 for each). **p<0.01, ***p<0.001, n.s.,
not significant.
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Sortilin inhibition decreases serotonin
levels in differentiated
enteroendocrine organoids

Although it is unknown why some NETs are functional and

others non-functional, it is assumed that the basic mechanisms of

hormone production and secretion in NETs are similar to those in

healthy enteroendocrine cells (EECs), the suspected cell of origin of

NETs (17–20). Therefore, we used murine intestinal organoids to

assess the relevance of sortilin for hormone production and

secretion from EECs (21). As the proportion of EECs in intestinal

organoids is low, recapitulating the rare occurrence of EECs in vivo

(0.1-1%), we applied growth factors to the culture medium to

enrich organoids for EECs, as previously described (22, 23).

Immunostaining for synaptophysin and qPCR for synaptophysin

and chromogranin A confirmed enrichment of EECs (Figure 3A;

Supplementary Figures 4A, B). EEC-enriched organoids produced

sufficient amounts of serotonin to enable detection in pooled lysates

(Figure 3B, control). Next, we treated EEC-enriched organoids with

AF38469 for 4 days. After treatment, organoids showed a 25% lower

concentration of serotonin per cell when compared to control

conditions (Figure 3B, Sort Inh). This result indicates a role for

sortilin in serotonin production in enteroendocrine cells. However,

due to the small sample size of the treated group (n=2), additional

validation of the mechanism should be performed in further studies.
Discussion

In summary, we demonstrate that functional NETs express

twice as high levels of sortilin than non-functional NETs, making it

the first molecular marker of NET hormonal activity. Using cell

culture and EEC-enriched organoids we demonstrate that sortilin

inhibition leads to reduced serotonin levels. In BON cells, this was
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due to reduced serotonin synthesis, most likely through lower

TPH1 expression. How sortilin inhibition leads to reduced TPH1

expression remains unclear at present but may entail direct or

indirect molecular mechanisms, in line with the many activities of

this multifunctional receptor (24–28). Another limitation of the

current study is that we observed higher levels of sortilin expression

also in functional pancreatic NETs. It is important to note that the

functional syndrome of pancreatic NETs is generally not caused by

serotonin. Further investigation is needed to identify the way of

action in this condition.

In patients with carcinoid syndrome, the overproduction and

secretion of hormones, including serotonin, leads to symptoms

negatively influencing quality of life and, additionally, to a tumor-

independent shortening in overall survival (4, 5, 29). Besides

surgery, peptide radioreceptor therapy (PRRT) and local ablative

therapies, there are only limited pharmaceutical treatment options

available (29). These include somatostatin analogues, the TPH1

inhibitor Telotristat, which only has a strong effect in the treatment

of diarrhea (30, 31), and interferon alpha, which has a low

tolerability due to side effects (29). One reason for the limited

pharmaceutical treatment options is our limited understanding of

functional syndrome. Even the molecular reasons why some NETs

are functional and some are not remain to be identified. Here, we

report sortilin as a novel target for discriminating between

functional and non-functional NETs. Furthermore, sortilin is not

only a marker of functional NETs, it is also directly involved in the

synthesis of one of the main hormones released by functional NETs:

serotonin. As sortilin inhibition diminishes serotonin production,

receptor antagonists may represent a novel therapeutic strategy

for treating carcinoid syndrome. Sortilin is already an established

drug target for other diseases. AL001, an anti-sortilin antibody, has

currently reached a phase III study for treatment of frontotemporal

dementia (NCT04374136), and TH1902, a drug consisting of

docetaxel conjugated to a sortilin-targeting peptide, is currently
BA

FIGURE 3

Impact of sortilin inhibition on serotonin content of enteroendocrine-differentiated organoids. (A) Fluorescence micrograph showing representative
murine ileal organoids enriched for enteroendocrine cells (EECs). (B) Serotonin concentration per 1,000 cells in EEC-enriched organoids without
(control) and with sortilin inhibition using AF38469 (10µM) (n=3 for control (2 biological replicates) and n=2 for sortilin inhibition (1 biological
replicate), *p=0.048).
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being tested in a phase I study for treatment of several solid cancers

(NCT04706962). These drug candidates could be repurposed to

augment the landscape of pharmaceutical treatment options for

functional NETs. However, it should be noted that the current study

did not evaluate AL001 and TH1902.

In order to investigate themechanisms underlying human diseases,

models are indispensable. Especially for small intestinal NETs, which

cause the majority of carcinoid syndromes, appropriate models other

than cell lines are lacking (22). To our knowledge, there is only one

animal model of small intestinal NETs (32). However, this model on

RT2 background mice only showed tumor formation in 12 out of 30

mice and only 22% out of these tumors were serotonin-positive.

Although their ability to cause functional syndrome has not yet been

assessed, the small proportion of serotonin-positive tumors raises

doubts over the suitability of this model. Recently, attempts were

made to use patient-derived organoids as a model of small intestinal

NETs (33, 34), but have so far failed to model functional NETs. To our

knowledge, the only functional NET organoid model described was

developed by Kawasaki et al. (33), but consists of a gastrin-producing

organoid line from a gallbladder NET and thus does not model

carcinoid syndrome. Here, we used EEC-enriched normal intestinal

organoids to explore hormone production and secretion. These

organoids do indeed seem to be suitable as a surrogate model for

functional small intestinal NETs, as EECs are widely accepted as the cell

of origin of NETs and the mechanisms of hormone production do not

differ between EECs and NETs (17–20). Our finding that sortilin

inhibition causes decreased serotonin levels in these organoids

underpins its role in carcinoid syndrome of functional NETs and

makes it a novel potential target for treating this syndrome.
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