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Summary
Background In cardiovascular magnetic resonance imaging parametric T1 mapping lacks universally valid reference
values. This limits its extensive use in the clinical routine. The aim of this work was the introduction of our self-
developed Magnetic Resonance Imaging Software for Standardization (MARISSA) as a post-hoc standardisation
approach.

Methods Our standardisation approach minimises the bias of confounding parameters (CPs) on the base of
regression models. 214 healthy subjects with 814 parametric T1 maps were used for training those models on the
CPs: age, gender, scanner and sequence. The training dataset included both sex, eleven different scanners and eight
different sequences. The regression model type and four other adjustable standardisation parameters were optimised
among 240 tested settings to achieve the lowest coefficient of variation, as measure for the inter-subject variability, in
the mean T1 value across the healthy test datasets (HTE, N = 40, 156 T1 maps). The HTE were then compared to 135
patients with left ventricular hypertrophy including hypertrophic cardiomyopathy (HCM, N = 112, 121 T1 maps) and
amyloidosis (AMY, N = 24, 24 T1 maps) after applying the best performing standardisation pipeline (BPSP) to
evaluate the diagnostic accuracy.

Findings The BPSP reduced the COV of the HTE from 12.47% to 5.81%. Sensitivity and specificity reached 95.83% /
91.67% between HTE and AMY, 71.90% / 72.44% between HTE and HCM, and 87.50% / 98.35% between HCM and
AMY.

Interpretation Regarding the BPSP, MARISSA enabled the comparability of T1 maps independently of CPs while
keeping the discrimination of healthy and patient groups as found in literature.
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Research in context

Evidence before this study
Although parametric T1 mapping is considered as an
important method in cardiovascular magnetic resonance
(CMR), the lack of universal valid reference values has been
mentioned in many studies as an obstacle to fully utilise T1
mapping in different cohorts, multi-side studies or current
guidelines. Hence, literature research covering the time frame
from September 2016 until October 2023 in PubMed and
Google Scholar for articles on T1 mapping in CMR revealed
only the z-Score approach as a way to define comparable
values. However, the necessity of a healthy cohort
examination whenever a technical change is performed, high
volatility in the standard deviation of healthy volunteer
examination and lack of accessibility seems to be obstacles of
this approach.

Added value of this study
Our work introduces the Magnetic Resonance Imaging
Software for Standardization (MARISSA) as an approach for
the post-hoc standardisation of parametric T1 maps in CMR.
As this standardisation pipeline can capture different settings,
we analysed 240 different settings in a two-step approach
and evaluated the best performing one. We were able to show
that the choice of the pipeline setting is crucial for the success
of the standardisation and that this proof-of-concept

including the parameters age, sex, scanner and sequence is
already good enough to differentiate healthy volunteers from
patients with hypertrophic cardiomyopathy and amyloidosis
as in a highly controlled intra-scanner-intra-sequence setting.

Implications of all the available evidence
Our results demonstrate that a post-hoc standardisation of
parametric T1 maps is feasible. The implementation as a
python software with a graphical user interface makes the
standardisation procedure directly available and shareable on
any common operating system. Although the described
approach with four considered confounding parameters
already allowed a comparable discrimination of two
cardiovascular diseases from a healthy cohort, this work is a
proof-of-concept that needs further investigations on more
scanners, sequences and diseases but also other confounding
parameters. Compared to the z-score, our standardisation
pipeline does not require a re-examination of a healthy
reference cohort on each site whenever a technical change
occurs. This reduces the effort and costs to increasingly enable
parametric T1 mapping. Consequently, this work is a further
step forward to strengthen the establishment of parametric
T1 mapping in the clinical routine, which in turn helps to
improve the detection of cardiovascular diseases.
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Introduction
Cardiovascular magnetic resonance (CMR) is recom-
mended as the non-invasive imaging modality of choice
for myocardial tissue characterisation in cardiovascular
diseases (CVD).1–3 This characterisation is enabled by
quantitative methods such as parametric T1 mapping.4,5

Its integration into clinical CMR routine protocol
recently showed improved diagnostic accuracy for the
detection of CVDs.6 Although parametric T1 mapping is
already increasingly used in clinical routine and turned
from a research to a product sequence, reproducibility
is limited to intra-institutional reference values.4,7 This
lack of universally applicable reference values is a major
obstacle for a stronger assertiveness of parametric T1
mapping in the clinical routine and is caused by subject
specific, technological and post-processing procedure
variations.7–9 These variations act as confounding pa-
rameters (CPs) on parametric T1 maps and thereby on
the quantitative outcome, which in turn potentially in-
fluence the treatment of CVDs. Hence, every change in
hard- or software may require new local reference
values and thus a re-examination of a healthy reference
cohort.

Recently, the reproducibility of parametric T1 map-
ping was validated across different scanners if CPs such
as manufacturer, field strength, acquisition schemes
and post-processing were kept constant.10 However, the
technical setups across institutions are manifold and
cannot be globally aligned by force. As the influence of
CPs such as age and sex,11,12 sequence variants13,14 or
scanner models12 on parametric T1 mapping were
described in the literature, universal valid reference
values are required to consider and consequently to
minimise the induced CP’s bias.

All in all, there is a gap of defining universal valid
reference values in parametric T1 mapping based on a
generalised approach. For that reason, the aim of this
work is to introduce a generic post-hoc standardisation
pipeline that enables comparability while maintaining
diagnostic accuracy and reducing the amount of neces-
sary healthy volunteer examinations. We propose that
standardisation is enabled by estimating the impact of a
CP relatively to a reference CP value. Consequently,
parametric T1 mapping values are post-hoc transform-
able into values of a reference CP environment. This
proposed transformation is embedded in the self-
developed open-source Magnetic Resonance Imaging
Software for Standardization (MARISSA) that is made
available with this work.
Methods
In this work the four CPs: age,11,12 sex,11,12 scanner12

and sequence variant13,14 were chosen from literature
to show a proof-of-concept for the proposed post-hoc
standardisation of parametric T1 maps. This includes
www.thelancet.com Vol 102 April, 2024
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the introduction of MARISSA as a software tool to
setup those post-hoc standardisation pipelines and to
demonstrate the diagnostic quality after stand-
ardisation. Therefore, the used data collection included
three cohorts: healthy volunteers (Healthy), patients
with left ventricular hypertrophy (LVH) including hy-
pertrophic cardiomyopathy (HCM) and patients with
amyloidosis (AMY). Both patient cohorts were
included on account of a statistical significant differ-
entiation from healthy volunteers in native T1 map-
ping with considerably higher T1 values in AMY and
on average higher but partly overlapping ranges in
HCM.15 The following first sub-section Dataset de-
scribes the used data collection of the three included
cohorts. A part of Healthy (Healthy train datasets/
HTR) was used in a first step to estimate the individual
CP impact. As different strategies exist to estimate the
CP induced bias, the Confounding Parameters Impact
Estimation (CPIE) sub-section covers detailed infor-
mation about the different estimation strategies. The
following sub-section on the Best Performing Stand-
ardisation Pipeline (BPSP), describes the evaluation of
the best performing CPIE among all tested strategies
with respect to the remaining healthy volunteers
(Healthy test datasets/HTE). The before last sub-
section on Diagnostic Implication (DI) covers the
evaluation of the diagnostic accuracy and intra-subject
differences after applying the BPSP on the said HTE as
well as the HCM and AMY cohorts and includes the
Statistics. Finally, the Implementation sub-section de-
scribes briefly the MARISSA structure followed by the
Ethical approval and Role of the funding source.

Dataset
The included retrospective data collection of the three
cohort groups: Healthy, HCM and AMY consisted of
midventricular slices only and originated from previous
and ongoing studies of our working group or in which
our working group participated until June 2023
considering scanners that are part of the Berlin CMR
research network.10 Age was the only numerical CP; all
other considered CPs were categorical. The various or-
igins in the data collection enabled variability in the
concerned CPs while some individuals received multi-
ple measurements, i.e. different sequences and/or
scanners. Fig. 1 shows an overview of the total numbers
in each cohort as well as the variation in the four con-
cerned CPs. A detailed breakdown of the underlying
data for each scanner-sequence combination for both
sexes is provided in the Supplemental Material S1.

The segmentation of all parametric T1 maps was
performed automatically with a subsequent visual in-
spection by two experts (JG and EB). First, all T1 maps
were segmented using the cropU cascaded model16 and
a research deep learning segmentation model provided
by Siemens Healthcare (version 21 hotfix, Siemens
Healthcare GmbH, Erlangen, Germany). The expert
www.thelancet.com Vol 102 April, 2024
chose the best segmentation out of either model or the
intersection of both. If none was considered accurate
enough by the experts, the segmentation was performed
manually in cvi42 (version 5.13.7, Circle Cardiovascular
Imaging, Calgary, Canada) as previously reported.10

Confounding Parameters Impact Estimation (CPIE)
The CPIE is a regression model training based on the
HTR and represents the central part of the proposed
standardisation pipeline. For that reason, the Healthy
data collection were split into 85% training and 15%
testing with respect to the number of subjects per study.
Thus the HTR consisted of 214 subjects (814 T1 maps,
100 males / 114 females and 38.46 ± 15.20 years) while
the HTE consisted of 40 subjects (156 T1 maps, 18
males / 22 females, 39.50 ± 15.89 years).

The CP impact can be solely estimated relatively to a
reference as the absolute true T1 mapping value is un-
known due to an intrinsic lack of accuracy or precision
in T1 acquisition methods.9 Therefore, we propose to
define for each CP a reference value that is assumed
with no bias. In this work, the reference CP values were
set to 18 years, male, 3.0T Siemens Verio [syngo MR
B17] and T1 Map MOLLI 5(3)3 b for the concerned CPs
age, sex, scanner and sequence variant respectively.

Consequently, the regression estimates the differ-
ence between the examined apparent T1 mapping
value in the according CP environment and the target
T1 mapping value in the reference CP environment.
The target T1 mapping value is defined as the mean T1
value of HTR subjects whose concerned CP value
matches the reference CP value. During the fitting of
the regression the difference between apparent and
target T1 mapping value represents the dependent and
the CP value(s) represent the independent variable(s).
Whether one or multiple CPs are taken into account
depends on the strategy setting. Table 1 lists an over-
view of possible settings for the standardisation pipe-
line that are explained in the following.

Each CPIE model is described by the regression-type,
y-type, mode, bins and cluster-type. The linear regression
is the most basic regression model used in a variety of
disciplines17 while the linear support vector regression18

(LSVR) was implemented as an alternative linear model.
Additionally, the random-forest19 regression (RFR) and
extra-trees20 regression (ETR) were implemented as those
are assumed to handle non-linear relationships better
than linear models. All regression models were based on
the scikit-learn package21 and setup in the default setting,
except for RFR and ETR, where the number of estimator
trees were increased to 1000. While an increased number
of trees enables an improved performance, an overfitting
is excluded by its intrinsic structure.19

The chosen regression-type can either estimate the
difference between apparent and target T1 value in ab-
solute (ms) or relative (%) values according to the y-type
setting. While the absolute case shifts all values equally
3
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Fig. 1: Dataset Overview – The general overview of the Healthy (green), patients with left ventricular hypertrophy including hypertrophic
cardiomyopathy (HCM, orange) and patients with amyloidosis (AMY, red) cohorts are given with S: number of studies, N: number of subjects,
M: number of midventricular native parametric T1 maps, m: males and f: females. The age is given as mean ± standard deviation. The grey bars
represent respective parametric T1 mapping sequences and the turquoise and blue boxes represent a scanner. For each scanner-sequence
combination the number of subjects and respective T1 maps is itemised.
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such that the intrinsic value spread maintains, the
relative case weights the shift according to the absolute
T1 value.

The mode, finally, defines whether a regression is
performed for each CP individually (individual and
cascaded) or all at once (ensemble). The individual
mode fits a regression for each CP individually and in-
dependent. Any other CPs are kept constant to mini-
mise their impact on the regression. Consequently, only
a small portion of the HTR can be used for each CP
regression fit. The cascaded mode works the same for
the first CP regression but iteratively standardise the
www.thelancet.com Vol 102 April, 2024
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Setting Options

regression-type extra-trees (ETR)
linear
linear support vector (LSVR)
random-forest (RFR)

y-type absolute
relative

mode cascaded
ensemble
individual

bins 1 to minimum number of segmented pixels

cluster-type agglomerative average
agglomerative complete
agglomerative single
agglomerative ward
equal distant
equal size
gaussian mixture
k-means

Table 1: Standardisation pipeline setting – Each pipeline setting can
capture exact one of the given possible values.

Articles
HTR data, such that subsequent CPs must not consider
previously fitted CPs. Therefore, the amount of useable
data increases for later CPs. It is important to note that
the outcome depends on the order of the considered
CPs. Finally, the ensemble mode takes all CPs at once.
The ensemble mode is expected to handle cross-
dependent CPs best. Categorical variables are con-
verted into category numbers in the ensemble mode,
whereas in individual and cascaded mode each category
receives its own regression model.

While regression-type, y-type and mode directly af-
fects the regression model, the setting of a bin larger
than one accounts for cross-dependencies between the
CP value and the apparent T1 value. It is currently un-
known, if higher T1 values are differently affected by a
CP than lower ones. The setting of a bin larger than one
requires the choice of a clustering algorithm that clus-
ters the T1 values into bins. The different agglomerative
clustering algorithms, the Gaussian mixture and k-
means clustering were taken from the scikit-learn
package21 while equal distant and equal size clustering
were self-implemented. For equal distant clustering all
bins have the same width while for equal size clustering
the T1 values are sorted and the same number of T1
values are used for each bin. Although the number of
bins is mainly limited by the smallest possible number
of segmented pixels, which would represent each pixel
as its own cluster, we recommend ten bins or fewer as
otherwise the number of T1 values in each bin is too
small to be representative.

In the light of the standardisation pipeline, CPIE
outputs the estimated bias and is therefore an integra-
tive part of the pipeline. First, a T1 mapping dataset in
Digital Imaging and Communications in Medicine
(DICOM) format with a corresponding segmentation
www.thelancet.com Vol 102 April, 2024
mask is expected as input. After extracting the
segmented apparent T1 values, the CPIE is applied to
estimate the CP induced bias. This bias is then sub-
tracted from the apparent T1 values and the resulting
standardised T1 values are returned as output.

Best performing standardisation pipeline (BPSP)
As the optimal standardisation pipeline setting is un-
known, CPIE were evaluated for 240 different settings
in two steps. First, bins were set to one, hence, cluster-
type had no impact and all 24 combinations of
regression-type, y-type and mode were fitted. The
resulting standardisation pipelines were evaluated with
respect to the coefficient of variation (COV, Equation
(1)) of the mean T1 time in the HTE.

COV = σ

μ
(Equation 1)

The lower the COV, the less variability across the
subjects of the HTE exist and, consequently, a better
pipeline performance can be assumed. Considering the
top three performing pipelines of this first step, fitting
was performed for all combinations of two to ten bins
and clustering algorithms resulting in additional 216
pipelines. The BPSP was evaluated as the one out of the
240 fitted standardisation pipelines with the lowest COV
in the HTE group.

Diagnostic Implication (DI)
While the evaluation of the BPSP accounted for a
minimisation of the inter-healthy-subject variability, the
DI step assessed the discriminability between the
healthy test cohort and patients. Therefore, the HTE,
HCM and AMY cohort were standardised with the
BPSP. A progression plot was used to show the value
progression from before to after standardisation.

Statistics
All available retrospective datasets were included that
were diagnosed as either Healthy, HCM or AMY. Age
and sex were self-reported and all subjects were 18 years
or older. Non-midventricular and contrast enhanced
parametric T1 maps were excluded. The data were
randomized, blinded and checked for artifacts by two
experts (JG and EB).

The outcome statistics of the post-hoc stand-
ardisation is integrated in the DI. This includes the
boxplots for each cohort before and after standardisation
indicating the respective value spread. Further, confi-
dence intervals (CIs) were calculated and statistics be-
tween the cohorts after standardisation were tested with
an independent t-test and ANOVA test if all cohorts
were normal distributed according to the Shapiro-Wilk-
test, otherwise with the Mann-Whitney-U and Kruskal–
Wallis test. Significance was assumed if both tests had a
significance level of α ≤ 0.05. Furthermore, a receiver
5
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operating characteristics (ROC) analysis was performed
to evaluate the optimal threshold between the cohorts.
The post-hoc standardisation ROC were compared to
the intra-scanner-intra-sequence ROC before stand-
ardisation to evaluate the maintenance of the diagnostic
accuracy. Further, evidence was assumed if the sum of
sensitivity and specificity reached 150% or above as
recommended in literature.22 Finally, intra-subject pro-
gression plots were performed with HTE subjects that
were measured in different CP environments.

Implementation
The core of MARISSA is a SQLite database in the
backend, referred in the following as MARISSA DB, and
an overlaying graphical user interface (GUI). Fig. 2
shows abstractly the structure and user interaction in
MARISSA. The software was fully implemented in Py-
thon (Version 3.8, Python Software Foundation, Bea-
verton, USA) and is available in the Supplemental
Material S2.23 All necessary site packages, installation
instructions and further detailed information are listed
in the MARISSA User Manual in the Supplemental
Material S3.

As MARISSA is not only implemented for para-
metric T1 mapping in CMR, the software works in
separate projects with individual MARISSA DBs, that
are exportable with or without data. Within MARISSA
DB, the related tables are separated: On the one hand
the active site, where the user manipulates data, settings
and parameters and a passive site that contains all
trained standardisation pipelines including a copy of all
Fig. 2: MARISSA structure – The central element is the MARISSA DB based
tbl_segmentation, tbl_data, tbl_setup, tbl_parameter, tbl_match_setup_d
user interaction takes place by adding, editing or deleting information an
confounding parameter impact estimation is fitted. In order to track bac
green tables tbl_standardization_setup, tbl_standardization_data, tbl_s
tup_parameter while the tbl_standardization stores the fitted regression
the standardisation on a dataset will transform the T1 values into a range
depicted on the right site.
necessary information to reconstruct the training. This
separation assures for a retraceable standardisation
pipeline training whereas an export of the project
without data loses the traceability while still maintaining
the standardisation functionality.

The definition of CPs is based on DICOM tags.
Standard DICOM tags are already available in MAR-
ISSA, while specific CPs like the sequence variant are
extracted by string processing of the series description.
The choice of the value representation defines the CP as
either a numerical or categorical parameter. MARISSA
supports also multi-value DICOM tags as long as the
multiplicity remains stable. In this case, each value
dimension is considered individually as an own CP. The
DICOM standard gives more information about the
DICOM tag composition.24

The import of DICOM data and segmentations in-
cludes a customisable description in order to enable
cohort differentiation within the MARISSA DB. While
training data must be imported, the standardisation
pipeline is applicable on imported as well as external
data. Applying the standardisation on a dataset exports
the original DICOM data, an Excel table, a MAR-
ISSADATA file and a progression plot. The Excel table
contains information about the CP values and the
transformation of the segmented T1 values while the
MARISSADATA file contains the same information as a
pickled Python dictionary such that it can be imported
and further processed in other Python applications.
More detailed information about the usage of MARISSA
is provided in the Supplemental Material S3.
on a SQLite database with relational connected tables: The blue tables
ata_segmentation and tbl_match_setup_parameter are those, where
d data. When starting the training of a standardisation pipeline, the
k the training, the necessary information is copied into the separate
tandardization_parameter and tbl_standardization_match_data_se-
models for the confounding parameter impact estimation. Applying
that represents the reference confounding parameter environment as

www.thelancet.com Vol 102 April, 2024
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Ethical approval
This study was approved by the local ethics committee
of the Charité Universitätsmedizin Berlin as retrospec-
tive study (study ID: EA 1253 21) and complies with the
declaration of Helsinki. The requirement for written
informed consent was acquired during the original
clinical studies and was therefore waived in this study
due to its retrospective design as approved by the local
ethics committee of the Charité Universitätsmedizin
Berlin (study ID: EA 1253 21). Due to institutional law,
datasets cannot be shared.

Role of the funding source
This study was supported by the BMBF (Bundesmi-
nisterium für Bildung und Forschung)/DZHK
(German Centre for Cardiovascular Research) via
project FKZ81Z0100208. The BMBF/DZHK had no
influence on the design, execution or evaluation of
this study.

Results
The results are given for the three steps Confounding
Parameters Impact Estimation (CPIE), Best Performing
Standardisation Pipeline (BPSP) and Diagnostic Impli-
cation (DI) separately as well as the Implementation of
MARISSA.
Fig. 3: Coefficient of variation (COV) in the 240 trained standardisation
setting denoted as the number of bins on the x-axis, the regression-type
the scatter point colour and the clustering algorithm according to the dot
COV threshold of the unstandardised data with everything above in the r
means an improvement of the intra-healthy-subjects variation. The green
240 pipelines representing the best performing standardisation pipeline

www.thelancet.com Vol 102 April, 2024
Confounding Parameters Impact Estimation (CPIE)
The CPIE could be successfully trained without abortion
on all 24 settings without and 216 settings with clus-
tering. However, as the individual mode requires con-
stant CP values for all CPs except the estimating one,
the training with the used HTR could not include the
sequences T1 map MOLLI 3(3)5 b and T1 map SASHA
GRE due to variations in the other CPs. Consequently,
these two sequences could not be standardised and
acted like no bias.

Best performing standardisation pipeline (BPSP)
The top three settings across the 24 settings without
clustering were LSVR regression on relative values in
cascaded mode, ETR on relative values in ensemble
mode and ETR on absolute values in ensemble mode
with a COV of 5.98%, 6.10% and 6.23% respectively for
the mean T1 value of the respective standardised HTE.
Among all 240 trained pipelines, the BPSP was obtained
with the LSVR regression on relative values in the
cascaded mode with two bins and the agglomerative
single clustering resulting in a COV of 5.81%.

Fig. 3 plots the COV for each trained standardisation
pipeline including the best obtained COV and the COV
of the unstandardised HTE of 12.47% revealing that
some standardisation pipeline settings even worsen the
uncertainty in the HTE.
pipelines – The COV is plotted against the standardisation pipeline
by the scatter point marker style, the y-type and mode according to
ted line for bins greater than one. The purple solid line represents the
ed area means a worsening while everything below in the green area
line with the inline circle shows the optimal COV reached among the
(BPSP).

7
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Diagnostic Implication (DI)
Applying the BPSB on the three test cohorts HTE, HCM
and AMY results in a COV of 5.81%, 4.46% and 6.05%
respectively compared to an unstandardised COV of
12.47%, 9.56% and 6.06%. Hence, COVs for HTE and
HCM showed an improvement after standardisation
while the COV for AMY remained almost equal. Fig. 4
gives an overview of the respective cohort data before
and after standardisation with the BPSP and the indi-
vidual impact of each CP on every single test dataset.

Already before standardisation the HTE and HCM as
well as HCM and AMY but not HTE and AMY were
statistically significant different. However, the 25%–75%
quantile ranges of HCM (999.57–1186.00 ms) and AMY
(1087.84–1148.40 ms) were almost completely within the
range of HTE (1007.81–1213.34) and the mean value of
both patient cohorts (HCM: 1076.69 ms / AMY:
1118.39 ms) were lower than in HTE (1140.20 ms) while
both patient groups are expected with significant higher
T1 values.15 This contradiction to literature were due to the
mixture among CPs in the data collection, especially in
regard of the occurring scanner and sequence combina-
tions according to the detailed cohort dataset breakdown
in the Supplemental Material S1. After standardisation, all
cohorts revealed statistically significant difference from
each other and no overlapping CIs. None of the cohorts,
neither before nor after standardisation, could remain in
the margin of the CI of the unstandardised HTR data,
which captured the reference CP environment. However,
Fig. 4: Inter-cohort progression plot – On the left and right are respe
standardisation pipeline (BPSP) the boxplot of the mean T1 value for ea
hypertrophy including hypertrophic cardiomyopathy (HCM) and patients
ferences and n. s. means not significant. Further, the confidence interval
interval of the unstandardised healthy data which captures the reference
from original towards standardised values with the BPSP are plotted wit
after standardisation the HTE was closest to fit in whereas
HCM and AMY were clearly above. The resulting T1 value
ranges (mean ± standard deviation) after standardisation
were 1136.78 ± 66.09 ms, 1186.27 ± 52.93 ms and
1337.62 ± 80.92 ms for HTE, HCM and AMY
respectively.

The ROC analysis, as shown in Fig. 5, revealed
an optimal threshold (sensitivity / specificity) of
1163.89 ms (71.90% / 72.44%) between HTE and HCM,
1204.46 ms (95.83% / 91.67%) between HTE and AMY
and 1287.89 ms (87.50% / 98.35%) between HCM and
AMY after standardisation. The differentiation between
HTE and HCM were slightly below the 150% threshold
for the sum of sensitivity and specificity while HTE and
AMY as well as HCM and AMY were above it.22 In all
three post-hoc standardised ROC analysis sensitivity and
specificity were in the range of unstandardised intra-
scanner-intra-sequence differentiability. The sum of
sensitivity and specificity increased or at least remained
after standardisation within the intra-scanner-intra-
sequence datasets although individual sensitivity and
specificity values changed.

Finally, eight subjects of the HTE group received at
least two different acquisitions. The intra-subject pro-
gression plot for each of these subjects is shown in
Fig. 6. The plot shows a minimisation of the value
spread after standardisation in all subjects but one.
Nonetheless, all subjects showed a minimisation of the
COV, which reflects a concentration of the acquisitions
ctively before and after standardisation with the best performing
ch cohort: Healthy test datasets (HTE), patients with left ventricular
with amyloidosis (AMY). The * denotes statistically significant dif-
s are plotted against the purple area that represents the confidence
confounding parameter environment. In the middle the progression
h detailed impact for each confounding parameter.

www.thelancet.com Vol 102 April, 2024
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Fig. 5: ROC analysis – The left site represents before and the right site after standardisation. Each curve represents intra-scanner-intra-sequence
data. After standardisation shows additionally the ROC analysis in a bold green curve that reflects the differentiability among all healthy test
datasets (HTE), patients with left ventricular hypertrophy including hypertrophic cardiomyopathy (HCM) and patients with amyloidosis (AMY).

Articles
after standardisation. However, individual measure-
ments, especially SASHA based parametric T1 maps,
revealed high imprecision after standardisation.

Implementation
The MARISSA was successfully implemented as a Py-
thon software tool with a SQLite database backend. The
www.thelancet.com Vol 102 April, 2024
overlaying GUI allows usability for programmers and
clinicians alike. The definition of custom CPs, however,
requires at least experience in the DICOM tag standard
as well as Python string processing. Furthermore, data
filtering in the GUI works by SQL commands via
respective input fields. The software enables to work in
projects that can be exported with and without data.
9
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Fig. 6: Intra-subject progression plot – Eight healthy volunteers underwent at least two different acquisitions. The respective standardisation with the
best performing standardisation pipeline (BPSP) is shown for each scanner and sequence combination. The violet bar on the left of each plot shows
the value spread before and the green bar on the right the value spread after standardisation as well as the coefficient of variation (COV).
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Discussion
In this work, we were able to show that a post-hoc
standardisation of parametric T1 maps in CMR is
feasible while maintaining disease differentiability ac-
cording to sensitivity and specificity as in intra-scanner-
intra-sequence scenarios. We could further show that
the choice of the standardisation pipeline settings was
crucial for the overall performance. The considered CPs
of age, sex, scanner and sequence revealed the LSVR
regression on relative values in the cascaded mode with
two bins and the agglomerative single clustering as the
BPSP among 240 tested standardisation pipelines with
respect to the HTE of native, mid-ventricular parametric
T1 maps in CMR. The implemented MARISSA
including a GUI is made available with this work for
further development and evaluation. In the following, a
detailed discussion about the Dataset, the results of
Confounding Parameters Impact Estimation (CPIE), Best
Performing Standardisation Pipeline (BPSP), Diagnostic
Implication (DI) and Implementation is presented and
ends up with the Limitations and a short Conclusion.

Dataset
The included datasets were retrospectively collected
from available data with a diagnosis of either Healthy,
HCM or AMY. The data were not filtered except for
native, artifact-free, midventricular slices. Consequently,
the data were not balanced according to scanner-
sequence combinations. The examination of both pa-
tient cohorts was mainly performed on 1.5T Siemens
scanners with less sequence variations resulting in,
contrary to literature,15 lower average T1 values than
HTE before standardisation. Other established manu-
facturers were not included due to missing access
within the Berlin CMR research network.10 The
considered patient cohorts HCM and AMY reflect only
two CVDs with expected significant higher T1 values.
The diagnostic performance on other, more subtle,
CVDs requires future investigation.

Regarding the segmentation, different strategies
exist.11,12 While the segmentation of the septum is more
precise,4 it lacks the majority of the myocardial voxels.
Therefore, this work used a full circular segmentation of
the myocardium at the cost of an increasing standard
deviation in the T1 values compared to septal segmen-
tation only.12

Confounding Parameters Impact Estimation (CPIE)
In this work, the CPIE trained regression models to
estimate the bias between apparent and target T1 values
based on a healthy volunteer cohort. Subjects with CVDs
were excluded in this step, as those would have an un-
intentional influence towards either higher or lower T1
values.25 The CPIE, as central part of the post-hoc
standardisation pipeline, enables the comparability of
parametric T1 mapping. Although multiple studies were
published on reference values for parametric T1
www.thelancet.com Vol 102 April, 2024
mapping over the last decade, those were only valid in a
specific cohort and technical setting.12,26,27

The z-Score transformation into a unitless value
domain enabled as the solely established approach the
comparability across different CP environments.28 How-
ever, the z-Score calculation is based on a local healthy
reference cohort. Consequently, a healthy cohort exami-
nation is not only performed after initial operation but
always necessary after a hard- or software change of the
MR scanner that perturbs the T1 value distribution of the
healthy cohort.28 Although considered in the current
guidelines,4 this obstacle of additional effort and costs
circumvent the establishment of the z-Score in the clin-
ical routine. The inclusion of novel CP values or even
CPs themselves requires, likewise the z-Score trans-
formation, additional healthy volunteer examinations.
However, thanks to the transfer learning capability of
MARISSA, single site scans are sufficient to apply CP
value standardisation on other sites. Consequently, the
amount of healthy volunteer examinations and thereby
the cost may be reduced with our standardisation
approach compared to the z-Score. Nonetheless, an
increasing amount of training data is necessary over
time, which is limited by the accessibility and potential
restrictions due to institutional or governmental law.

The number of necessary training data highly de-
pends on the standardisation pipeline setting, especially
the mode. The individual mode already revealed in this
work, that two sequences could not be captured during
training as all other CPs were expected to be constant.
Hence, the individual mode is prone to the training data
and most likely misses certain CP values. However, it
allows for the best isolation of CP’s influence.
Compared to that, the cascaded mode depends on the
order of the CPs as the first one works the same way as
the individual mode while the last one can consider the
whole training dataset as all other CPs are already
standardised. As a consequence, inter-parameter corre-
lations are partly considered, but some CP values might
be missed as well if the training dataset or the order of
the considered CPs is not well chosen. Finally, the
ensemble mode considers all in one and catches all CP
values that were given in the training data. The
ensemble mode accounts for inter-parameter correlation
best, but fails completely if a test dataset includes a
categorical value that was not in the training dataset.
The individual and cascaded mode on the contrary still
standardise for all other CPs and can skip those that are
unknown. As a rule of thumb, the number of necessary
training data increases from ensemble to cascaded to
individual mode in order to capture all CP values.

As this study is a proof-of-concept for a stand-
ardisation approach of parametric T1 maps in CMR,
only a limited number of parameters were included.
There are other parameters such as heart rate (HR),9,29

the body-mass-index (BMI)30 or the voxel size31 that
have a known relevant impact. However, BMI and HR
11
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could not be included as the necessary information were
not available in all datasets of this study due to data
anonymisation and its retrospective character. Further,
all three CPs are numerical variables, resulting in a
much higher necessary amount of training data for the
individual and cascaded mode. On the contrary, each
numerical variable can be turned into a categorical one
by clustering, for example the age can be divided into
decades or the BMI into the groups proposed by the
world health organization.32

The patient specific parameters age and sex were
included as potential CPs, but showed an ambivalent
impact in the literature. Roy et al.11 revealed a significant
whereas Dabir et al.12 showed only a slight but not sig-
nificant impact due to age and sex. Our results, in turn,
emphasised a non-zero induced bias, however, much
less than the scanner or sequence originated biases. If
age and sex turn into neglectable CPs compared to other
potential CPs, those may be excluded easily from the
standardisation pipeline within MARISSA in the future.

The considered CPs in this work treated subject
specific and technological variations only. However,
post-processing procedure variations represent CPs in
parametric T1 mapping as well.8 The post processing
comprises everything from image reconstruction8 to
segmentation procedures.33 While reconstruction algo-
rithms are not available from DICOM tags, the seg-
mentation method of the myocardium is still based on
expert agreement or in accordance to guidelines.34

Although fully automated segmentation procedures
exist,16 manual adaptions are still necessary. Conse-
quently, the segmentation method is currently a local
specific, hard to definable CP. In this work, the seg-
mentation was performed according to a pre-defined
standard operating procedure. However, in future
perspective, when including more training data, this
must be considered, especially since artificial intelli-
gence assisted segmentation procedures become ever
more popular.16,35

Best performing standardisation pipeline (BPSP)
As the post-hoc standardisation pipeline can be
computed in different settings, the results showed that
the setting choice is crucial for the performance of the
pipeline with respect to the COV as quality index. Some
pipeline settings even showed a worsening of the COV
compared to the unstandardised values assuming a non-
suitable standardisation pipeline setting. Although the
BPSP among 240 evaluated standardisation pipeline set-
tings included a clustering into two bins, the perfor-
mance gain of 0.17% due to the clustering was rather
small compared to a COV reduction of up to 6.49% by a
standardisation pipeline without clustering. In most
cases the clustering even worsened the outcome. There-
fore, the determination of the suitable regression-type,
y-type and mode is most important whereas clustering
into bins reflects a rather potential fine-tuning step.
Diagnostic Implication (DI)
The BPSP allowed for a statistically significant differ-
entiation of the three cohorts: HTE, HCM and AMY.
However, the sum of sensitivity and specificity across
HTE and HCM was below 150% due to a high overlap
and thus not sufficient for evidence according to litera-
ture.22 This aligns with literature values on 3T scanners
for Healthy and HCM that show also a significant
difference but high overlap as in Liang et al.
(1228.4 ± 42.7 ms vs. 1290.0 ± 64.3 ms),36 Qin et al.
(1240.0 ± 29.8 ms vs. 1308.0 ± 55.5 ms)37 and Lavall et al.
(1225 ± 21 ms vs. 1266 ± 44 ms).15 However, as HCM
has manifold morphologies due to a large variety of
genotypes and risk factors, the disease state changes
over time, which in turn affects the amount of diseased
myocardial tissue.38,39

Baggiano et al.40 showed a sensitivity of 85% and
specificity of 87% when comparing Healthy with AMY
that could be outperformed with our BPSP with a
sensitivity of 95.83% and specificity of 91.67%. How-
ever, they were able to include 436 patients with
amyloidosis, which naturally assumes a higher value
spread in that patient cohort compared to our 24
included ones. The z-Score approach reached in the
study by Kranzusch et al. an equivalent sensitivity of
96% but an improved specificity of 100%.28

In the discrimination of both patient groups, HCM
and AMY, the sensitivity (87.5%) and specificity
(98.35%) were in range of published literature values by
Lavall et al. (100% / 97%),15 Nam et al. (76.1% / 83.3%)41

and Martinez-Naharro (86.54% / 80.36%).42 Conse-
quently, amyloidosis is reliably detectable after stand-
ardisation while HCM only in an advanced state.

When going from the global cohort perspective into
the intra-subject view, the BPSP managed to decrease
the COV within the same subject across different ac-
quisitions. Although most acquisitions could be
harmonised towards equal values, individual outliers
remained after standardisation. Those outliers origi-
nated mainly either from a SASHA based sequence,
which are assumed to have a higher accuracy but lower
precision than MOLLI based sequences,9 or already had
unusual values for the specific field strength and
sequence scheme setup. This, however, shows the limits
of MARISSA pipelines. On the one hand, outlying or
unusual values will remain outlying or unusual after
standardisation and, on the other hand, imprecision
cannot be improved. Consequently, the used data for
training and testing need a high degree of precision.
This does not only affect the used sequence variant but
also demands highly controlled production process of
the magnetic resonance imaging scanner. High toler-
ances undermine the generalisability of the proposed
post-hoc standardisation pipeline approach. This sus-
ceptibility to imprecision is also shared by the z-Score
approach whose usability is undermined by high fluc-
tuations in the standard deviation.43 The standard
www.thelancet.com Vol 102 April, 2024
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deviation of measured T1 values can be minimised by
solely segmenting the septal region12 instead of the full
midventricular myocardium as performed in this work.
However, this segmentation strategy would miss the
majority of the myocardial tissue.

Finally, it is important to mention, that the stand-
ardisation approach calculates the impact of a CP
compared to a reference CP value. Consequently, the
standardised T1 maps become comparable, but do not
necessarily represent the true T1 relaxation value of the
myocardial tissue. The reference sequence MOLLI 5(3)3 b
for example is known to underestimate the true T1 value.9

Implementation
As MARISSA was fully implemented in Python, it can
be installed and run on all major operating systems.
Export functionality enables the sharing of trained
standardisation pipelines either with or without data.
Although tested for parametric T1 maps of the heart
only, MARISSA is intended for usability among other
quantitative methods, like parametric T2 maps,44 or
tissues, such as the liver.45

Furthermore, MARISSA is extensible in the future.
Additional conceivable CPs can be entered into MAR-
ISSA via the GUI while novel clustering algorithms and
regression models are easily implementable due to a
standardised structure.

A subsequent development of MARISSA may
include further adjustment options within the GUI.
This comprises for example the hyperparameter setup
of regression models and clustering algorithms beyond
the standard setting or individual settings for each CP
within a standardisation pipeline.

Limitations
The major limitation of this work is the unbalanced
underlying dataset due to its retrospective design. The
lack of further scanner-sequence combinations limits
the generalisability of the proposed standardisation
pipeline. The transfer learning capability of scanner-
sequence combinations that are not reflected in the
training data but captured by the BPSP requires further
investigation. This work only contained two cases in the
AMY cohort whose scanner-sequence combination were
not reflected in the training data. Additionally, a more
convincing DI requires more scanner-sequence vari-
ability in the considered patient groups. As this work is
a proof-of-concept and includes anonymised data,
further known relevant CPs were not included and
should be considered in a future state. The inclusion of
mid-ventricular slices only does not meet all manifold
phenotypes of an HCM which may affect only various
local regions rather than the whole ventricle.46

Conclusion
All in all, we were able to introduce the MARISSA to
enable post-hoc standardisation pipelines for parametric
www.thelancet.com Vol 102 April, 2024
T1 mapping in CMR. The diagnostic power after
standardisation with the BPSP in our proof-of-concept
were equivalent to those found in literature. The per-
formance of the standardisation pipeline highly depends
on the pipeline setting and the precision of the provided
data. The current results give hope to improve compa-
rability when adding more training data and considered
CPs in the future.
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