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BACKGROUND: The aim of this study was to analyse transcriptomic differences between primary and recurrent high-grade serous
ovarian carcinoma (HGSOC) to identify prognostic biomarkers.
METHODS: We analysed 19 paired primary and recurrent HGSOC samples using targeted RNA sequencing. We selected the best
candidates using in silico survival and pathway analysis and validated the biomarkers using immunohistochemistry on a cohort of
44 paired samples, an additional cohort of 504 primary HGSOCs and explored their function.
RESULTS: We identified 233 differential expressed genes. Twenty-three showed a significant prognostic value for PFS and OS in
silico. Seven markers (AHRR, COL5A2, FABP4, HMGCS2, ITGA5, SFRP2 and WNT9B) were chosen for validation at the protein level.
AHRR expression was higher in primary tumours (p < 0.0001) and correlated with better patient survival (p < 0.05). Stromal SFRP2
expression was higher in recurrent samples (p= 0.009) and protein expression in primary tumours was associated with worse
patient survival (p= 0.022). In multivariate analysis, tumour AHRR and SFRP2 remained independent prognostic markers. In vitro
studies supported the anti-tumorigenic role of AHRR and the oncogenic function of SFRP2.
CONCLUSIONS: Our results underline the relevance of AHRR and SFRP2 proteins in aryl-hydrocarbon receptor and Wnt-signalling,
respectively, and might lead to establishing them as biomarkers in HGSOC.
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INTRODUCTION
Ovarian cancer (OC) is the fifth leading cause of cancer death for
women in Western countries [1]. Among several histological
subtypes, high-grade-serous ovarian carcinoma (HGSOC) is the
most common one, often diagnosed at a late stage when the
tumour has already spread within the abdominal cavity [2].
Consequently, HGSOC accounts for the highest number of
deaths among ovarian cancer patients and 5-year survival is as
low as 43% [3]. A major setback for successful treatment of OC
patients is relapse of primary tubo-ovarian carcinomas, which
occurs after primary response to therapy and is experienced in

approximately 80% of patients. The median time from primary
diagnosis to recurrence is only 16 months [4]. As these
recurrences often become resistant to conventional therapies,
treatment options are limited and overall life expectancy for
these patients is short.
Despite its immense clinical importance, data on treatment

resistance mechanisms and the unique biology of relapsed
HGSOC is still sparse. An explanation might be the difficulty in
obtaining matched primary and recurrent samples, as surgery is
not generally performed in the relapsed stage and candidates for
surgical treatment must be chosen conscientiously [5].
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Recent research from transnational consortia addressed these
problems [6–8]. It seems that apart from the known dysregulation
of homologous recombination deficiency (HRD) and TP53, both of
which play an important role in tumour initiation of HGSOC [9, 10],
additional molecular mechanisms, for example, the upregulation
of a therapy resistance-related drug efflux pump (MDR1) become
important for tumour preservation after primary chemotherapy
[8]. Analyses on the temporal heterogeneity in immune response
[6, 11, 12] and angiogenesis [13] in recurrent HGSOC concentrated
on the evaluation of specific immunohistochemically (IHC)
detectable markers. However, to date, there has been no
exploratory analysis of differentially expressed genes in the
recurrence of HGSOC that includes protein-based validation.
We aimed to discover molecules that mark the progression

from primary to recurrent samples under the assumption that
these markers would be more pronounced in recurrences.
Therefore, we analysed signalling pathways involved in the
process of tumour recurrence. We further wondered if the
detected differentially expressed markers were merely an adap-
tion to tumour progression or if their initial presentation in the
primary tumour would also indicate prognostic potential and they
could thus serve as biomarkers. We focused on the prognostic
impact of a small subset of promising candidates in a cohort of
504 primary HGSOC samples with well-annotated survival data to
assess their clinical utility for patient stratification and survival
prediction. AHRR and SFRP2 were demonstrated to be consistently
clinically relevant markers throughout these analyses and
exploratory studies were performed to understand their upstream
regulation and downstream function.

METHODS
Patient Cohort
Three independent patient collectives were included in this study. The first
one consists of paired primary and recurrent HGSOC (PRI-REC-Cohort;
Screening (n= 19) and validation cohort (n= 44)) and is complemented by
a second one of primary tumours (PRI-Cohort; Survival cohort (n= 504)),
and an additional cohort served for analysis of HRD status (n= 66).
The PRI-REC-Cohort consists of HGSOC patients who were treated

between 2001 and 2015 at the Department of Gynaecology, Charité
University Hospital Berlin. From these patients, paired tissue samples of
their primary and recurrent lesions were available, which have been
examined at the Institute of Pathology, Charité University Hospital Berlin.
Patients were recruited in the OCTIPS project (Ovarian Cancer Therapy—
Innovative Models Prolong Survival, www.octips.eu) and samples under-
went central pathological review. Out of a total of 107 samples, cases were
excluded if paired samples were not available (n= 22), samples were
histologically inappropriate for our study (n= 13), or patients had already
received neoadjuvant chemotherapy (NACT) (n= 10). After IHC evaluation,
an additional 18 pairs had to be excluded: in five cases, TMA tissue of
either the primary or the relapse samples was of insufficient quality and 13
pairs were excluded retrospectively because of falsely positive negative
controls. Thus, 44 paired samples were available for IHC analyses
(Supplementary Fig. 1a).
The PRI-Cohort consists of patients who likewise were treated and

diagnosed at Charité and includes primary HGSOC specimens from
patients followed between 2000 and 2021. Staining of p53 was used as an
additional quality control for histotype [14]. In total, 504 patient samples
could be included in our study (survival cohort), as they were considered
eligible after reviewing for the above-mentioned inclusion and exclusion
criteria (Supplementary Fig. 1b).
The HRD cohort consists of 66 HGSOC patients with mutated TP53

(determined in 61 cases by immunohistochemical expression pattern and
in 5 cases by molecular analysis). In 60 patients HRD status was determined
using the HRD Plus Test Myriad Genetic Laboratories [15], in 5 patients the
NOGGO GIS V1 assay [16] and one patient had BRCA1 class 5 mutation
according to the Oncomine BRCA Research Assay from ThermoFisher
Scientific. For 60 patients IHC AHRR and for 62 patients IHC SFRP2 staining
was informative.
Clinical data was obtained from the Tumour Bank Ovarian Cancer

Network (www.toc-network.de) or the Charité Comprehensive Cancer

Centre (https://cccc.charite.de). The conduct of this study was approved by
the local ethics committee (EA1/051/18 and EA1/110/22). Clinicopatholo-
gical parameters of the patient cohorts are summarised in Supplementary
Table 1.

Targeted RNA sequencing
Forty-eight paired formalin-fixed, paraffin-embedded (FFPE) tissue samples
of primary and recurrent tumours of 24 patients from the PRI-REC-Cohort
(n= 24/85) were prepared for HTG EdgeSeq analysis (provided by HTG
Molecular Inc., Tucson, Arizona, USA).
For this purpose, H&E-stained large-area sections of the specimens were

analysed by light microscopy, and sites with optimal tumour content were
marked by an experienced gynecopathologist (S.D.E.). Corresponding
unstained slides were forwarded to HTG, where tissue was scraped off and
used for further processing. Workflow information is available on the HTG
Web page (https://www.htgmolecular.com/systems/chemistry). Briefly, this
method combines RNA extraction–free chemistry, a quantitative Nuclease
Protection Assay and a qPCR for library preparation. The HTG EdgeSeq
Oncology Biomarker Panel was used to measure the gene expression levels
(mRNA) of 2,549 genes associated with tumour biology (Supplementary
Table 2). Normalised libraries were analysed by Next Generation
Sequencing (Illumina NextSeq Sequencer). After applying the previously
stated inclusion and exclusion criteria, five of the sample pairs had to be
excluded because of non-matching histotype (n= 3) or NACT (n= 2).
Finally, 19 pairs (screening cohort, Supplementary Fig. 1a) could be
included in further analysis (Supplementary Table 1).

Immunohistochemistry
Immunohistochemical staining was performed semi-automatically on
TMAs using a DISCOVERY XT/ULTRA autostainer (Ventana Medical Systems,
Inc., Tucson, Arizona, USA). The following antibodies were used at dilutions
previously tested on normal tissue: AHRR (1:3000, Abcam, Ref. No
ab108518), COL5A2 (1:100, Sigma-Aldrich, Ref. No SAB4500385), FABP4
(1:1500, Abcam, Ref. No. ab92501), HMGCS2 (1:200, Abcam, Ref. No.
ab137043), ITGA5 (1:600, Abcam, Ref. No. ab112183), SFRP2 (1:25, Abcam,
ab92667), WNT9B (1:500, Abcam, Ref. No. ab151220). Positive and negative
control tissues for antibody establishment were selected based on the
manufacturer’s instructions and the Human Protein Atlas [17] (Supple-
mentary Table 3). Universal negative controls of all TMAs were generated
by omitting the primary antibody. If samples showed positivity (H-
score ≥ 20, Supplementary Table 4), the affected samples were revised and
excluded from all analyses. The stained TMAs were digitalised using the
Pannoramic Slide Scanner (3D Histech, Budapest, Hungary).

Methylation analysis
For 16 randomly selected HGSOC samples from the survival cohort, for
which IHC data for AHRR and SFRP2 were available, a genome-wide
methylation analysis was performed as previously described [18]. Briefly,
tumour areas were punched out from the FFPE block for DNA extraction.
Semi-automated DNA extraction was performed according to the
manufacturer’s instructions (Maxwell RSC FFPE Plus DNA Purification Kit,
Custom, Promega). DNA quantities were measured using Qubit HS DNA
assay (Thermo Fisher Scientific). DNA restoration was performed using the
Infinium HD FFPE DNA Restore Kit and methylation analysis was performed
using the Illumina Infinium MethylationEPIC BeadChip. All methylation
data pre-processing was conducted in R using various methods as
implemented in the ChAMP package. Raw signals were loaded from the
IDAT files using the minfi package [19, 20]. A number of CpG sites were
filtered out: all SNP-related sites; multi-hit sites; and CpGs located on
chromosomes X and Y. Lastly, the beta values of the remaining CpG sites
were normalised using FunNorm [21] followed by BMIQ [22]. Next, we
selected the normalised beta values for CpGs that passed the above filters
and extracted from the annotated file provided by the Illumina the CpGs
mapped to AHRR (138 CpGs) and SFRP2 (41 CpGs) genes.

Liquid chromatography-mass spectrometry (LC-MS)
LC-MS analysis of cell lines was performed with an EASYnLC-1200 system
(Thermo Fisher Scientific) connected to a trapped ion mobility spectro-
metry quadruple time-of-flight mass spectrometer (timsTOF Pro2, Bruker
Daltonik) with a nano-electrospray ion source (CaptiveSpray, Bruker
Daltonik). Peptides were loaded on a 20-cm home-packed HPLC column
(75-μm inner diameter packed with 1.9-μm ReproSil-Pur C18-AQ silica
beads, Dr. Maisch). Peptides were separated over a 60min gradient from 2
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to 60% (0.5 min to 4%, 31.5 min to 20%, 15min to 30%, 3min to 60%,
followed by a wash in 90% for 2 min and decrease to 50% in 7min) in
buffer B (0.1% formic acid and 90% ACN in LC-MS grade water) at
250 nl min−1. Buffer A consisted of 0.1% formic acid in LC-MS grade water.
A column oven was used to keep the column temperature constant at
40 °C. For dia-PASEF analysis, we used a dia-PASEF method with 16
diaPASEF scans separated into 2 ion mobility windows per scan covering a
400–1200m/z range by 25 Th windows and an ion mobility range from
0.60 to 1.43 Vs cm−2. The MS was operated in high sensitivity mode, with
an accumulation and ramp time at 100ms, capillary voltage set to 1400 V
and the collision energy as a linear ramp from 20 eV at 1/K0= 0.6 Vs cm−2

to 59 eV at 1/K0= 1.6 Vs cm−2. MS raw file analysis was performed with
DIA-NN [23] and described in detail in the supplementary methods.

Statistical analysis
Statistical analysis was performed using IBM SPSS Statistics 26 (Armonk,
NY, USA), R 3.5.2 (R Project for Statistical Computing, RRID:SCR_001905)
and GraphPad Prism 9.0. Figures were created in SPSS, GraphPad Prism 9.0
and Biorender (https://app.biorender.com).
The count data was processed using the HTG parsing tool and scale-

normalised using the trimmed mean of M-values (edgeR,
RRID:SCR_012802). To perform a differential gene expression (DEG) analysis
according to primary and recurrent disease, linear models with empirical
Bayes moderation (LIMMA, RRID: SCR_010943) were fitted using a paired
model design. Adjustment for multiple testing was carried out using the
Benjamini-Hochberg method.
Exploratory analysis of the IHC protein level was done independently.

The correlation of markers with clinical or pathological parameters was
performed using the Chi² or Fisher’s exact test. For different levels between
H-scores between tumour samples and for in vitro experiments we first
assessed whether the data followed a normal distribution using the
Shapiro–Wilk normality test and the F-test was employed for calculating
variance between groups. Next, for paired samples, p‐values were
determined with a paired t-test if data were normally distributed, and
the non‐parametric Wilcoxon-signed rank test was used for values with a
non‐normal distribution. For unpaired samples, p‐values were determined
with an unpaired t-test if the data were normally distributed, while the
Mann–Whitney test was applied for values with a non‐normal distribution.
Correlation analysis between parameters was performed using Pearson’s r
coefficient.

To determine the prognostic impact of the evaluated markers on patient
survival, univariate Kaplan–Meier survival analysis (Log-rank test) and
multivariate Cox regression analysis (age at diagnosis (≤60 versus >60),
FIGO stage (FIGO I–II versus FIGO III–IV), residual tumour (R0 versus R1))
were performed. Overall survival (OS) was defined as the time from the day
of pathologic diagnosis until the patient’s death, regardless of the cause.
Progression-free survival (PFS) was defined as the time from diagnosis to
occurrence of clinical progression, or recurrence, as measured by imaging.
Optimal cutoffs for these calculations were obtained using the Cutoff
Finder (https://molpathoheidelberg.shinyapps.io/CutoffFinder_v1/) and
estimated based on OS [24]. p-values < 0.05 were considered statistically
significant in two-sided testing. The statistical tests used for every figure
were investigated to be appropriate and the data meet the assumptions of
the tests.

Other methods
Other methods are included in the Supplementary Information.

RESULTS
Targeted RNA sequencing reveals differentially expressed
genes in primary and recurrent HGSOC
A complex pipeline was designed to discover genes with
potential key roles in HGSOC recurrence, validate the expres-
sion of their proteins, and to discover predictive biomarkers
(Fig. 1a). To assess genes and biological pathways that might
be associated with the process of tumour recurrence in HGSOC,
we analysed 38 matched samples of primary and recurrent
tumours from the PRI-REC-Cohort (n= 19, screening cohort).
We found 373 genes to be differentially expressed between
primary and recurrent samples after adjustment for multiple
tests. As the cutoff criteria, genes with adjusted p < 0.05 and |
log2FC | >0.8 were considered significantly differentially
expressed and therefore applicable for further analysis (Fig. 1b).
This approach resulted in 233 DEGs, of which 199 (85.4 %) were
expressed higher in the primary tumours and 34 (14.6 %)
showed higher expression in the recurrent samples (Supple-
mentary Table 5).
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In silico analysis identifies a prognostic impact for a subset of
genes and indicates a key role of extracellular matrix
organisation
To further test whether the identified DEGs are of clinical
significance in primary OC, we conducted a Kaplan–Meier Plotter
survival analysis [25] for all 233 DEGs individually (Supplementary
Table 6). In this analysis, 37 genes were identified as predictors for
PFS of serous OC patients on the mRNA level (p < 0.0002;
Bonferroni). Twenty-three of these 37 genes furthermore showed
significant association with the OS (p < 0.05, Bonferroni, Supple-
mentary Table 7). Twelve of these genes showed high expression
in the primary tumour samples and 11 were upregulated in the
recurrences (Supplementary Table 8).
To analyse which pathways might be affected by the DEGs in

recurrent HGSOC, we performed gene ontology enrichment
analysis. Analysis of the 11 genes upregulated in recurrent
tumours with a significant prognostic impact, revealed enrichment
of biological processes associated with collagen fibril organisation
(GO:0030199), extracellular matrix organisation (GO:0030198) and
supramolecular fibre organisation (GO:0097435). The same analy-
sis of the 12 genes, that showed an upregulation in the primary
tumours, did not lead to significant results.
To nail down genes most suitable for further analysis via IHC on

tissue samples, we determined the biological function of all 23
DEGs via Pathcards.
This analysis revealed that 12 of the prognostic DEGs were

clustering into three major biological functional groups which can
be summarised as “Extracellular matrix organisation”, “Regulation
of lipid metabolism by Peroxisome proliferator-activated receptor
alpha (PPARalpha)” and “WNT signalling” (Supplementary Table 8).
In conjunction of earlier studies [7] by our consortium and
extensive literature review we focused on 7 genes. Three of these
seven genes (AHRR, HMGCS2, and WNT9B) showed a higher
expression in the primary tumours and have not been evaluated
or described before in this context. Four genes (FABP4, SFRP2,
ITGA5, and COL5A2) had an increased expression level in the
recurrent tumours and were chosen as representatives for the
above-mentioned pathways (Supplementary Figs. 2a–g and 3a–g).

Compartment-dependent expression patterns in tumour
samples of HGSOC
To analyse the protein expression of these seven genes we used a
specific pipeline employing digital pathological analysis of the
IHC-stained TMA slides using QuPath (Fig. 2a). Antibody staining
was detected in both primary and recurrent tumours and was
mainly located in the cytoplasmic cell compartment with only
WNT9B showing additional nuclear and ITGA5 showing sporadic
membranous staining (Fig. 2b).
In addition to the detection in the tumoral compartment, the

proteins were furthermore found in specific cells of the TME
(Supplementary Fig. 4a–h). For example, FABP4 showed high
expression in tumour surrounding adipocytes and COL5A2 was
expressed in tumour-associated fibroblasts. While the expression
of HMGCS2 was very clear in tumour cells, it was predominantly
negative in the stroma (Supplementary Fig. 4d). Low H-scores
determined by QuPath proved to be artificial after reviewing by a
pathologist (E.T.T), hence the stromal expression of HMGCS2 was
not included in the further analyses.
Protein expression distributions in the primary tumours (PRI-

Cohort) showed a negative median H-score (0–1) for HMGCS2
(0.04) and low median H-scores (1–100) for FABP4, COL5A2, AHRR,
cytoplasmatic WNT9B and ITGA5 (3.94; 7.2; 34.15; 80.81; 93.56) in
the tumour compartment. Nuclear WNT9B expression (median H-
score: 105.17) was moderate (H-score: 101–200) and median
SFRP2 expression (H-score: 234.56) was strong (H-score: 201–300)
(Supplementary Fig. 4a–h).

AHRR and SFRP2 are differentially expressed in primary and
recurrent tumour samples
Next, we aimed to validate differences in gene expression
between recurrent versus primary tumours on the protein level.
Therefore, we analysed tumour compartments in which our gene
set was differentially expressed, hence moving our study from a
bulk level to a cellular level (Fig. 3a, b).
The median AHRR protein expression in the tumour cells in

primary samples was 104.15 (H-score, range: 0.28–212,13,
Supplementary Table 9) but 13.43 (H-score, range: 0–182.92) in

ba AHRR COL5A2 FABP4 HMGCS2

ITGA5 SFRP2 WNT9Bcyt WNT9Bnuc

Fig. 2 Immunohistochemical analysis. a Workflow of digital image analysis using QuPath. b Representative IHC-staining, cell detection and
classification. Detected cells were classified and colour-coded using QuPath. Blue, negative tumour cells. Yellow, weakly stained tumour cells.
Orange, moderately stained tumour cells. Red, strongly stained tumour cells. Green, cells of the tumour-microenvironment with increasing
darkness according to intensity of protein expression. Images on the right are magnifications of areas in the pictures on the left.
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the recurrences, showing a significantly higher AHRR expression in
the tumour cells within the primary HGSOC group (n= 39 pairs,
Wilcoxon p < 0.0001, Fig. 3c, d). Additionally, AHRR was higher
expressed in the TME of primary samples when compared to the
TME of recurrent samples (n= 39 pairs, Wilcoxon p < 0.0001,
Fig. 3c.)
The contrary observation was made for SFRP2 (Fig. 3e, f),

showing a higher median expression in the cells of recurrent
tumour samples (32.59 H-score, range: 0.39–265.72) when
compared to the matched primary ones (17.71 H-score, range:
0.23–97.06). This difference was statistically significant (n= 42
pairs, Wilcoxon p= 0.009) but restricted to the TME. In pairwise
testing, median H-scores of the tumour compartment did not
show expression differences for SFRP2 (n= 42 pairs, Wilcoxon
p= 0.365). Interestingly, none of the other differentially expressed
genes showed significant differences in the matched pairs at the
protein level (Fig. 3a, b).

Protein expression of FABP4, SFRP2 and cytoplasmatic WNT9B
correlate with clinical and histological parameters
The associations between the expression levels of the seven IHC
markers and clinicopathological parameters including age, FIGO
stage, regional lymph node involvement (pN) and residual tumour
(R) were analysed in the survival cohort. FABP4 protein expression
in the tumour cells and the presence of regional lymph node

metastases were inversely associated (χ²= 5.309, p= 0.021). N1
status was more common in patients with low FABP4 values.
Additionally, high expression of cytoplasmic (p= 0.049) and

nuclear (p= 0.043) WNT9B in the TME was found in older patients
(age at diagnosis >60 years) (Supplementary Table 10).

Expression of AHRR and SFRP2 has a prognostic impact
on HGSOC
The survival analysis was performed on primary tumours, using
IHC data from the tumour compartment and the TME indepen-
dently. Information on OS was available for all 504 patients and
PFS data was available for 329 patients (65.3%). Median follow-up
was 85.8 months (95% CI 70.1–101.5 months) in the survival
cohort. As no cutoff values were primarily established for our
markers, we defined them with the Cutoff Finder [24] as described
in supplementary materials and methods (Supplementary
Table 11).
For AHRR expression in the tumour cells, IHC data was available

for 476 patients and the optimal prognostic cutoff out of 209/449
(46%) possible cutoffs was 55.16 (H-score). 325 patients (68.3%)
showed a protein expression below this cutoff and 151 (31.7%)
showed a protein expression above it. Median OS in the low
expressing group was 37.4 months (95% CI 33.3–41.4 months) as
opposed to 71.0 months (95% CI 58.2–83.9) for the high-
expressing group (p < 0.001; Supplementary Table 11 and Fig. 4a).
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When splitting the entire cohort according to the AHRR
expression in the TME (cutoff: 7.815), a significantly superior OS
within the high-expressing group was observed. In this group
(n= 244, 51.3%) median OS was 52.0 months (95% CI
41.2–62.7 months) while in contrast a median OS time of
35.2 months (95% CI 29.8.–40.5 months) was seen in the group
with low (n= 232, 48.7%) AHRR expression (p < 0.001, Fig. 4b).
This positive prognostic impact also remained significant
regarding the OS in the multivariate analysis for both tumour
(HR 0.56, 95% CI 0.4–0.78, p= 0.001) and TME (HR 0.62, 95% CI
0.47–0.81, p < 0.001), verifying that AHRR is an independent
prognostic marker in HGSOC, regardless of the compartment
(Table 1).
Differences in PFS time according to tumoral AHRR expression

were non-significant (p= 0.095, Supplementary Fig. 5a). The
analysis of a correlation of stromal AHRR expression and PFS
verified the OS results with a median PFS of 17.6 months (95% CI
15.2–20.1) for the AHRR low group and 22.6 months (95% CI
18.5–26.8) for the AHRR high group (p= 0.041, Supplementary
Fig. 5b). Again, the prognostic value for PFS could be confirmed in

the multivariate analysis (HR 0.72, 95% CI 0.55–0.96, p= 0.024,
Supplementary Table 11).
A significant correlation with patient survival was also found for

SFRP2, showing a lower median OS (23.8 months, 95% CI
14.7–32.9 months) for patients with a high expression of SFRP2
in their tumour cells (cutoff: 294.3; n= 24/460, 5.2%) as compared
to the median OS time (44.0 months, 95% CI 39.1–48.9 months) for
patients with a low expression (n= 436, 94.8%). This finding was
statistically significant for the OS when SFRP2 expression in
tumour cells was considered (p= 0.022, Fig. 4c), but not for
expression in the TME (p= 0.078, Fig. 4d) or when PFS was
considered for SFRP2 expression in tumour cells (p= 0.061,
Supplementary Fig. 5c) or TME (p= 0.566, Supplementary Fig. S5d).
Although the cutoff of 294.3 was only one out of 0.9% significant
cutoffs found by the Cutoff Finder, its significance was retained in
the multivariate analysis for the OS, indicating the independent
negative prognostic impact of SFRP2 (HR 2.6, 95% CI 1.5–4.4,
p= 0.001, Table 1). As SFRP2 acts as a regulator of the Wnt-
signalling pathway and tumoral SFRP2 and stromal WNT9B
showed an inverse impact on patient survival (Supplementary
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Table S11), we tested whether a combination of these two
markers would be of further relevance. This analysis was
performed for SFRP2 and cytoplasmatic WNT9B only, as data on
WNT9Bnuc combinations were limited. Patients with SFRP2+ /
WNT9Bcyt- status (n= 4) were found to have the worst OS when
compared to the other three combinations, while patients with
SFRP2-/WNT9Bcyt+ status (n= 128) had the longest survival
interval (p= 0.035). The same observation could be made for the
PFS, where survival was significantly better for patients with
SFRP2-/WNT9Bcyt+ status (p= 0.021, Supplementary Fig. 6a, b).
In contrast to AHRR and SFRP2 other markers did not maintain

significance in multivariate analysis (Supplementary Tab. 11) or
could not be confirmed as being differentially expressed between
primary and recurrent tumours on the protein level. COL5A2,
HMGCS2 and ITGA5 expressed in the tumour compartment and
cytoplasmatic as well as WNT9Bnuc in the stroma were favourable
prognostic factors for OS (p < 0.05, Supplementary Fig. S7a–k) in
univariate analysis. In multivariate analysis this significant correla-
tion could be obtained only for stromal WNT9Bcyt (HR 0.64, 95%
CI 0.47–0.88, p= 0.005) and WNT9Bnuc (HR 0.39, 95% CI 0.17–0.9,
p= 0.028). For PFS cytoplasmatic WNT9B was found to be
associated with better patient survival in the tumour cells
(p= 0.029) as well as in the stroma (p= 0.017), which was
confirmed (HR 0.67, 95% CI 0.48–0.92, p= 0.014) by multivariate
analysis for the expression in the TME (Supplementary Fig. 8a–k
and Supplementary Table 11). Interestingly, stromal FABP4 was
revealed to correlate with a worse PFS (p= 0.043, Supplementary
Fig. 8d, multivariate analysis: HR 1.41, 95% CI 1.06–1.86, p= 0.017).
Additionally, we wanted to check if the HRD status has any

impact on the protein expression of AHRR and SFRP2. For this
purpose, we used a third cohort for which HRD status was
available. No association was detected between the HRD status
and AHRR H-scores in tumour (p= 0.52, Supplementary Fig. 9a) or
stroma cells (p= 0.7, Supplementary Fig. 9b) and SFRP2 H-score in
tumour (p= 0.72, Supplementary Fig. 9c) or stroma cells (p= 0.87,
Supplementary Fig. 9d).

Exploratory analysis of the regulation and function of AHRR
and SFRP2 in HGSOC
We wanted to understand the mechanism responsible for the
dysregulated protein expression of AHRR and SFRP2 in HGSOC.
First, we analysed DNA sequence alterations including mutations
and copy number changes affecting these two genes in HGSOC

samples from TCGA [9]. Out of 273 tumours analysed, 26 (9.5%)
exhibited mutations or amplifications in AHRR, while 7 (3%)
displayed copy number changes (amplifications and deletions) in
SFRP2 (Supplementary Fig. 10a). We also performed a comparative
assessment of the prevalence of AHRR and SFRP2 genomic
sequence alterations between long-term and short-term survivors,
but no significant differences were observed (Supplementary
Fig. 10b). Second, we assessed the DNA-methylation profiles of
both genes and performed genome-wide methylation profiling in
16 patients with HGSOC for which we had analysed AHRR and
SFRP2 protein levels. We observed a synchronised hypermethyla-
tion of most of the 138 CpGs associated with AHRR, with
an average methylation level of 0.67 (max. 1) (Fig. 5a and
Supplementary Table 12). For SFRP2, which is overexpressed in
HGSOC, we observed a synchronised hypomethylation of the 41
CpGs associated with this gene, with an average methylation level
of 0.36 (Fig. 5b and Supplementary Table 13). Upon correlating the
H-scores of AHRR and SFRP2 and methylation levels of the
matching CpGs, we observed that 15 CpGs associated with AHRR
(4 located in regulatory CpGs intragenic regions—body island)
showed a significant negative correlation between their methyla-
tion and the protein levels (Supplementary Fig. 10c); and five CpGs
associated with SFRP2 (4 located in the transcription start site—
TSS) showed a significant negative correlation between methyla-
tion and the protein levels (Supplementary Fig. 10d). Hence, it
seems that the two genes are potentially dysregulated in HGSOC
by aberrant focal DNA methylation.
To explore the function role of AHRR and SFRP2 protein

expression in HGSOC, we tested their impact on cell proliferation
using the DepMap Database. We observed that the knock-out of
these genes compared to PAX8 (an established tumorigenic factor
in HGSOC) [26] has no influence on tumour cell proliferation in 57
different epithelial ovarian cancer cell lines (Supplementary
Fig. 11a). We analysed the basal expression of AHRR in five TP53
mutated ovarian epithelial tumour cell lines and observed that
AHRR has the highest expression in the EFO21 cell line (isolated
from malignant ascites) (Supplementary Fig. 11b). Therefore, we
selected this cell line for subsequent analysis to investigate the
global proteome differences after AHRR knockdown (KD), using
two different siRNAs (Supplementary Fig. 11c). Global proteome
profiling by LC-MS analysis resulted in ~7,000 quantified proteins
per single measurement and over 8000 proteins in total
(Supplementary Fig. 11d and Supplementary Table 14). Albeit

Table 1. Multivariate Cox regression model for overall survival in the survival cohort with regard to AHRR and SFRP2 expression in the tumour cells
and the TME.

AHRR Tumour TME

OS (n= 334) OS (n= 334)

Variable HR 95% CI p HR 95% CI p

Age > 60 1.23 0.943–1.603 0.128 1.29 0.989–1.683 0,.060

FIGO > II 2.68 1.187–6.067 0.018 2.59 1.146–5.870 0.022

Residual tumour 2.01 1.526–2.639 <0.001 2.01 1.527–2.639 <0.001

AHRR high 0.56 0.403–0.776 0.001 0.62 0.469–0.805 <0.001

SFRP2

OS (n= 316)

Variable HR 95% CI p

Age > 60 1.23 0.937–1.620 0.136

FIGO > II 2.40 1.059–5.420 0.036

Residual tumour 2.11 1.593–2.799 <0.001

SFRP2 high 2.57 2.566–1.499 0.001

TME tumour microenvironment, OS overall survival, n number of patients, HR hazard ratio, CI confidence interval, FIGO Fédération Internationale de
Gynécologie et d’Obstretique. Bold values indicate statistical significance p < 0.05.
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protein fold changes only revealed small differences, with one
protein significantly upregulated (adj. p-value < 0.05) in the AHRR
KD, the transcriptional regulator MLXIP (Supplementary Fig. 11e),
pathway enrichment analysis based on the protein fold-change
between AHRR KD versus control cells resulted in higher levels of
proteins related to epithelial-to-mesenchymal transitions in AHRR
KD cells, such as integrin cell surface, collagen degradation,
collagen formation, degradation of the extracellular matrix and
extracellular matrix organisation (Supplementary Fig 11f). This
finding is in line with reports showing that low levels of AHRR are
involved in invasion and migration in vitro and metastases in vivo
in multiple cancers [27]. Collectively, the data support a potential
tumour-suppressive role of AHRR, in strong agreement with our
clinical samples data.
SFRP2 is a secreted modulator of WNT signalling [28] and was

initially understood as a negative regulator of WNT signalling due
to its ability to restrict the binding of Wnt ligands to their receptor
[29]. More recent data show that SFRP2 can act as a negative or
positive factor of WNT signalling, depending on the context [30].
Yet, its role in ovarian cancer is not defined. To functionally
investigate the role of SFRP2 in ovarian cancer, we cultivated five
epithelial ovarian cancer cell lines in the absence and presence of
extracellular WNT effectors, including WNT3 (WNT) alone; WNT
and RSPO1 (RSPO); WNT and SFRP2 (recombinant human protein);
and WNT, RSPO and SFRP2 and tested the level of AXIN2 as a WNT/
β-catenin target gene [31]. We found that all cell lines were WNT-
responsive, as the addition of WNT and the co-ligand RSPO to the
medium-activated AXIN2. In all five cell lines, SFRP2 had no
significant inhibitory effect on WNT signalling, and in OVCAR3
cells (isolated from malignant ascites) SFRP2 significantly further
activated AXIN2 compared to the activation provided by WNT
plus RSPO (Fig. 5c and Supplementary Fig. 11g), suggesting a
role of SFRP2 as a WNT activator in a subset of ovarian cancers.
Next, we performed MS-based proteomic profiling to study the
global effects of WNT activation and the consequence of SFRP2
addition. Our analysis resulted in ~7500 quantified proteins per
single replicate (Supplementary Fig. 11h and Supplementary
Table 15). By comparing OVCAR3 control to OVCAR3 with
WNT+ RSPO+ SFRP2, we observed pronounced global protein
level changes with indications of WNT signalling activation, with
significant overexpression of WNT11 (Fig. 5d), a non-canonical
WNT signalling molecule with a role in cancer [32]. Among the
most upregulated proteins with SFRP2 addition, besides WNT11,
were nerve growth factor and its receptor (NGFR) and CYP1A1
which showed a more significant upregulation in WNT+ RSPO+
SFRP2 versus control or WNT+ RSPO (Fig. 5e). Previous studies
have shown that NGFR is linked to WNT/β-catenin signalling and
activates ovarian cancer tumour spread [33], while CYP1A1 was
shown to be overexpressed in ovarian cancer clinical samples
and to play a carcinogenic role [34]. Taken together, our
functional investigations further support a tumour-suppressive
role of AHRR and an oncogenic function of SFRP2 in ovarian
epithelial cancer.

DISCUSSION
In the present study, we interrogated information on DEGs in
primary and recurrent HGSOC in the quest for clinically applicable
biomarkers. Targeted RNA sequencing and in silico survival
analysis revealed a prognostic impact of 23 genes. Further IHC
analysis of seven markers (AHRR, COL5A2, FABP4, HMGCS2, ITGA5,
SFRP2 and WNT9B) demonstrated significant differences for AHRR
being lower and SFRP2 being higher expressed in recurrent
HGSOC. To test if these markers could serve as prognostic
biomarkers already in primary tumours survival analysis was
performed in a large cohort of 504 patients with primary
HGSOC and demonstrated a favourable prognostic significance
of high AHRR and low SFRP2 expression. In vitro data further

supported the tumour suppressor role of AHRR and the pro-
tumorigenic role of SFRP2.
Previous studies have shown that the modulation of the

extracellular matrix and the tumour immune microenvironment
are important mechanisms by which ovarian cancer cells might
regulate tumour progression in recurrent or metastatic OC
[6, 11, 12, 35]. Kreuzinger et al. defined primary and recurrent
HGSOC samples as immune active or immune silent based on an
unsupervised clustering method following RNA sequencing.
Immune active recurrent samples showed an upregulation of
genes involved in the remodelling of the extracellular matrix (e.g.,
POST, COMP, COL5A2) or genes like SFRP2 and ADH1B. Primary
samples with an immune active status additionally overexpressed
genes associated with adipose tissue remodelling (e.g., FABP4,
GPD1, PLIN1) [7]. Further studies on the immune modulation
[6, 11, 12, 35] and angiogenesis [13] in primary and recurrent OC
were based on the evaluation of specific IHC markers such as MVD,
VEGF-A, MHC1, MHC2, PD-L1, IDO or different lymphocyte markers
and showed increased expression of CD4+, MHC1 [12], PD-L1
[6, 35] and IDO [6], as well as higher levels of regulatory T cells [11]
in recurrent samples.
In our study, we took a novel approach. It comprises an analysis

of DEGs in primary and recurrent HGSOC and complements the
aforementioned studies by adding a biomarker selection proce-
dure based on in silico survival analysis and evaluation on a large
cohort of primary tumours. During this process, we identified
AHRR and SFRP2 as being consistently differentially expressed and
with a significant prognostic potential for predicting OS.
The repressor of the aryl-hydrocarbon receptor (AHRR) showed

an expression profile in line with the current understanding of it as
a tumour suppressor [36] being higher expressed in primary
tumours versus relapse. Patients with high AHRR expression
displayed a significant increase in OS.
AHRR negatively regulates AHR signalling by competing with

the AHR complex for its interaction with the aryl-hydrocarbon
receptor nuclear translocator, thereby suppressing AHR signalling
[37]. AHR is consistently active in a variety of human cancers and
has several oncogenic functions [38], among them the mediation
of pro-tumorigenic immunosuppression [39] and epithelial-
mesenchymal transition [40]. AHR also dysregulates BRCA1 [41]
expression, a crucial tumour suppressor in HGSOC and is
additionally correlated with an unfavourable prognosis in OC
[42]. Nevertheless, we could not detect an association of protein
expression of AHRR with HRD status. Interestingly, AHR signalling
was recently found to be the highest-ranking dysfunctional
pathway in FIGO stage IV serous OC [43]. Therefore, regulation
of AHR activation via AHRR expression might indicate an
important anti-oncogenic mechanism in primary tumours [44]. In
favour of this hypothesis there are recent observations in breast
cancer showing that high AHRR mRNA levels are associated with
favourable metastasis-free survival [45]. On the contrary, loss or
downregulation of AHRR is proposed to have pro-oncogenic
functions and drives tumour progression. To strengthen this
hypothesis, we performed additional exploratory studies regard-
ing the mechanism of AHRR downregulation and downstream
function in OC. Genome-wide methylation analysis showed AHRR
hypermethylation in HGSOC, and 15 CpGs showed an inverse
correlation with matched protein expression. These 15 CpGs are
located in the gene body, and four of them in intragenic CpG
islands. Hypermethylation of gene-body CpGs can induce activa-
tion of transcription, yet the role of intragenic CpG islands is more
complex and not fully understood. These regions, if hypermethy-
lated can also inhibit gene transcription and have functions similar
to promotor or enhancer regions [46]. Downstream analysis of
AHRR function showed no impact on cell proliferation, rather
proteomic studies revealed upregulation of proteins associated
with epithelial-mesenchymal transition following AHRR KD. This
observation is in line with previously published data showing that
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low AHRR levels in different cancers could induce resistance to
apoptosis and increases the migratory potential of tumour cells
[27, 36].
SFRP2, the secreted frizzled-related protein 2, encodes an

extracellular Wnt-signalling modulator, which directly interacts
with Wnt proteins. SFRP2 can act as a Wnt-suppressing or
-activating factor in different tissue contexts and, therefore, exert
tumour-suppressive or -promoting roles. Wnt-activating and
tumour-promoting roles of SFRP2 have previously been identified
in colon and lung cancer, as well as in glioblastoma [47–49], and
our study suggests a similar role in ovarian cancer. In five ovarian
cancer cell lines, SFRP2 did not inhibit WNT signalling and more
interestingly, in one cell line, SFRP2 activated WNT signalling. We
confirmed this activation by performing MS spectrometry,
observing the upregulation of WNT11, a member of the non-
canonical WNT signalling pathway. Furthermore, we observed an
upregulation upon SFRP2 stimulation of other proteins with
oncogenic function in HGSOC such as NGFR and CYP1A1,
suggesting a potentially more complex tumorigenic function of
SFRP2 in HGSOC.
Our IHC analysis also points to a pro-tumorigenic function of

SFRP2. SFRP2 expression was higher in the stromal compartment
of the recurrences and furthermore correlated with worse survival.
These findings are in line with a study from Mariani et al. [50]
where SFRP2 was found to be overexpressed in OC bowel
metastases when compared to primary samples. In comparison to
our study, they could only show the differential expression on the
RNA level, but also described the association of high SFRP2 RNA
expression with poor overall survival in a HGSOC patient cohort
[50]. SFRP2 gene expression was furthermore significantly
upregulated in HGSOC specimens following NACT [51, 52] and
Yuan et al. report SFRP2 as part of a cluster consisting of nine key
genes, able to predict high-risk patients with worse survival
probability [53]. These results suggest a potential role of SFRP2 as
a biomarker for poor survival.
Mechanisms of SFRP2 overexpression are not yet clear as the

findings of several previous studies indicate a downregulation of
SFRP2 in OC due to methylation of its promotor region [54–56]
and SFRP2’s potential to inhibit migration of OC cells [57]. In order
to clarify the mechanism of SFRP2 regulation in HGSOC, we
performed genome-wide DNA-methylation analysis of patient
samples. Our data revealed that SFRP2 is hypomethylated in
HGSOC and 4 CpGs located in the TSS showed a negative
correlation to the matching protein H-score.
For SFRP2 our protein-based analysis is consistent with the

results obtained by using the Kaplan–Meier-Plotter on mRNA
levels. Surprisingly, high AHRR expression indicated increased OS
in our own study, but the opposite direction was predicted by in
silico survival analysis. The mRNA-based Kaplan–Meier analysis is
furthermore puzzling since AHRR expression consistently indicated
a tumour suppressor function in our own RNA and protein analysis
in the PRI-REC cohort. Regarding prognosis, congruent results
were obtained from our survival analysis of patients with primary
HGSOC. These differences might be explainable by the fact that
TP53 mutation status was not available for all patients diagnosed
with serous tumours in the datasets included in the Kaplan–Meier-
Plotter [25], which is why the in silico analysis also included a small
number of low-grade serous tumours. Additional differences
might be caused by the circumstance that microarray gene
expression data is obtained from the bulk analysis, which leads to
the admixture of signals from the tumour and the stromal
compartments [58].
The small sample size of our PRI/REC cohort and of our

validation cohort could lead to data overfitting. We would like to
point out that paired primary and relapse samples are difficult to
obtain and we conducted our analysis with the best available
sample size. Furthermore, we reduced the risk of overfitting the
data by using conventional statistical methods as opposed to

machine learning approaches and by confirming our findings in
independent cohorts and by different methods. We used a highly
standardised method for digital image analysis, which allows the
separate analysis of the tumour and the TME, possibly leading to
more precise results. Nevertheless, IHC analysis has some biases
too, e.g., tissue processing or antibody specificity. To clarify the
question on the correlation of mRNA and protein in our survival
cohort, RNA sequencing data would have been needed ideally
combined with tissue from relapse which is a limitation of our
study. As we used optimised cutoffs for survival analysis, additive
prospective clinical research needs to validate the prognostic
implication of the markers on the survival of HGSOC patients.
As a conclusion, we present a highly explorative analysis of the

differences in RNA and protein expression between primary and
recurrent HGSOC, which lays the foundation for further research.
Our results show that AHRR (tumour suppressor) and SFRP2
(oncogene) are differentially expressed between primary and
recurrent tumours both on the gene and the protein level and
furthermore act as protein-based prognostic markers for HGSOC.
Overall, the present study provides novel insights into the
potential biological pathways and protein signatures involved
in the process of recurrence and poor survival in HGSOC, en
passant coming up with two potential prognostic biomarkers for
advanced HGSOC.

DATA AVAILABILITY
The datasets used during this study are available from the corresponding author
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