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Abstract

Magnetic Resonance Imaging (MRI) datasets from epidemiological studies often show a

lower prevalence of motion artifacts than what is encountered in clinical practice. These arti-

facts can be unevenly distributed between subject groups and studies which introduces a bias

that needs addressing when augmenting data for machine learning purposes. Since unrecon-

structed multi-channel k-space data is typically not available for population-based MRI data-

sets, motion simulations must be performed using signal magnitude data. There is thus a

need to systematically evaluate how realistic such magnitude-based simulations are. We per-

formed magnitude-based motion simulations on a dataset (MR-ART) from 148 subjects in

which real motion-corrupted reference data was also available. The similarity of real and simu-

lated motion was assessed by using image quality metrics (IQMs) including Coefficient of

Joint Variation (CJV), Signal-to-Noise-Ratio (SNR), and Contrast-to-Noise-Ratio (CNR). An

additional comparison was made by investigating the decrease in the Dice-Sørensen Coeffi-

cient (DSC) of automated segmentations with increasing motion severity. Segmentation of the

cerebral cortex was performed with 6 freely available tools: FreeSurfer, BrainSuite, ANTs,

SAMSEG, FastSurfer, and SynthSeg+. To better mimic the real subject motion, the original

motion simulation within an existing data augmentation framework (TorchIO), was modified.

This allowed a non-random motion paradigm and phase encoding direction. The mean differ-

ence in CJV/SNR/CNR between the real motion-corrupted images and our modified simula-

tions (0.004±0.054/-0.7±1.8/-0.09±0.55) was lower than that of the original simulations (0.015

±0.061/0.2±2.0/-0.29±0.62). Further, the mean difference in the DSC between the real

motion-corrupted images was lower for our modified simulations (0.03±0.06) compared to the

original simulations (-0.15±0.09). SynthSeg+ showed the highest robustness towards all

forms of motion, real and simulated. In conclusion, reasonably realistic synthetic motion
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artifacts can be induced on a large-scale when only magnitude MR images are available to

obtain unbiased data sets for the training of machine learning based models.

Introduction

Image artifacts due to rigid head motion are a very common cause of poor diagnostic image

quality in neurological MRI [1]. Motion artifacts typically manifest as ghosting, blurring, and

ringing in the image [2]. Several prospective and retrospective motion correction techniques

exist, but these are seldom employed in routine neurological practice [3].

Motion simulations are an important form of data augmentation, to enhance the variability

of training data for machine learning applications and improve the robustness of trained algo-

rithms to deal with clinically realistic data [4]. Increasingly, researchers are performing motion

simulations in a ‘pseudo’ k-space by applying a Fourier transform to MR magnitude images

[5–7]. This is because raw k-space data is typically not available from large population MRI

data sets such as the UK Biobank and the German National Cohort (GNC) [8, 9]. The preva-

lence of motion artifacts can also vary between subject groups, for instance between healthy

controls and patients suffering from neurodegenerative disorders [10–12]. This will adversely

affect machine learning-based prediction models if not addressed [13], underscoring the need

to generate images with synthetic motion artifacts to obtain unbiased data sets. However, sys-

tematic large-scale evaluations are needed to evaluate how motion-corrupted images, gener-

ated using magnitude-based simulations, compared to real motion-corrupted data.

In this work we explored whether a magnitude-based approach could yield realistic motion-

corrupted images. To do this, we utilized the publicly available Movement-Related Artifacts

(MR-ART) dataset made up of structural magnitude data with and without real subject motion

[14]. We simulated the two described motion paradigms on the motion-free images and com-

pared the results to the corresponding real motion-corrupted images. We performed these sim-

ulations using the functionality available in the open-source Python framework TorchIO [15].

TorchIO facilitates the standardization of medical image data augmentation for deep learning

projects. Included in its library are standard augmentation techniques, such as flipping and spa-

tial transformations, as well as MRI-specific modifications, such as those for bias field and

motion. Augmentation functions are typically random, generating different results each time

they are called [16]. The MRI-specific simulations in TorchIO follow this convention and are

thus not designed to simulate specific motion paradigms and/or pulse sequences. This “random

motion” approach is not unique to TorchIO and has been implemented in other studies [6, 17,

18]. Here, we modified the original motion simulation functionality in TorchIO to better

mimic the specific motion paradigm and MR pulse sequence parameters of the real motion-cor-

rupted data in the MR-ART dataset. To gauge differences between the real and simulated (both

original and modified) motion-corrupted images, we calculated image quality metrics (IQMs).

We evaluated the outcome of the simulated motion corruption on brain cortical segmentation

using the Dice-Sørensen coefficient, which also provided a measure of the robustness to motion

of six publicly available whole brain segmentation tools.

Methods

The MR-ART dataset

Simulations were performed on the publicly available MR-ART dataset consisting of 3T

MPRAGE defaced NIfTI image volumes at 1 mm3 isotropic resolution of 148 subjects [14].

The authors of the dataset reported that all participants provided written, informed consent
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before participation, and that the study was approved by the National Institute of Pharmacy

and Nutrition (file number: OGYÉI/70184/2017). Since only secondary analysis of human

data was performed here, a separate ethical approval was not obtained. The data was accessed

on the 27th of March 2023. All data had been pseudoanonymized and defaced using PyDeface.

No other information was available that could be used to identify individual participants. The

images were acquired on a Siemens Magnetom Prisma 3T system (Siemens Healthcare

GmbH, Erlangen, Germany) with a 20-channel head-neck receive coil. In this dataset, three

images were acquired per subject. During the scans, each subject was instructed via a visual

cue to: (1) stay still, (2) nod 5 times, and (3) nod 10 times. The instructions to nod were evenly

distributed across the acquisition. A ‘nod’ was defined as tilting the head up along the sagittal

plane (a pitch rotation) and then returning to the original position. The rotation in degrees

and the duration of the nod was not given although it was noted that the visual cue was pre-

sented for 5 s. From this point on, the motion-free image volume is referred to as ‘NoMotion’

while the images acquired under 5/10 nods are referred to as ‘Real5’/’Real10’ respectively

(STAND/HM1/HM2 in the original publication) (Table 1).

Motion simulations

TorchIO version 0.18.73 was used as the basis for the motion simulations [15]. The MR-ART

NIfTI files were loaded into TorchIO as a ‘SubjectsDataset’ consisting of 148 ‘Subject’ objects

which each contained a single image volume represented by an image class. From here, addi-

tional preprocessing and augmentation can be performed. Detailed information about the gen-

eral TorchIO data processing can be found here: https://torchio.readthedocs.io/index.html. In

this work, the ‘RandomMotion’ function from the TorchIO library was applied to the NoMo-

tion NIfTI volume of all 148 subjects. The function takes two floating point ranges for rotation

(˚) and translation (mm) along with one integer for the number of discrete movements. This

implementation allows a wide range of different motion artifacts to be generated but is ill-

suited for simulating a specific motion paradigm. Given these constraints, only a very rough

simulation of the motion paradigm of the MR-ART study could be performed. A movement

with a rotational range of 0–15˚ in either of the three axes (pitch, yaw, and roll) and no transla-

tional range (0–0 mm) was simulated either 5 or 10 times. The rotation/translation is by design

randomly distributed across the three axes. This means that each axis will be assigned different

values within the same range. For example, 5 simulated movements with a rotational range of

0–15˚ could result in a pitch = 4˚/13˚/15˚/8˚/5˚, a yaw = 13˚/0˚/6˚/0˚/5˚, and a roll = 0˚/2˚/7˚/

4˚/11˚. New numbers are generated each time the ‘RandomMotion’ function is applied, lead-

ing to a wide range of generated motion artifacts in between subjects in the generated dataset.

The motion simulation itself was performed by rigidly (6 degrees of freedom) transforming

the image volume to mimic different positions of the subject [17]. A Fourier transform was

applied to each rigidly- transformed image. The resulting ‘pseudo’ k-spaces were combined

Table 1. Summary of acquired and simulated image volumes.

Name Description Pitch/Yaw/Roll [˚] #Rigid Transforms #Nods

NoMotion Motion-free baseline image N/A N/A N/A

Real5 5 actual nods performed during acquisition ?/0/0 N/A 5

Real10 10 actual nods performed during acquisition ?/0/0 N/A 10

Ori5 5 transforms with original motion simulation 0-15/0-15/0-15 5 N/A

Ori10 10 transforms with original motion simulation 0-15/0-15/0-15 10 N/A

Mod5 5 nods with modified motion simulation 15/0/0 20 5

Mod10 10 nods with modified motion simulation 15/0/0 40 10

https://doi.org/10.1371/journal.pone.0301132.t001
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based on the timings of the movements into a ‘composite’ k-space. An inverse Fourier trans-

form was applied to the composite k-space to yield the simulated motion-corrupted image.

The periodicity of the movements is, by design, randomly distributed throughout the acquisi-

tion and was not evenly spaced as was the case in the MR-ART study. Further, since the phase

encoding direction is not a parameter in the ‘RandomMotion’ function, it was not possible to

directly control the direction of the ghosting/ringing artifacts. Instead, the direction of the arti-

facts depended on the orientation of the NIfTI volume when loaded into Python. The image

volumes obtained by this original simulation are denoted ‘Ori5/Ori10’ respectively (Table 1).

To simulate the nodding motion of the MR-ART study more correctly, the ‘RandomMo-

tion’ function was modified to allow a well-defined motion paradigm, where rotation and

translation could be varied independently across the axis (e.g., the pitch could be defined inde-

pendently of the yaw). It also allowed non-random timings of the movements and to expressly

define the filling order of the ‘pseudo k-space’ so that ghosting/ringing artifacts appeared in

the phase encoding direction. With these modifications in place, each individual nod could be

defined as 4 rigid transforms to capture intermediate head positions along the full nodding

motion. Either 5 or 10 nods were simulated, involving 20 or 40 transforms respectively and

evenly distributed throughout the acquisition. The pitch magnitude was empirically set to 15˚,

while a nod duration of 2.5 s was deemed reasonable as it was assumed that each subject per-

formed a nod within 0–5 s, based on a 5 s visual cue. The simulated acquisition duration and

phase encoding direction was the same as the actual ones, i.e., 316 s (5:16 min) and anterior-

posterior. The image volumes obtained by this modified simulation are denoted ‘Mod5/

Mod10’ respectively (Table 1). Following the Ori5/Ori10 and Mod5/Mod10 simulations, we

had a total of 7 groups in the dataset. Therefore, the simulations yielded an augmented dataset

of 148×7–8 = 1028 image volumes (8 image volumes were missing in the original dataset: 7

from Real5 and 1 from Real10). Fig 1 shows a schematic of the modified motion simulation.

Image quality

To perform a quantitative comparison of the image quality between real and simulated motion-

corrupted images we used the MRI Quality Control tool (MRIQC) [19]. MRIQC allows for auto-

matic extraction of an array of image quality metrics (IQMs) for objective quality control of MR

neuroimaging data. A number of these IQMs have been reported to correlate with head motion,

namely the Coefficient of Joint Variation (CJV) [20], the Entropy Focus Criterion (EFC) [21], and

the quality indices QI1/QI2 [22]. However, both EFC and QI1/QI2 rely on the assumption that

MRI artifacts result in increased signal intensity in the image background and are thus not appro-

priate for image data that has undergone filtering and/or masking such as defacing. Here we

focused on MRIQC-based IQMs that barely use background pixels in their calculation: CJV, SNR,

and CNR. The EFC and QI1/QI2 are included as supporting information.

Before MRIQC processing, a defaced mask was created for each subject, based on the

NoMotion image, and applied to the motion simulated images. This removed pixels that were

not present in the original masked dataset and thus facilitated a more correct comparison.

Thereafter, all 148x7-8 = 1028 images were run through the MRIQC pipeline. Processing was

performed using an MRIQC Docker container, version 23.1.0.

Coefficient of Joint Variation (CJV). The CJV incorporates information about the inten-

sity distribution within, and the contrast between, segmented white matter (WM) and gray

matter (GM). It is calculated as:

CJV ¼ ðsWM þ sGMÞ=ðjmWM � mGMjÞ ð1Þ

where σ denotes the standard deviation and the mean of the respective segmented tissue
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classes. Higher values are associated with poor image quality and motion artifacts. It was origi-

nally used to optimize an intensity non-uniformity correction algorithm [20].

Signal-to-Noise-Ratio (SNR). The SNR reported here is based on variance between dif-

ferent tissues, ignoring the air background. It is calculated as:

SNRWM;GM;CSF ¼ mWM;GM;CSF=ðsWM;GM;CSF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=ðn � 1Þ

p
Þ ð2Þ

where n is the number of pixels in the respective tissue mask. The total SNR is then obtained

simply as the mean across the three tissue classes:

SNR ¼ ðSNRWM þ SNRGM þ SNRCSFÞ=3: ð3Þ

Contrast-to-Noise-Ratio (CNR). The CNR refers to the contrast-to-noise-ratio between

WM and GM. It is calculated as:

CNR ¼ ðjmGM � mWMjÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
air þ s

2
WM þ s

2
GM

p
ð4Þ

where σair is the standard deviation of the air background. The CNR was included since the

background pixel dependency was fairly small compared to EFC, and QI1/QI2.

Automatic brain segmentation

Complementing the MRIQC comparison, automatic brain segmentation was performed to

compare differences in segmentation performance between real and simulated motion-cor-

rupted data. Whole brain segmentation of the cerebral cortex was performed using 6 freely

available segmentation tools: FreeSurfer [23], BrainSuite [24], ANTs [25], SAMSEG [26], Fas-

tSurfer [27], and SynthSeg+ [28, 29]. FreeSurfer, SAMSEG, FastSurfer, and SynthSeg+ all use

Fig 1. Schematic of the modified motion simulations of a nodding motion paradigm. Rigid transformations are applied to the baseline NoMotion

image volume (top left corner), rotating the image around the right-left axis in a pitch rotation (top row). The pitch is applied with either 7.5˚ or 15.0˚

where 7.5˚ designates the ‘halfway’ point of the nod. FFTs are applied to each of the images to obtain “pseudo” k-spaces (middle row). These k-spaces are

masked based on which time point the subjects head was in the corresponding position and then cumulatively added (bottom row) to eventually form a

composite k-space (bottom right corner). Lastly, an iFFT is applied to the composite k-space, resulting in the motion-corrupted image (top right corner).

The absolute value of the complex-valued k-spaces are displayed here. The simulated scan duration was reduced for illustrative purposes.

https://doi.org/10.1371/journal.pone.0301132.g001
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the same labeling system for segmented brain structures, making comparison between seg-

mentations of the cerebral cortex straightforward. The cerebellar cortex was excluded since the

cortical segmentation in ANTs does not include it. As BrainSuite does not directly output a

cortical segmentation, we derived a NIfTI volume that could be compared to the output of the

other segmentation tools by combining three masks: A mask of the boundary between white

matter and cortical gray matter, a mask of the total gray matter (cortical and deep gray matter)

based on a gray matter probability map (pixels with>50% probability of belonging to gray

matter was kept), and a mask of the cerebrum. This analysis doubled as a comparison of the

motion robustness of the range of segmentation software.

Segmentations of real motion-corrupted images were rigidly coregistered to the segmenta-

tion of the baseline NoMotion image using FSL Flirt, nearest neighbor interpolation, and

transformation matrices obtained from coregistering the corresponding magnitude images.

The aseg.mgz output from FreeSurfer, the aparc.DKTtlas+aseg.deep.mgz output from FastSur-

fer, and the seg.mgz output from SAMSEG was converted to native space using FreeSurfer

mri_label2vol and converted from.mgz format to compressed NIfTI format using dicm2nii in

MATLAB. FreeSurfer was run using v6.0. while SAMSEG and SynthSeg+ were run using v7.3

and v7-dev respectively. ANTs was run on v.2.3. BrainSuite and FastSurfer were both run

through Docker images, the former on v21a and the latter on v2.0.

Data analysis. The IQM = {CJV, CNR, SNR} and the Dice-Sørensen Coefficient (DSC)

were used to quantitatively analyze the decrease in image quality and segmentation perfor-

mance imposed by subject motion. It was explored whether Mod = {Mod5, Mod10} could

yield results closer to Real = {Real5, Real10} compared to Ori = {Ori5, Ori10}. The DSC was

calculated as

DSC ¼
2jSegðNoMotionÞ \ SegðMotionÞj
jSegðNoMotionÞj þ jSegðMotionÞj

ð5Þ

where Seg(NoMotion) and Seg(Motion)2{Seg(Real5), Seg(Real10), Seg(Ori5), Seg(Ori10), Seg

(Mod5), Seg(Mod10)} are the respective cortical segmentations. Comparisons were performed

using a combination of scatter and probability density (raincloud) plots and box plots. For the

MRIQC analysis, linear least squares fits were calculated between the IQMs of the motion sim-

ulated images, IQM(Sim) = {IQM(Ori), IQM(Mod)}, vs. the IQMs of the real motion-cor-

rupted images, IQM(Real). The values of these linear functions were calculated and compared

between Ori = {Ori5, Ori10} and Mod = {Mod5, Mod10} where r2 = 1 would indicate perfect

agreement with Real = {Real5, Real10}. Lastly, Bland-Altman plots of IQM(Sim)–IQM(Real)

vs. (IQM(Sim) + IQM(Real))/2 where the mean of the former was compared between Ori and

Mod. To ensure that Seg(NoMotion) was reasonably comparable across segmentation tools,

another DSC was calculated as

DSC ¼
2jSegFSðNoMotionÞ \ SegotherðNoMotionÞj
jSegFSðNoMotionÞj þ jSegotherðNoMotionÞj

ð6Þ

where SegFS(NoMotion) denotes the FreeSurfer segmentation and Segother(NoMotion)

denotes the segmentation of any of the other 5 segmentation tools. FreeSurfer was used as a sil-

ver standard reference because of its most widespread use. All analysis was performed using R

version 4.2.1 and MATLAB R2021a. The entire process, from simulations to data analysis, is

outlined in Fig 2.
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Results

Qualitative characteristics of real and simulated motion artifacts

Distinct ringing artifacts were visible in the real motion-corrupted images (Real5, Real10),

especially in cortical areas. When performing the simulations (Fig 1), these ringing artifacts

were mimicked closer to the real motion-corrupted images with the modified simulations

(Mod5, Mod10). Images created with the original simulations (Ori5, Ori10) did not display

these ringing artifacts as clearly but instead appeared as more blurred and with a worse overall

image quality. Two representative subjects are shown in the axial (Fig 3) and sagittal (Fig 4)

projections. Note that the exact motion paradigm is not known on an individual level for

Real5/Real10 and Ori5/Ori10.

Outcome on image quality

In the real motion-corrupted images (Real5, Real10), we observed a clear trend of decreasing

image quality with increasing nodding frequency (Fig 5). This was also the case for the modi-

fied simulations (Mod5, Mod10). In contrast, it was not possible to induce a monotonic

decrease in image quality using the original simulations (Ori5, Ori10). The modified motion

simulations generally resulted in images with IQM distributions closer to those of the real

motion-corrupted data compared to those generated with the original simulation. We

observed a larger spread in the IQM distribution of the real motion-corrupted data compared

to both the original and modified simulations. This was also visible upon inspection of the

MR-ART dataset; the degree of motion corruption within both Real5 and Real10 varied sub-

stantially amongst subjects. As expected, the spread of the IQM distribution was reduced using

the modified simulations. Surprisingly, the IQM spread was also reduced for the original

Fig 2. Flowchart visualization of entire experimental procedure (see Methods for full description). Subsets of the main MR-ART dataset are

denoted in blue, IQMs in orange, and segmentation tools in green.

https://doi.org/10.1371/journal.pone.0301132.g002
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simulations, despite their random character. Similar to the original study [14], the EFC showed

a correlation with the motion level (S1 Fig), albeit weaker than the primary IQMs. The IQMs

QI1 and QI2 did not show conclusive results across the nodding frequencies, also for the real

motion-corrupted data (S2 and S3 Figs).

The linear regression analysis (Fig 6, upper panel) and Bland-Altman plots (Fig 7, lower

panel) revealed improved agreement between simulations and real data with our modified

simulations. The r2 increased from 0.017/0.034/0.055 to 0.23/0.24/0.23 for CJV/CNR/SNR

respectively where r2 = 1 would indicate perfect agreement with Real = {Real5, Real10}. In the

Bland-Altman plot, the mean difference to the Real = {Real5, Real10} reference decreased from

Fig 3. Motion simulation results of two subjects using either the original TorchIO implementation or our modified version compared to images

acquired under real motion. Real/simulated motion was performed/simulated at either 5 or 10 nods per scan. The leftmost column shows the motion-free

baseline image. The ringing artifacts in cortical areas (arrows), characteristic of the Real images, are better represented in the modified than the original

simulations.

https://doi.org/10.1371/journal.pone.0301132.g003

Fig 4. Simulated and real motion-corrupted images in the sagittal plane showing the defacing. See the corresponding axial representation in Fig 2 for a

description.

https://doi.org/10.1371/journal.pone.0301132.g004
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0.015/-0.29 to 0.004/-0.086 for CJV/CNR but increased from 0.17 to -0.73 for SNR. The separa-

tion between Mod5 and Mod10 was clearly visible, which was not the case for Ori5 and Ori10.

Outcome on automatic brain segmentation

Motivated by the prevalence of ringing artifacts in cortical areas (Figs 3 and 4), the cerebral

cortex was segmented and compared between uncorrupted images and those corrupted with

real or synthetic motion. Fig 7 shows a representative example of the detrimental effect of sub-

ject motion, captured by the DSC, across the 6 segmentation tools. The decrease in DSC dif-

fered amongst the segmentation tools, where Synthseg+ showed the smallest decrease.

However, upon qualitative observation Synthseg+ appeared to generate thicker/smoother cor-

tical segmentations which extended into the sulci in some areas (Fig 7). For motion-free

images, FreeSurfer, FastSurfer, and SAMSEG yielded the most high-resolution segmentation,

Fig 5. MRIQC-calculated background-independent IQMs for real motion (green), the original simulated motion (orange), and the modified simulated

motion (blue) for 148 subjects and across three nodding frequencies: The NoMotion baseline (0 nods/scan), 5 nods/scan, and 10 nods/scan. Results are

visualized as probability density functions with corresponding jittered scatter plots (raincloud plots), and box plots. Means and standard deviations are denoted

in the legend and by filled circles with connecting lines between motion levels. From left to right: Coefficient of Joint Variation (CJV), Contrast-to-Noise-Ratio

(CNR), and Signal-to-Noise-Ratio (SNR). Overall, there is an improved agreement between real and simulated motion for the modified version. The

monotonic dependency on nodding frequency is much clearer for the modified version. Note also the much larger spread in the real motion data.

https://doi.org/10.1371/journal.pone.0301132.g005

Fig 6. Linear regression plots (top row) and Bland-Altman plots (bottom row) of the CJV (left), CNR (middle), and SNR (right) showing the

improved agreement between real (Real) and simulated (Sim) motion using the modified (blue) compared to the original (orange) motion

simulation. The identity line/zero line in the regression/Bland-Altman plots are denoted in green. With the modified simulation, the r2 of the

linear fit is higher and the separation between IQMs from images with 5 nods (filled datapoints) and 10 nods (empty datapoints) is clear.

https://doi.org/10.1371/journal.pone.0301132.g006
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followed by ANTs. BrainSuite performed rather poorly, and a majority of the segmentations

applied to the real motion-corrupted data (Real5, Real10) failed to process.

Fig 8 shows the decrease in DSC relative to the motion-free reference (NoMotion) for Real

= {Real5, Real10}, Ori = {Ori5, Ori10}, and Mod = {Mod5, Mod10} for all 6 segmentation

tools. The average differences in the DSC across the segmentation tools between Real = {Real5,

Real10} and Ori = {Ori5, Ori10} were -0.13±0.08 (5 nods/scan) and -0.19±0.08 (10 nods/scan).

When using our modified simulation method, we observed improved agreement with the real

motion-corrupted data, also with respect to segmentation performance. The average differ-

ences in DSC were reduced to +0.05±0.04 (5 nods/scan) and +0.02±0.05 (10 nods/scan).

BrainSuite was excluded when calculating these average differences due to the poor perfor-

mance already apparent on the real motion-corrupted data (Figs 7 and 8). SynthSeg+ had the

weakest correlation to the real/simulated nodding frequency with a Pearson correlation coeffi-

cient of r = -0.37 compared to r = -0.79/-0.85/-0.51/-0.54/-0.51 for FreeSurfer/BrainSuite/

ANTs/SAMSEG/FastSurfer respectively. This indicates a higher robustness to motion com-

pared to the other methods.

We also compared the different segmentation tools with the silver standard FreeSurfer. For

the NoMotion baseline images, FreeSurfer clearly showed the highest agreement with FastSur-

fer with a mean DSC = 0.95±0.03 (Fig 9). The remaining segmentation tools showed compara-

tively very similar DSCs.

Fig 7. Effect of motion on brain segmentation tools for an example subject. Rows denote real motion at the three different motion levels: None

(NoMotion), 5 nods per scan (Real5), and 10 nods per scan (Real10). Columns denote the six segmentation tools (FreeSurfer, BrainSuite, ANTs, SAMSEG,

FastSurfer, and SynthSeg+). For each segmentation, the DSC relative the NoMotion segmentation for that tool is shown in the bottom right corner. Note

the higher DSCs of the contrast-agnostic SynthSeg+. SynthSeg+ further stands out in that the cortical segmentation appears thicker and more ‘smooth’.

BrainSuite did not yield any output for Real10.

https://doi.org/10.1371/journal.pone.0301132.g007
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Discussion

We induced synthetic motion artifacts on magnitude MRI data and performed large-scale

quantitative comparisons to real motion-corrupted data. Our purpose was to validate the use

of magnitude-based motion simulations. To this end, we used the MR-ART dataset as a

ground truth reference. To accurately simulate the motion paradigm performed in MR-ART,

the random elements in the motion simulation of an existing data augmentation framework

(TorchIO) needed to be removed. We made three modifications to the original motion simula-

tion, explicitly specifying: (1) the rotation along each axis independently of each other, (2) the

timings and durations of each discrete movement, and (3) the direction of the inner phase

encoding direction. After implementing these simple changes, the real motion artifacts were

more accurately mimicked in terms of artifact characteristics, image quality, and segmentation

performance. It should be noted that the random characteristic of the original motion simula-

tions in TorchIO is not an inherent weakness of the framework but rather an effective feature

Fig 8. Segmentation tool performance on real and simulated motion-corrupted data. The DSC of the cerebral

cortical segmentation obtained from motion-corrupted data relative the baseline NoMotion segmentation output was

calculated for 6 segmentation tools: FreeSurfer, BrainSuite, ANTs, SAMSEG, FastSurfer, and SynthSeg+. Real motion-

corrupted data (green), the original motion simulation (orange), and the modified simulation (blue) is shown across

two levels of motion: 5 nods per scan, and 10 nods per scan. DSC = 1 for NoMotion. The number of calculated DSCs

are shown in the legend since the segmentation pipeline did not always complete successfully when applied to the

motion-corrupted data. The decrease in DSC at an increasing number of nods observed for the real data was more

accurately mimicked by the modified compared to the original simulations. SynthSeg+ showed the smallest decrease in

DSC of all tools.

https://doi.org/10.1371/journal.pone.0301132.g008
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to artificially increase training data variability for deep learning applications. However, when a

specific motion paradigm and/or pulse sequence is to be simulated, modifications as the ones

described here become necessary.

All primary IQMs—CJV, CNR, and SNR—indicated a better agreement in image quality

between the real motion-corrupted images and images corrupted with our modified motion

simulations compared to the original simulations. This is because the randomness of the ele-

ments in the original motion simulations (including the phase encoding direction) were

removed. The MR-ART dataset does not contain random motion [14], thus the original ran-

dom features of TorchIO did not accurately simulate the motion paradigm. The modified sim-

ulations were especially more effective in capturing the progressive worsening in image quality

with increasing nodding frequency, compared to the original simulations. The improved

agreement was also visible on a qualitative level, where the characteristic ringing artifacts of

the MR-ART dataset could be much better simulated using the modified simulations. Here,

the random behavior of the original simulations instead results in blurring and perceived over-

all degraded image quality. The IQMs QI1 and QI2 showed inconclusive results across different

(even real) nodding frequencies. It should be noted that the data was defaced making the air

background-based analysis not possible [22]. On the other hand, the EFC estimates were very

similar to those published by Nárai et al. [14] in the original MR-ART publication, indicating

that the defacing did not have a particularly large impact on that metric.

We observed a deterioration in segmentation performance, similar to the changes seen in

the primary IQMs. The DSCs for the modified simulations were much closer to the DSCs of

Fig 9. Comparison to FreeSurfer on baseline no-motion data. The DSC of the cerebral cortex relative the FreeSurfer

segmentation was calculated for the remaining 5 tools on the NoMotion images for all 148 subjects. FastSurfer

produced the most FreeSurfer-like segmentation. The processing crashed for one of the subjects when using

BrainSuite, hence n = 147.

https://doi.org/10.1371/journal.pone.0301132.g009
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the real motion-corrupted data compared to the DSCs of the original simulations. The choice

to focus on the cortical segmentation was motivated by visual inspection of the MR-ART data

which showed pronounced ringing in cortical areas. This choice was also supported by the rec-

ognition that head motion strongly affects cortical gray matter volume and thickness estimates

[30, 31].

Our segmentation-based analysis doubled as an evaluation of the robustness of 6 popular

brain segmentation tools. Here, SynthSeg+ stood out in terms of relatively small changes in

the DSC with increasing nodding frequency. This insensitivity to motion could in part be due

to a generally thicker cortical segmentation with a ‘smoothed’ appearance that partly extend

into the sulci. This hypothesis is supported by previous work which reported higher total GM

volumes using SynthSeg (albeit not SynthSeg+) compared to FreeSurfer, SAMSEG, and Fas-

tSurfer [32]. However, SynthSeg+ did not show a markedly worse agreement with the silver

standard FreeSurfer in the baseline motion-free images compared to most other segmentation

tools. FastSurfer did not show a much higher DSC across nodding frequencies compared to

FreeSurfer, as was previously reported [33]. Also considering the performance of ANTs and

SAMSEG, we did not find clear support for a general motion robustness increase in CNN-

based methods (SynthSeg+, FastSurfer). van Nederpelt et al. [32] reported markedly lower

intra-class correlation coefficients on data from repeated measurements when using FreeSur-

fer, compared to SAMSEG, FastSurfer, and SynthSeg (albeit not SynthSeg+). This could be

related to the motion robustness analysis performed in our study, although here it is SynthSeg

+ that stands out in terms of high DSCs. The poor performance of BrainSuite, observed in this

work, could possibly be explained by the fact that no direct cortical segmentation is available

from the output, although this does not explain why processing failed for most of the real

motion-corrupted data.

The modified motion simulation described here has been applied to data from the ADNI

(Alzheimer’s Disease Neuroimaging Initiative, [34]) to mitigate biases in the distribution of

motion artifacts between healthy controls, subjects with mild cognitive impairment, and AD

patients. The aim of this ongoing work is to disentangle structural changes due to AD from

motion artifacts and thus improve predictive performance.

The magnitude-based simulations performed here will not be as realistic as those per-

formed on multi-channel k-space data [35], which are commonly not available for population

or large-scale clinical MRI studies. Multi-channel phased arrays are typically employed for par-

allel imaging [36]. In the MR-ART dataset, a GRAPPA factor of 2 was applied, which means

that every other k-space line is not measured but synthesized using weighting factors based on

the measured data and indirect sensitivity measurements [37]. The interplay between the tim-

ing of discrete movements and the calculation of these weighting factors cannot be simulated

using magnitude data alone. This is especially true when considering that receive sensitives are

highly variable and depend on the position of the subject. Further, we have here focused only

on simulating rotational motion where a rotation in image space results in an identical rota-

tion in k-space. Translational motion will instead result in a linear phase ramp according to

the Fourier shift theorem [38]. Although our suggested approach does not directly manipulate

the pseudo k-space, it would be interesting to examine how a magnitude-based approach

would compare to real-world data acquired when using translational motion instead of rota-

tional motion.

Nevertheless, we show that the modified motion simulations compare well to real motion-

corrupted data and are a very good alternative when only magnitude image data is available.

We show here that it is essential to consider the type of motion paradigm and pulse sequence

(phase encoding direction, acquisition duration) prior to embarking on motion simulation.

This is especially true if multiple levels of artifact severity are needed, since we show that
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simply increasing the number of transforms in the original TorchIO simulations was insuffi-

cient to induce a monotonic relationship between image quality and nodding frequency. One

limitation of this work is the heterogeneity of the MR-ART dataset amongst different subjects.

Based on visual inspection of the data as well as the IQM data distribution, it was evident that

the same nodding frequency resulted in a large variation in artifact severity between subjects.

The large IQM distribution for the real motion data is indicative of individual variations in the

motion paradigm (pitch/duration) between subjects. In some cases, the lower nodding fre-

quency resulted in a higher artifact severity. Kemenczky et al. [33] used radiologist image qual-

ity rating scores, available in the published dataset, instead of IQMs to evaluate the motion

robustness of deep learning-based brain segmentation tools compared to FreeSurfer. Since we

were interested in trying to emulate a specific motion paradigm, we instead opted for splitting

the data based on the nodding frequency. Based on the monotonic relationship in both the

IQMs and the DSCs with nodding frequency, we believe that the relatively large sample size of

148 subjects was enough to overcome this large spread in image quality.

Conclusion

Reasonably realistic motion artifacts can be induced on brain MRI by magnitude-based simu-

lations when combined with knowledge of head movement and k-space sampling. We derive

this conclusion based on a large-scale comparison of IQMs and cerebral cortex segmentation

performance between simulated and real motion artifacts. SynthSeg+ showed the highest

motion robustness of tested brain segmentation tools although this may, at least in part, be due

to a thicker baseline segmentation. Future work could use this simulation approach to mitigate

biases in the distribution of motion artifacts between study groups and to provide an unbiased

foundation for the training of machine learning based models.

Supporting information

S1 Fig. The Entropy Focus Criterion (EFC) showed good agreement between real/modi-

fied. There is a monotonic increase for Real/Modified but not for Original. However, the
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S2 Fig. The quality index, QI1, showed inconclusive results, likely because of its depen-

dency on background pixels.
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dency on background pixels.
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