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Abstract
Biomedical image analysis plays a pivotal role in advancing our understanding of the human body’s functioning across different scales,

usually based on deep learning-based methods. However, deep learning methods are notoriously data hungry, which poses a problem in

fields where data is difficult to obtain such as in neuroscience. Transfer learning (TL) has become a popular and successful approach to

cope with this issue, but is difficult to apply in practise due the many parameters it requires to set properly. Here, we present TLIMB, a

novel python-based framework for easy development of optimized and scalable TL-based image analysis pipelines in the neurosciences.

TLIMB allows for an intuitive configuration of source / target data sets, specific TL-approach and deep learning-architecture, and

hyperparameter optimization method for a given data analysis pipeline and compiles these into a nextflow workflow for seamless

execution over different infrastructures, ranging from multicore servers to large compute clusters. Our evaluation using a pipeline for

analysing 10.000 MRI images of the human brain from the UK Biobank shows that TLIMB is easy to use, incurs negligible overhead and

can scale across different cluster sizes.
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Introduction
Biomedical imaging, especially in neuroscience, is crucial

for understanding the complexities of the central nervous

system [15]. It allows for non-invasive examination of brain

structure and function, enabling clinical applications like

diagnosing and monitoring neurological and psychiatric

diseases [2]. Deep learning, with techniques such as convo-

lutional neural networks (CNNs) and transformer-based ar-

chitectures, show great promise in this domain [8]. Their ef-

fectiveness in tasks such as lesion segmentation and disease

classification has been demonstrated [18, 20, 8]. However,

the success of these advanced architectures often hinges

on the availability of large and homogeneous datasets, a

challenge in biomedical settings due to their scarcity.

Transfer learning (TL) has recently become popular for

overcoming the constraints of small and heterogeneous

datasets. In a nutshell, it allows leveraging a model trained

on a given source dataset for improving model performance

on a different target dataset [21]. However, applying TL in

neuroimaging practise has proven difficult, as it requires

the careful selection of a multitude of different yet close

interacting parameters, including the base image analy-

sis architecture (e.g. ResNet, different flavors of CNNs or

transformers), the concrete TL-method (e.g. fine-tuning,

multitask-learning), the concrete objective function, and the

source dataset to be used. Determining these parameters

manually in a framework like PyTorch is time-consuming
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and error-prone, as it requires source code manipulation and

extensive experimentation to find optimal configurations.

These experimentations can be computationally extremely

time-consuming unless adequate parallel and/or distributed

infrastructures are available, which, however, makes pro-

gramming the analysis pipeline even more involved.

In this work, we present TLIMB, a Transfer-Learning

Framework for Image Analysis of the Brain. TLIMB is

programmed in the widely-used general-purpose language

Python and based on PyTorch Lightning
1

. With TLIMB,

users specify their TL-pipeline in the form of simple and

intuitive configuration files, which are then compiled into a

concrete image analysis workflow in Nextflow [6], a popular

and powerful workflow engine than can execute an analysis

over a wide range of infrastructures, ranging from single

servers to large compute clusters. With TLIMB, researchers

thus are able to easily assess the effectiveness of different

TL setups across diverse datasets and environments.

We specifically designed TLIMB as a framework and not

as a proper domain specific language (i.e., a programming

language tailored to a particular problem; DSL) because

of the advantages of this approach in terms of flexibility,

ease of creation, extensibility, and seamless integration with

existing tools [13, 1]. A Python-based framework, in par-

ticular, provides a familiar environment for data scientists,

capitalizing on the language’s popularity and compatibility

with established machine and deep learning frameworks

(like PyTorch).

Through a series of experiments following the "brain-

age" paradigm [4], a widely-used method for assessing brain

health through neuroimaging data, we validated the plat-

form’s capability to create a diverse landscape of TL-based

pipelines and to execute them seamlessly over any infras-

tructure supported by Nextflow.

1
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Figure 1: Simplified diagram of TLIMB’s structure, showcasing all necessary components.

Related Work
There has been a number of efforts to develop DSLs as well

as frameworks for machine learning-based (image) data

analysis [9]. OptiMl, a DSL tailored for machine learning

tasks, seeks to provide an implicitly parallel, expressive, and

high-performance alternative to MATLAB and C++ [17].

However, it does not address TL and is agnostic to the data

types analysed and thus requires some effort for using it in

image analysis. Extending it with TL abilities would be non-

trivial due to its design as a DSL. P-Hydra employs Transfer

Learning and Multitask learning for image analysis in cancer

detection, aiming to validate its algorithmic effectiveness

and establish a baseline for other methods [11]. In contrast

to TLIMB, the method is implemented in a single pipeline

and not designed as configurable framework. Furthermore,

our approach supports multiple heads per model, enabling

a broader spectrum of TL-methods. Ilastik, designed as an

interactive tool for machine-learning-based (bio)image anal-

ysis, addresses challenges associated with manual image

analysis by providing pre-defined workflows for segmen-

tation, object classification, counting, and tracking, with a

user-friendly interface emphasizing accessibility for non-

programmers [3]. In contrast to ilastik, our framework con-

centrates on training neural networks for TL-based analysis.

Finally, SimpleITK, is a software package designed for im-

age analysis that provides a simplified interface for flexible

and reproducible computational workflows [24], aligning

closely with the goals of our framework. While SimpleITK

streamlines image analysis through Jupyter Notebooks and

introduces various abstractions, our framework adopts a

different approach, allowing users to initiate analysis by

starting with our framework components and building upon

them as needed.

Methods

Architecture of TLIMB
The core of the framework is constructed around three

primary components: the DataModule, Architecture,

and ObjectiveFunction. These are orchestrated within

a Scenario to create a comprehensive TL pipeline. Users

can execute different configurations of these Scenarios, such

as for hyperparameter tuning or model comparisons, by

automatically generating a Nextflow workflow from their

definitions. An overview of TLIMB’s architecture is shown

in Figure 1.

The Scenario component is responsible for the training

logic: it orchestrates training, validation, and testing by

sourcing data from the DataModule, processing it through

the specified deep learning Architecture, calculating

losses using the ObjectiveFunction, and executing the

optimization step. This abstraction level facilitates not only

the conventional sequential pretrain-finetune TL workflows,

but also enables the implementation of workflows that re-

quire simultaneous processing of both pretraining and fine-

tuning data, such as semi-supervised learning algorithms

[19]. Scenarios are designed to be data-operation agnostic,

i.e., independent of the specific deep learning architecture

and objective function, thereby enhancing the modularity

of the design.

The Architecture component relates to the adaptable

configuration of network layers and nodes, providing users

with the versatility to select from predefined architectures

or to incorporate their own custom designs by referencing

them in the configuration file. To facilitate efficient TL,

architectures are decomposed into two main elements: the

encoder, which is often repurposed from the source task,

and the head, which is specific to and replaceable for the

target task. This modular structure supports a variety of TL

strategies, ensuring adaptability to methodologies such as

the core train-fine-tune paradigm and multitask learning.

Objective Functions embody the core logic of TL, com-

posed of a primary objective (such as cross-entropy for

classification) and an auxiliary objective (such as an elastic

penalty on weights during fine-tuning or reconstruction

losses in semi-supervised training). During the training

phase, this class considers batches and the architecture from

the scenario class to computes the loss and performance

metrics. In pursuit of greater modularity, Objective Func-

tions have been architectured to remain decoupled from

other framework components. For instance, employing an

Objective Function designed for multitask learning does not

require predefined knowledge of the number of heads within

the configuration. This design choice facilitates transitions

of the objective function, enhancing the user experience

and adaptability within the TL workflow.

Our DataModule defines the handling of diverse data

types, ranging from 3D brain MRI data to 1D fMRI time

series. It encompasses data-specific loading, preprocess-

ing, and data augmentation routines. It ensures that batch

2
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preparation conforms to a defined structure and assembles

DataLoaders. In contrast to the standard PyTorch Light-

ning (see below), our method imposes constraints on Dat-

aLoader instantiation, mandates a uniform Dataset structure,

and centralizes all data-related augmentations and transfor-

mations within the DataModule itself. Such a separation-

of-concerns supports simple substitutability of Datasets

and DataModules. This module also inherits several fea-

tures from the PyTorch Lightning DataModule, such as

the on_after_batch_transfer and on_before_batch_transfer
hooks. These hooks grant users the capability to refine batch

post-retrieval but prior to their delivery to the Scenario, en-

abling, for instance, the offloading of resource-intensive data

augmentation strategies to a GPU. This design promotes

user-driven adaptability in our framework, ensuring the

flexibility to customize components while preserving the

integrity of essential operations.

Datasets, pivotal elements within the DataModule, are

tasked with providing the necessary data and associated

labels. The DataModule delineates the procedures for pro-

cessing a certain category of data, whereas the Dataset is

explicit about the specific input files to utilize, their loca-

tions within the file system, and the particular labels to

retrieve (for instance, selecting the participant’s sex for a

pretraining task, and later using the same dataset to return

the participant’s age, thus facilitating straightforward label

specification). A DataModule can include multiple Datasets,

accommodating various TL strategies that incorporate data

from diverse sources. Each Dataset implements a custom

getitem method to ensure the standardized conveyance of

images and labels to the DataModule. This getitemmethod

invariably produces a tuple, which includes an image paired

with a list of labels, thereby adapting to the diverse labeling

demands posed by different Objective Functions. Varied

learning paradigms such as Multitask, Pre-train Fine-tune,

and Unsupervised Domain Adaptation require unique label

arrangements.

The Configuration component serves as an important

tool for managing configuration within our framework, of-

fering users the ability to customize every aspect of their

workflow. Unlike PyTorch Lightning, which primarily fo-

cuses on non-structural hyperparameters, our Configu-

ration empowers users to tailor Scenarios, Architectures,

Objective-functions, Datasets, DataModules, trainers, and

optimizer parameters, ensuring high configurability and

modularity. This user-centric approach minimizes coding

efforts, allowing users to predominantly interact with the

Configuration instead. The framework seamlessly inte-

grates with PyTorch Lightning components, enabling the

utilization of features like early stopping and automatic

optimizers, effortlessly configurable through the provided

configuration file. To ensure reproducibility, each work-

flow is associated with a defined configuration, facilitating

run reproduction. The configuration provides essential de-

tails such as splits, which define the distribution of images

across training, validation, and testing sets. It also includes

adjustable seeds to guarantee consistent runs, except when

randomness is introduced by the user. Users are not con-

fined to predefined components; instead, our framework

provides interfaces for Objective-functions, Architectures,

DataModules, Datasets, and Scenarios, making it easy to

implement specialized versions of these components, such

as a new Objective-function.

Integrated models and implementation
Our framework, implemented in Python, provides a seam-

less integration of PyTorch and incorporates PyTorch Light-

ning components. This integration offers multiple benefits,

such as support for distributed training, compatibility with

multi-GPU setups, and optimized performance for various

machine learning tasks. The framework’s alignment with

Python and PyTorch’s popularity in the research commu-

nity simplifies the learning curve, making it a user-friendly

and accessible option for TL projects. However, it also offers

signficant additional functionalities compared to PyTorch

Lightning. For instance, our TL Command-Line Interface

(CLI) distinguishes itself from the PyTorch Lightning CLI by

facilitating the passage of parameters from the DataModule

to the Scenario during initialization. This enables users to

customize various aspects, such as output size and input

size.

The framework is used mainly via configuration files.

Users specify key components such as a particular ’Data-

Module’ for input data specifications, a ’Dataset’ for data

file and label paths, ’Architecture’ for neural network struc-

ture, ’Objective’ for the transfer learning strategy, and ’Sce-

nario’ for training details. The framework supports class

path parsing, allowing users to define parameters via class

references, which can be particularly useful for complex

configurations. To facilitate hyperparameter tuning, mul-

tiple variants of these parameters can be provided. The

framework’s workflow generator leverages this information

to create Nextflow workflows, which orchestrate the execu-

tion of tasks across the computational infrastructure. This

streamlined approach enables systematic exploration and

efficient optimization of model parameters.

TLIMB comes with a number of readily available models

and configurations for its different components. Regarding

architectures, it currently offers 3d-ResNets of different

depths [22], the 3d Simple-Fully-Convolutional-Network

[14], as well as vision and swin transformers , three highly

popular imaging architectures. ResNet utilizes shortcut con-

nections to enhance training performance, while SFCN is a

lightweight 3D convolutional neural network specifically

tailored for 3D neuroimaging data. Transformers are fully

connected deep encoder-decoder stacks with self-attention.

Several customization options, such as filter and kernel sizes

and addition of dropout layers are available for each. The

framework also integrates pre-processing, neuroimaging

domain specific data augmentation, and data transformation

techniques.

Regarding TL algorithms, our framework encompasses

five methods: Pre-train-fine-tune, multitask learning, self-

supervised semi-supervised learning, elastic penalty, and

unsupervised domain adaptation. Pre-train-fine-tune in-

volves using a pre-trained network for a target task, while

elastic penalty introduces an L² penalty to preserve learned

features during fine-tuning. Multitask learning optimizes

models by sharing representations between related tasks.

Self-supervised semi-supervised learning leverages both

labeled and unlabeled data. Unsupervised domain adapta-

tion allows training deep models using labeled data from

a source domain and unlabeled data from a target domain.

On overview of these techniques can be found in [10].

TLIMB’s objective functions mirror PyTorch Lightning

training/validation/testing steps. Hyperparameter opti-
mization is facilitated through grid search and random

search. TLIMB comes with three directly usable DataMod-

3
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Table 1
Reduction in Lines of Source Code for simple pretrain-finetune scenario when moving from native pytorchlightning to our
framework.

Description Manual Implementation Framework Implementation

Total Source Lines 286 34
Data Module Definition 81 -
Dataset Definition 34 34
Lightning Module 51 -
Rest (Losses, Architecture, Import) 125 -

Table 2
Comparison of Execution Times (on AMD 3970X 32-Core / Nvidia GeForce 3090). We report average values of three runs, together
with their standard deviation (in brackets). Reduction in execution time in our framework is mostly due to parallelisation of
training and testing steps.

Execution Workflow Manual Implementation (s) Framework Implementation (s)

CPU only 109.66 (+- 0.47) 79.33 (+- 1.88)
Single GPU 72.66 (+- 0.47) 46.00 (+- 0.00)

ules, namely BaseDataModule, CropCenterDataModule,

and BioImageDataModule. Additionally, several pre-defined

Datasets from the Human Connectome Project are read-

ily available, but researchers can effortlessly incorporate

any image analysis dataset of their choice by utilizing the

provided interface.

Nextflow as workflow manager
Nextflow is a mature and popular scientific workflow en-

gine [7]. Workflows in Nextflow are written in a proper

workflow language based on Groovy and are executed by a

workflow engine which controls data dependencies, max-

imises parallelism in task executions, and supports repro-

ducibility by a sophisticated logging mechanism. Workflows

can either be executed locally (non distributed) by the sys-

tem itself, or passed on to popular resource managers, such

as Slurm or Kubernetes [25], for scheduling on arbitrarily

large clusters. In TLIMB, we utilize Nextflow to assemble TL

workflows from user-provided configurations into a work-

flow script. This script can then be executed in parallel and

distributed across all supported infrastructures, significantly

accelerating the processing speed.

Experiments
For the evaluation of the TLIMB framework, we used T1-

weighted brain images from the UK Biobank [12]. To stream-

line the evaluation process, we processed images by apply-

ing linear registration and extracting the central axial slices.

This reduced the dimensionality of the data, allowing us

to expedite the training process. We created three subsets

of randomly sampled images: 10,000 for pre-training, 500

for fine-tuning, and 1,000 for the test set. Models were

pre-trained on age regression, and fine-tuned on sex classi-

fication.

To assess usability improvements, we specified a simpli-

fied search space comprising two different neural network

architectures (ResNet-18 and a Vision Transformer), three

different learning rates (10−4,10−3,10−2), and an optional

elastic penalty loss [23] as an advanced fine-tuning tech-

nique. Both models were pre-trained for 10 epochs and

fine-tuned for one epoch. Such limited training time would

be insufficient for real world applications, but our aim here is

to investigate the framework’s usability and computational

overhead rather than achieving state-of-the-art accuracy.

Each variant was implemented in two ways: manually using

PyTorch with PyTorch Lightning, and through our TLIMB

framework compiled into a Nextflow workflow. These im-

plementations were then run in three different scenarios:

manually without the framework, with the framework se-

quentially, and with the framework in parallel. The primary

metrics for evaluation were the execution times and the

lines of code required for each scenario. Execution times are

documented in Table 1, illustrating the comparison between

running the processes with and without the framework,

both sequentially and in parallel.

Additionally, we conducted a minimal set of experiments

illustrating how TLIMB may be used in practice. On the

same data set and using the ResNet-18 architecture, we

compared fine-tuning effectiveness for different numbers of

frozen layers in the pre-trained model. Freezing lower lay-

ers of a pre-trained model reduces the number of trainable

parameters and thus reduces the risk of overfitting during

the fine-tuning process. Metrics for pre-training and fine-

tuning performance are shown in Table 3 and 4 respectively.

TLIMB achieved expected levels of accuracy, in line with

other studies [5, 16].

Execution Time: The execution times indicated mini-

mal to no computational overhead when using the TLIMB

framework. The parallel execution with nextflow signifi-

cantly reduced the time compared to the sequential runs,

showcasing the framework’s scalability (see Table 1).

Lines of Code: A notable reduction in lines of code

was observed when using TLIMB, emphasizing the ease of

use and time savings in coding. The framework abstracted

many of the repetitive tasks, such as setting up data loaders,

model configurations, and hyperparameter tuning, which

contributed to a more streamlined development process.

Prediction Performance: Although no exact replication

of literature results was attempted at the time of writing,

our preliminary results are compatible with literature ex-

pectations.

4
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Table 3
Accuracy of a ResNet18 predicting brain age from 2D images of human brain from the UK Biobank. Models were trained from
scratch. Reported results are the average and standard deviation over three training runs.

Learn Rate MSE MAE

0.01 31.3 (+- 2.63) 4.45 (+- 0.2)
0.001 26.4 (+- 0.17) 4.1 (+- 0.03)
0.0001 32.99 (+- 1.14) 4.6 (+- 0.08)
0.00001 59.99 (+- 1.63) 6.32 (+- 0.09)

Table 4
Accuracy of a ResNet18 predicting sex from 2D images of the human brain from the UK Biobank. Models were pre-trained on
age prediction (see Table 3). Learning rate was fixed at 0.001. We show 4 variations in which increasing numbers of layers are
kept frozen during fine-tuning. "None" refers to no frozen parameters.

Freeze up to Layer CE Accuracy Trainable Parameters

None 1.29 (+- 0.3) 0.76 (+- 0.04) 11.2 M
layer3.1.conv1 0.71 (+- 0.1) 0.78 (+- 0.01) 9.6 M
layer4.0.conv1 0.67 (+- 0.3 ) 0.79 (+- 0.01) 8.4 M
layer4.1.conv1 0.56 (+- 0.0) 0.72 (+- 0.0) 4.7 M

Conclusion and outlook
In this study, we introduce our innovative solution – a

tailored implementation and evaluation platform for TL

techniques in biomedical imaging applications. Guided by

specific requirements, we opted for a comprehensive frame-

work over a DSL. Our framework comprises two key com-

ponents: firstly, a Python framework built upon PyTorch

Lightning, facilitating diverse user-defined TL tasks. Sec-

ondly, a workflow generator and executor ensuring scalabil-

ity. We provide in-depth descriptions of both components,

highlighting their functionalities and capabilities. To as-

certain the effectiveness and utility of our framework, we

applied it to the "brain-age" paradigm. In this context, the

assessment of brain-age deviations from chronological age

serves as a metric for evaluating brain health. Our frame-

work demonstrates minimal or no computational overhead,

while significantly reducing the number of lines of code

required. In the pursuit of refining our framework, we pro-

pose several avenues for future development. Firstly, we

recommend the establishment of a standardized template

to streamline the evaluation of TL methods. This template

would simplify result and methodology comparisons among

researchers, fostering a more cohesive and efficient research

environment. Moreover, to enhance the efficiency of model

tuning, we advocate for the implementation of additional

hyperparameter optimization methods within our frame-

work. Specifically, techniques like Bayesian Optimization

can be incorporated to further optimize model performance.

Furthermore, to minimize manual intervention and improve

user experience, we suggest enhancing the workflow man-

ager. This enhancement includes the addition of automatic

ranking capabilities, which will facilitate a more efficient

comparison and selection of the best-performing models,

guided by predefined evaluation metrics.
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