
Received: 19 September 2023. Revised: 11 March 2024. Accepted: 8 April 2024 
© The Author(s) 2024. Published by Oxford University Press on behalf of the International Society for Microbial Ecology. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which 
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 

ISME Communications, 2024, 4(1), ycae053

https://doi.org/10.1093/ismeco/ycae053
Advance access publication: 15 April 2024

Brief Communication

Aberrant microbiomes are associated with increased 
antibiotic resistance gene load in hybrid mice 
Víctor Hugo Jarquín-Díaz1,2,3,4,5, *, Susana Carolina Martins Ferreira5,6, Alice Balard2,5, L’udovít Ďureje7, Milos Macholán8, 
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Abstract 
Antibiotic resistance is a priority public health problem resulting from eco-evolutionary dynamics within microbial communities 
and their interaction at a mammalian host interface or geographical scale. The links between mammalian host genetics, bacterial 
gut community, and antimicrobial resistance gene (ARG) content must be better understood in natural populations inhabiting 
heterogeneous environments. Hybridization, the interbreeding of genetically divergent populations, influences different components 
of the gut microbial communities. However, its impact on bacterial traits such as antibiotic resistance is unknown. Here, we present 
that hybridization might shape bacterial communities and ARG occurrence. We used amplicon sequencing to study the gut microbiome 
and to predict ARG composition in natural populations of house mice (Mus musculus). We compared gastrointestinal bacterial and ARG 
diversity, composition, and abundance across a gradient of pure and hybrid genotypes in the European House Mouse Hybrid Zone. We 
observed an increased overall predicted richness of ARG in hybrid mice. We found bacteria–ARG interactions by their co-abundance 
and detected phenotypes of extreme abundances in hybrid mice at the level of specific bacterial taxa and ARGs, mainly multidrug 
resistance genes. Our work suggests that mammalian host genetic variation impacts the gut microbiome and chromosomal ARGs. 
However, it raises further questions on how the mammalian host genetics impact ARGs via microbiome dynamics or environmental 
covariates. 
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The rise of antibiotic-resistant bacteria and the evolution and 
spread of antimicrobial resistance genes (ARGs) are major global 
health concerns [1]. Indiscriminate antimicrobial use in clini-
cal and veterinary settings exacerbates the problem. Although 
wildlife’s role as a reservoir for zoonotic pathogens is established, 
their contribution to antimicrobial resistance spread is under-
studied [2]. The external environment, diet, and mammalian-host 
phylogeny shape the microbiomes of wildlife [3]. ARGs spread and 
evolve in nested environments within animal and bacterial host 
communities. However, whether these factors, especially host 

genetics, directly or indirectly impact ARGs in wildlife populations 
remains unclear. 

Rodents, particularly synanthropic house mice, carry and 
potentially disseminate ARGs [4]. House mice, with genetically 
diverse subspecies and microbiome variations [5, 6], are a 
suitable model to investigate the effects of host genetics and 
bacterial community composition on ARGs. Hybrids between 
these subspecies show much more extreme high or low infection 
loads of eukaryotic parasites [7, 8] and viruses [9] as well as the
composition of the microbiome [10] and fungi [11] than pure
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Figure 1. Antibiotic resistance and regulatory genes associated with ARGs in house mouse microbiome; (A) geographical distribution of collected 
house mice included in this study; the colon content microbiome was assessed for 493 house mice collected from two different transects, in 
northeastern Germany close to Berlin (Brandenburg, N =  441) and southeastern Germany close to the Czech border (Bavaria, N = 52), both along the 
HMHZ (schematized by the purple line); the map on the right-side of the panel indicates the approximate location of both transects along the hybrid 
zone (purple); each point represents a mouse; the scale in the x-axis indicates the genotype of the mouse (hybrid index: HI), ranging from pure M. m. 
domesticus (HI = 0.0, N = 79) to pure M. m. musculus (HI = 1.0, N = 23); (B) hybrid effect on ARG richness is independent of the transect; ARG richness 
predictions were compared across a gradient of Mus musculus genotypes (HI), ranging from 0 (pure M. m. domesticus, in  blue)  to  1  (pure  M. m. musculus, in  
red), to (i) test hybrid effect on alpha diversity and (ii) detect differences on alpha diversity between parental subspecies, transects or both; the 
richness of predicted ARGs increased towards the centre of the hybrid zone, supporting a hybrid (transgressive) effect on the richness of ARGs (Chao1 
index, LL = −1757.22, α= 0.371, padj = .0015); ARG content in the parental subspecies M. m. domesticus was richer than M. m. musculus parental 
subspecies (G test: χ2(2, 493) = 4.74, padj = .007); (C) house mouse network analysis on the co-abundance of ARG and bacterial ASV abundance; nodes 
correspond to ASVs or ARGs, and colours correspond to the annotated family or target drug class category; node size was scaled based on Kleinberg’s 
hub scores (hub centrality scores); the metric increases with the number of links a node has to other nodes and with the relevance in the structure of 
the network (higher if a node is connecting different clusters of the network); high hub centrality scores reflect higher influence of a node on other 
taxa and ARGs; edges are predicted interactions, green edges are positive and purple are negative, and edge thickness reflects association strength; 
bacterial nodes are circles, and ARGs are squared; in bold, ASVs and ARGs with the highest hub scores. 

subspecies, and are referred to as “transgressive phenotypes.” 
We studied the European House Mouse Hybrid zone (HMHZ), 
a semipermeable barrier between Mus musculus musculus and 
Mus musculus domesticus, to assess the impact of this barrier and 
hybridization on ARGs through microbiome selection. 

We analysed the colon content microbiome of 493 wild 
mice from 160 trapping localities in two different geographical 
transects across the HMHZ, one in northeastern Germany close 
to Berlin (Brandenburg, N =  441) and a second one in southeastern 
Germany close to the Czech border (Bavaria, N = 52) (Fig. 1A, 
Supplement 1). We found that neither locality nor year of col-
lection were significant predictors of the microbial composition 
(Beta diversity), while hybridicity explained a low but significant 

proportion of the overall microbial compositional variance 
while adjusting for the spatial effects of locality (Permutational 
multivariate analysis of variance (PERMANOVA), F = 1.38, df = 1, 
R2 = 0.003, P = .047) and geographic distance (Supplement 2). 
Differences in the microbiome of the subspecies and microbiome 
disruption in hybrids have been observed previously [10, 11]. 
This finding might reflect the association between bacteria and 
host genetics [12]. It also raises the question of whether the 
genetic differentiation of hosts and hybridization influences 
antibiotic resistance toward a human-relevant microbiome 
phenotype. 

To assess whether hybridization also affects the occurrence 
and abundance of ARGs, we predicted the ARGs content from
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Figure 2. Transgressive abundance patterns in central antimicrobial resistance genes and bacteria for community composition; ARGs and bacterial 
ASVs are listed in decreasing order based on Kleinberg’s hub centrality scores (gradient of hub centrality, left); the prevalence for ASVs and ARGs is 
represented in the x-axis; the hybrid effect on the abundance of bacteria, or ARGs (transgressiveness), is encoded in the size and colour, its direction in 
shape; most important (central) ARGs are transgressive, showing an increased abundance in hybrids and are multidrug resistance genes; P-values 
were adjusted for false discovery rate (FDR) employing the Benjamini–Hochberg procedure; FDR-values <0.001 = ∗∗∗, <0.01 = ∗∗, <0.05 = ∗. 

the bacterial chromosomal genome but not mobile genetic ele-
ments (e.g. plasmids) based on 16S rRNA gene amplicon data 
( Supplement 3) [13]. The ARG content included genes involved in 
antibiotic resistance phenotype and regulatory genes associated 
with ARGs. We found multidrug resistance proteins and multidrug 
efflux pumps to be the most prevalent ARG class, accounting for 
54.3% of the overall ARG content, followed by genes involved in 
beta-lactam alteration and inactivation (32.4%), resistance genes 
for phenicol (6.54%), macrolides (3.85%), and tetracycline (2.83%) 
antibiotics. The most abundant gene was acrA (16.02%), encoding 
a subunit of the multidrug efflux complex AcrA-AcrB-TolC. Other 
ARGs relevant to environmental surveillance [14], including blaR1, 
mdtK, catA, penP, and  tetM, had relative abundances of ∼2.5% each 
in our mouse host microbiome. 

Most strikingly, we observed a significant increase in the pre-
dicted ARG richness in hybrid mice (Log-Likelihood = −1757.22, 
transgressiveness [α] = 0.371, padj = .0016) (Fig. 1B) and interpreted 
this as a transgressive phenotype [6, 7]. The hybrid effect was 
robust when tested with additional alpha diversity indices (Sup-
plement 4). In addition to hybrids, the parental subspecies M. m. 

domesticus also had a richer ARG repertoire than M. m. muscu-
lus (G test: χ2(2, 493) = 4.74, padj = .007). At the same time, the 
hybrid effect was only observed for bacteria richness in the Bavar-
ian transect (Supplement 4). ARG richness was strongly shaped 
by localities and abundance of relevant ARG-associated phyla 
(e.g. Proteobacteria) (Analysis of Variance (ANOVA) alpha diversity) 
(Supplement 5). Hybridicity was also a significant predictor for 
ARG richness (ANOVA F = 7.89, df = 1, R2 = 3.41, P = .005; Supple-
ment 5) and composition (PERMANOVA, F = 4.064, df = 1, R2 = 0.008, 
P = .012; Supplement 6), meaning that more and different ARGs 
were found in hybrid mice. An overall increased richness of ARGs 
in hybrids could be due to the disruption of the microbiome com-
position. The aberrant microbiomes, with transgressive micro-
bial abundance, in hybrids represent less complex communities, 
potentially promoting selection for resistance. Complex microbial 
communities substantially decrease selection for resistance in 
semi-natural microbial communities exposed to antibiotics. Thus, 
interspecific competition within the microbiome could explain 
low resistance levels in naturally more complex bacterial com-
munities [15].
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We used a co-abundance network to explore the interaction 
among ARGs and bacterial taxa and investigated whether these 
hub taxa and ARGs showed transgressive phenotypes directly. We 
obtained a modular network and identified 91 bacterial hosts 
for 48 ARGs (Fig. 1C). We tested for hybrid effect (if the trait is 
transgressive) on the abundance of the 20 bacterial amplicon 
sequence variants (ASVs) and ARGs most relevant for community 
composition and with potential ecologically relevant associations 
(by Kleinberg’s hub centrality scores). Bacteria and ARG trans-
gressiveness were not linked to their prevalence. While one ASV 
belonging to the family Enterobacteriaceae and one to the genus 
Streptococcus were transgressive with lower abundance in hybrids, 
Muribaculum intestinale had a higher abundance in hybrids (Fig. 2). 
At the ARG level, 15 multidrug efflux pumps with strong centrality 
were impacted by hybridization (Fig. 2). 

Most ARGs with increased abundance in hybrids were mul-
tidrug resistance genes (Fig. 2), highly conserved among bacterial 
species [16]. Their relevance in clinically acquired resistance is 
usually low since they are chromosomally encoded and rarely 
transmitted among bacteria by horizontal gene transfer mecha-
nisms (reviewed in Poole [17]). However, overexpression of mul-
tidrug efflux pumps has been linked to physiological advan-
tages for resistant strains compared to sensitive ones [18]. More-
over, multidrug efflux determinants might be involved in self-
protection systems against antibiotic-producing microbes (e.g. 
Streptomyces spp.) or other environmental stressors [19]. Thus, 
multidrug efflux determinants represent an initial intermediate 
resistance phenotype that may predict strains likely to evolve 
resistance, as shown in specific bacterial species [20, 21]. 

Our observations rely on predicted gene content, particularly 
chromosomal-encoded ARGs, which may have limitations [22]. 
However, our ARG predictions showed general congruence to ARG 
profiles at colon content based on metagenomic data (Supple-
ment 7). Further studies and additional methods (qPCR or shotgun 
metagenomics) are needed to detect and confirm the resistome in 
natural house mouse populations and investigate the dynamics 
of ARG transmission within microbial communities. However, our 
findings emphasize the role of host genetic variation in shaping 
the gut microbiome and ARGs and provide the background to 
study the eco-evolutionary mechanisms of antimicrobial resis-
tance emergence and transmission beyond the host genetic effect. 
House mice offer a suitable system for investigating bacteria– 
bacteria, host–gut microbiota, and host–landscape interactions, 
e.g., in a heterogeneous environment or different transects (Sup-
plement S1.1) through extensive functional profiling and metage-
nomic analyses.

Acknowledgements 
We thank Susan Mbedi and Sarah Sparmann from the Berlin 
Center for Genomics in Biodiversity Research (BeGenDiv) for their 
technical guidance. 

Supplementary material 
Supplementary material is available at ISME Communications 
online. 

Conflicts of interest 
The authors declare there are any competing financial interests 
concerning the work. 

Funding 
This study was funded by the Deutsche Forschungsgemeinschaft 
(DFG) grant “Integrative evolutionäre und ökologische Analyse 
von Antibiotikaresistenzen: Auftreten und Verbreitung vom bak-
teriellen Genom bis zur geographischen Landschaft” FO 1279/6-
1 | HE 7320/5-1 | KR 4266/4-1 to S.K.F, E.H., S.K.S., and V.H.J.D. 
E.H. group is supported by the DFG Research Training Group 
2046 “Parasite Infections: From Experimental Models to Natural 
Systems.” S.C.M.F. was supported through the DFG grant number: 
440909536. V.H.J.D., J.B.P., and S.K.F. are supported through the JPI 
AMR - EMBARK project funded by the Bundesministerium für 
Bildung und Forschung (BMBF) under grant number F01KI1909A 
and the Swedish Research Council (VR; grant 2019-00299). 

Data availability 
The scripts for the bioinformatic and statistical pipeline are avail-
able at https://git.bihealth.org/jarquivh/wildrodents_arg in a non-
static version. Amplicon sequence data are deposited in the Short 
Read Archive (SRA) under project accession number PRJNA912123. 

References 
1. Medina MJO, Legido-Quigley H, Hsu LY. Antimicrobial resis-

tance in one health. In: Masys A.J., Izurieta R., Reina Ortiz
M. (eds.), Global Health Security. Cham: Springer International
Publishing, 2020, 209–29 https://link.springer.com/http://dx.doi.
org/10.1007/978-3-030-23491-1_10

2. Larsen J, Raisen CL, Ba X et al. Emergence of methicillin resis-
tance predates the clinical use of antibiotics. Nature 2022;602:
135–41. https://doi.org/10.1038/s41586-021-04265-w

3. Youngblut ND, Reischer GH, Walters W et al. Host diet and
evolutionary history explain different aspects of gut microbiome
diversity among vertebrate clades. Nat Commun 2019;10:2200.
https://doi.org/10.1038/s41467-019-10191-3

4. Williams SH, Che X, Paulick A et al. New York City house mice
(Mus musculus) as potential reservoirs for pathogenic bacteria
and antimicrobial resistance determinants. mBio 2018;9:e00624–
18. https://doi.org/10.1128/mBio.00624-18
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