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Promising results of a clinical
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cardiac surgery
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Objective: Cold-inducible RNA binding Protein (CIRBP) has been shown to be a
potent inflammatory mediator and could serve as a novel biomarker for
inflammation. Systemic inflammatory response syndrome (SIRS) and capillary leak
syndrome (CLS) are frequent complications after pediatric cardiac surgery
increasing morbidity, therefore early diagnosis and therapy is crucial. As CIRBP
serum levels have not been analyzed in a pediatric population, we conducted a
clinical feasibility establishing a customized magnetic bead panel analyzing CIRBP
in pediatric patients undergoing cardiac surgery.
Methods: A prospective hypothesis generating observational clinical study was
conducted at the German Heart Center Berlin during a period of 9 months starting
in May 2020 (DRKS00020885, https://drks.de/search/de/trial/DRKS00020885).
Serum samples were obtained before the cardiac operation, upon arrival at the
pediatric intensive care unit, 6 and 24 h after the operation in patients up to 18
years of age with congenital heart disease (CHD). Customized multiplex magnetic
bead-based immunoassay panels were developed to analyze CIRBP, Interleukin-1β
(IL-1β), Interleukin-6 (IL-6), Interleukin-8 (IL-8), Interleukin-10 (IL-10), Monocyte
chemotactic protein 1 (MCP-1), Syndecan-1 (SDC-1), Thrombomodulin (TM),
Vascular endothelial growth factor (VEGF-A), Angiopoietin-2 (Ang-2), and Fibroblast
growth factor 23 (FGF-23) in 25 µl serum using the Luminex MagPix® system.
Abbreviations

AKI, acute kidney injury; ALT, alanine transaminase; Ang-2, Angiopoietin-2; AST, aspartate transferase; CHD,
congenital heart disease; CIRBP, cold-inducible RNA binding Protein; CK, creatinine kinase; CK-MB,
creatinine kinase-myoglobin binding; CLS, capillary leak syndrome; CPB, cardiopulmonary bypass; CRP,
C-reactive protein; DAMP, damage associated molecular pattern; FGF-23, Fibroblast growth factor 23;
ICU, intensive care unit; IL-10, Interleukin-10; IL-1β, Interleukin-1β; IL-6, Interleukin-6; IL-8, Interleukin-
8; KDIGO, Kidney Disease: Improving Global Outcomes; LDH, lactate dehydrogenase; LOD/Q, limit of
detection/quantification; MCP-1, Monocyte chemotactic protein 1; MFI, mean fluorescent intensities;
mRNA, messenger ribonucleic acid; PICU, pediatric intensive care unit; QC, quality control; RACHS-1,
Risk Adjustment for Congenital Heart Surgery 1; RBM3, cold-shock proteins RNA-binding motif 3; S/T
ratio, subcutaneous-thoracic ratio; SDC-1, Syndecan-1; SIRS, systemic inflammatory response syndrome;
T0, timepoint of preoperative sample acquisition; T1, timepoint of the postoperative sample acquisition:
directly after operation; T2, timepoint of the postoperative sample acquisition: 6 h after operation; T3,
timepoint of the postoperative sample acquisition: 24 h after operation; TM, Thrombomodulin; VEGF-A,
Vascular endothelial growth factor; VIS, vasoactive-inotropic score.
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Results: 19 patients representing a broad range of CHD (10 male patients, median
age 2 years, 9 female patients, median age 3 years) were included in the feasibility
study. CIRBP was detectable in the whole patient cohort. Relative to individual
baseline values, CIRBP concentrations increased 6 h after operation and returned to
baseline levels over time. IL-6, IL-8, IL-10, and MCP-1 concentrations were
significantly increased after operation and except for MCP-1 concentrations stayed
upregulated over time. SDC-1, TM, Ang-2, as well as FGF-23 concentrations were
also significantly increased, whereas VEGF-A concentration was significantly
decreased after surgery.
Discussion:Usingcustomizedmagneticbeadpanels,wewereable todetectCIRBP ina
minimal serum volume (25 µl) in all enrolled patients. To our knowledge this is the first
clinical study to assess CIRBP serum concentrations in a pediatric population.

KEYWORDS

pediatric cardiology, pediatric cardiac surgery, cold inducible RNA-binding protein (CIRBP),

inflammation, endothelial dysfunction, biomarker, feasibility study
1 Introduction

Systemic inflammatory response syndrome (SIRS) is a frequent

complication after cardiac surgery in children with congenital heart

disease (CHD) caused by multiple factors including tissue injury

due to surgical incision and the extracorporeal circuit during

cardiopulmonary bypass (CPB) (1). During CPB the contact of

blood to the synthetic surface of the extracorporeal circuit

induces an early phase of systemic inflammation by activation of

the complement system and release of proinflammatory cytokines

(2). The late response is triggered by ischemia/reperfusion-

induced injury leading to endotoxemia due to intestinal barrier

changes. This stimulates systemic inflammation even further

(2–4), causing and aggravating an impaired vascular endothelial

barrier, which can lead to capillary leak syndrome (CLS) (2, 5).

Postoperative morbidity is increased as SIRS and CLS are

associated with a longer stay on the pediatric intensive care unit

(PICU), prolonged mechanical ventilation, and higher demand

for catecholamines (5–8).

To date, routinely assessed laboratory markers including C-

reactive protein (CRP), Interleukin-6 (IL-6), lactate, and platelet

count have been shown to be influenced by cardiac surgery,

however they cannot be used to identify patients with SIRS (6).

Different diagnostic approaches for CLS have been described

including measurement of subcutaneous cytokines and

hemoconcentration in infants with hypoplastic left heart

syndrome undergoing Norwood stage 1 operation (9, 10).

However, as we are currently lacking suitable biomarkers for

identifying patients at risk of SIRS and CLS early on, diagnosis

and therefore treatment of critically ill patients can be delayed.

CLS is primarily induced by endothelial dysfunction leading to a

shift of intravascular fluid and protein to surrounding tissue and

cavities, resulting in edema as well as intravasal volume and protein

depletion. Vascular barrier and therefore, vascular permeability is

controlled by two major components consisting of an inner, lumen

facing layer consisting of endothelial glycocalyx and an outer layer,

the endothelial cells (11). Furthermore, experimental studies have

shown that the endothelial glycocalyx plays an important role in
02
maintaining colloid osmotic gradient and preventing tissue edema

(12, 13). Syndecan-1 (SDC-1) is a part of the endothelial glycocalyx

that gets released upon glycocalyx degradation and has been

described as a marker for glycocalyx shedding (14). Thrombomodulin

(TM) is a transmembrane glycoprotein found in the vascular

endothelium (15) and serves as a biomarker for endothelial injury as

its release as soluble TM is initiated only by endothelial cell injury

(16). Both the release of SDC-1 and elevated serum TM has been

described in patients with SIRS/sepsis (17–19). Furthermore,

Angiopoietin-2 (Ang-2) and vascular endothelial growth factor

(VEGF-A) have been described as biomarkers for vascular leakage.

Ang-2 is an endothelial growth factor that can be released upon

endothelial activation (20). Both Angiopoietin-1 (Ang-1) and Ang-2

bind to the endothelial receptor tyrosine kinase (Tie2) (21). Whereas

Ang-1 induces stabilization of the endothelial barrier, Ang-2 has been

shown to induce inflammation and vascular leakage (22, 23). VEGF-

A has been shown to play an important role in the induction of

vascular permeability (24). VEGF-A is produced by neutrophils,

macrophages, endothelial and smooth muscle cells, and stored in

platelets (25–27). VEGF-A synthesis and release is induced by

hypoxia, nitric oxide, coagulation, and bacterial endotoxins (25, 28–

30). In vivo studies have shown that Ang-2 and VEGF-A are linked in

the pathogenesis of vascular leakage as Ang-2 induced vascular

barrier changes is synergistically driven by VEGF-A (31, 32). Ang-2

has been described as a biomarker for increased vascular permeability

and poor outcome in both adults and children with SIRS and sepsis

(33, 34). Additionally, SDC-1, Ang-2, and VEGF-A have also been

studied in children after cardiac surgery (35–39).

Cold inducible RNA-binding protein (CIRBP) is a highly

conserved 18-kDa nuclear protein belonging to the family of

cold-shock proteins (40). It is expressed in various tissues (41)

and upregulated upon stimuli including mild to moderate cold

stress (28–34°C), ultraviolet radiation, and hypoxia (40, 42, 43).

Extracellular CIRBP has been shown to act as a damage

associated molecular pattern (DAMP) and has been reported as a

novel biomarker for inflammation (44–46). By binding to toll-

like receptor 4 (TLR4) and myeloid differentiation factor 2

(MD2) complex (44) as well as triggering receptor expressed on
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myeloid cells-1 (TREM-1) (47) and Interleukin 6 receptor (IL-6R)

(48), CIRBP activates the proinflammatory stress response. In vitro

and in vivo studies have reported CIRBP as a potent mediator of

inflammation due to its ability to promote both cytokines and

the release of other DAMPs, whereas CIRBP blockage resulted in

a significant reduction of inflammation as well as higher survival

rates (44, 45).

As both experimental and clinical data have described CIRBP

as a mediator of inflammation, it could serve as a potential

biomarker for postoperative inflammatory reactions in our

pediatric cohort. Furthermore, experimental studies have reported

CIRBP to be involved in the pathogenesis of endothelial

dysfunction (49). However, to our knowledge CIRBP has not

been analyzed in children with CHD after cardiac surgery.

Moreover, a potential correlation between sex and age

dependency in the amount of CIRBP detectable in serum after

cardiac surgery with CHD has not been investigated.

Therefore, we conducted a feasibility study using a customized

magnetic bead panel to analyze CIRBP, pro- and anti-

inflammatory cytokines, as well as previously described

biomarkers for increased vascular permeability at defined time

points before and after cardiac surgery.
2 Methods

2.1 Study design

This prospective observational feasibility study was conducted at

the German Heart Center Berlin after approval by the Ethics

Committee of Charité—Universitätsmedizin Berlin, Germany

(decision EA2/180/19). The study was registered with the German

register for clinical studies before patients’ recruitment (registration

number: DRKS00020885; https://drks.de/search/de/trial/

DRKS00020885). Written consent was obtained from the parents

of each patient before study inclusion. Patients younger than 18

years receiving a cardiac surgery at our center were enrolled.

Exclusion criteria were as follows: gestational age≤ 37 weeks, a

known maternal alcohol or substance abuse during pregnancy,

immunodeficiencies or immunosuppressive medication, syndromic

diseases (e.g., Trisomy 21 and 18), and congenital kidney disease.
2.1.1 Preoperative, operative and postoperative
management

19 Patients were enrolled over a period of 9 months starting in

May 2020. Anesthesia was performed by standardized protocols

using propofol (3–5 mg/kg), rocuronium (1 mg/kg) and sufentanil

(1 μg/kg) for induction and propofol (5 mg/kg/h), remifentanil (1–

3 μg/kg/min), and dexmedetomidine (0.25–1 μg/kg/h) for

maintenance. All patients received a urinary catheter, a central

venous line as well as a femoral or radial arterial cannula upon

induction of anesthesia. Most patients received a single shot

dexamethasone (0.15 −0.5 mg/kg) before cardiac surgery. Core

temperature was measured during surgery and postoperatively on

the intensive care unit via a rectal temperature probe.
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Cardiac surgery was performed depending on the underlying

anomaly. On-pump beating heart surgery was performed in 5

patients (26%) to prevent reperfusion injury, aortic cross-clamping

was necessary in 14 patients (74%). CPB was performed using

polyvinyl tubing, roller pumping (mast-mounted pump, Stöckert

Instruments, München, Germany), and a hollow fiber membrane

oxygenator (Capiox RX05, Terumo Corp., Tokyo, Japan). Priming of

the extracorporeal circuit was achieved using a balanced electrolyte

solution (Ionosteril, Fresenius Kabi, Bad Homburg, Germany), and

heparin (500 IE/kg), as well as tranexamic acid (10–15 mg/kg at

initiation of CPB and 1–3 mg/kg/h for maintenance) was

administered. Flowrate was maintained at 3 L/m2 body surface

area during cardiopulmonary bypass. Upon weaning from

cardiopulmonary bypass, protamine sulfate was administered

according to remaining heparin effect (usually 10 mg/1,000 IE). After

the operation, patients were transferred to our intensive care unit.

For postoperative management of analgesia sufentanil (0.2–0.6 μg/

kg/h) or morphine (30–60 μg/kg/h) or piritramide (0.1 mg/kg) plus

additive metamizole (10 mg/kg) and paracetamol (10 mg/kg) were

standardly administered. Dexmedetomidine (0.25–1 μg/kg/h) was

given for postoperative adjuvant sedation.

2.1.2 Protocol of blood sample acquisition
Blood samples for biomarker analysis were obtained via the

central venous line preoperatively after the induction of anesthesia

(T0) as well as postoperatively upon arrival on the pediatric

intensive care unit (PICU) (T1), and both 6 and 24 h after the

operation (T2 and T3 respectively, Figure 1). We collected 1 ml

blood for patients ≤15 kg and 2 ml of blood for patients >15 kg at

each timepoint in Serum-Gel Microvette® 500 (20.1344 Sarstedt,

Nümbrecht, Germany). Samples were centrifuged at 26 × g for

10 min and frozen temporarily at −8°C until final storage at −80°C.

2.1.3 Study outcomes
The aim of this clinical feasibility study was to measure

perioperative CIRBP serum levels as well as concentrations of

cytokines and biomarkers for endothelial dysfunction in a very small

sample volume (25 μl/sample) from children undergoing cardiac

surgery. Clinical primary endpoints were defined as duration of

mechanical ventilation, duration of the intensive care unit stay, as

well as the level of inotropic support. Administered catecholamines

were documented hourly from the time of T1 (arrival on PICU) up

to 72 h after operation and both maximum and mean vasoactive

inotropic scores were calculated according to Gaies et al. (50).

Secondary endpoints were defined as 30-day mortality, as well as

postoperative complications such as infection, arrhythmia, acute

kidney injury, and signs for capillary leakage. Acute kidney injury

was defined according to the KDIGO guidelines (51). Serum

creatinine was assessed preoperatively in a standardized

preoperative blood collection (usually 1 day before the operation,

including analysis of red and white blood cell count, platelet

count, CRP, liver and kidney values, as well as blood clotting

analysis) at the studied time points (Figure 1 Protocol of time

points) up to 96 h after operation, as well as maximum creatinine

value during the hospital stay. For assessment of CLS, we analyzed

both positive fluid overload exceeding >10% bodyweight during
frontiersin.org
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FIGURE 1

Protocol of time points for blood sample collection. T0 = Baseline, collection after induction of anesthesia via central venous line; T1 = collection upon
arrival on the intensive care unit; T2 = 6 h after T1; T3 = 24 h after T1. Blood samples were obtained in Serum-Gel Microvette® 500, centrifuged at 26 ×
g for 10 min and stored at −80°C until analysis.
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the first 72 h after operation and a subcutaneous-thoracic ratio (S/T)

with a threshold of >12.6% calculated from a chest x-ray based on

Sonntag et al., 24 to 72 h after operation (52). We utilized both

tools as capillary leak syndrome is a frequently described

complication after pediatric cardiac surgery, but we are currently

lacking objective diagnostic criteria for this postoperative

complication. Chest x-rays are part of postoperative diagnostics

especially after extubation but are not performed routinely

especially in pediatric patients. In our experience capillary leak

syndrome is a clinical diagnosis. As fluid balance was assessed and

analyzed postoperatively, we included this analysis. Chest-x-rays

were analyzed by an experienced radiologist. x-rays were not

included in the analysis if soft tissue was cut off. Fluid balance

was documented for the first 72 h after operation (including the

operation period) and fluid overload (FO) was calculated using the

fluid balance method as follows (53):

%FO ¼ Total fluid intake (ml)� Total fluid outtake (ml)
pre� operativeweight (kg)

� 100

Furthermore, the amount of blood products (erythrocytes,

thrombocytes, fresh frozen plasma), clinical and laboratory chemical

signs for infection and organ dysfunction (body temperature, CRP,

leukocytes, urea, creatinine, aspartate transferase (AST), alanine
TABLE 1 List of analyzed serum biomarkers and assay IDs.

Protein Assay ID
CIRBP SPRCUS1273

IL-1β SPRCUS1273

IL-6 SPRCUS1273

IL-8 SPRCUS1273

IL-10 SPRCUS1273

MCP-1 SPRCUS1273

FGF-23 SPRCUS1273

VEGF-A SPRCUS1273

Ang-2 SPRCUS1355

SDC-1 SPRCUS1355

TM SPRCUS1355
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transaminase (ALT), creatinine kinase (CK), creatinine kinase-

myoglobin binding (CK-MB), lactate, and lactate dehydrogenase

(LDH) and microbiological cultures were assessed.

For risk adjustment concerning in-hospital mortality we used

the Risk Adjustment for Congenital Heart Surgery 1 (RACHS-1)

consensus-based scoring system (54).
2.2 Magpix® bead-based analysis

Proteins were measured via MagPix® analysis (Merck/Millipore)

using customized magnetic bead panels (Merck KGaA, Darmstadt,

Germany) as listed in Table 1. Serum samples were defrosted and

diluted according to manufactureŕs recommendations. Briefly, for

SPRCUS1273 neat samples were used, whereas samples were diluted

at 1:8 for SPRCUS1355. For data acquisition, Xponent (Merck KGaA,

Darmstadt, Germany, version 4.2) and Milliplex (Merck KGaA,

Darmstadt, Germany, version 5.1.0.0) software were used. All samples

showed a bead count of >100. Serum background was subtracted

from the mean fluorescent intensities (MFI) and concentration

(pg/mL) was determined using an 8-point calibration curve including

matrix (best fit from Milliplex Analyst software was used). Single

samples were measured. For determining the instrumental variance,

pooled quality control (QC) samples were used as quality control

(n = 3 analysed at the beginning, middle and end of the run). The

biological variability was higher compared to the technical variability.

One patient’s sample at T3 was clotted in the well, consequently the

assay SPRCUS1273 could not be run for this sample.
2.3 Statistical analysis

Numbers are presented as counts and percentages for categorical

data and mean with standard deviation or median with range for

continuous data. Data and respective tests were considered as a non-

confirmatory, hypothesis-generating pilot study. The Wilcoxon test

was used to compare post-surgery measurements with the pre-

surgery biomarker value. No replacement of missing biomarker
frontiersin.org
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values was applied for analysis. P-values of <0.05 were considered

significant; adjustment for 3 parallel tests of the 3 post-surgery

measurements compared to the pre-surgery measurement, in case of

gender comparisons for the 4 parallel tested time points per

biomarker was done with Bonferroni correction. Longitudinal

analysis of biomarker data was conducted with linear mixed-effects

models (R packages lmer4 and lmerTest) with splines of grade 3 for

time including age, sex, and duration of surgery as covariables.

Considering the complexity of the linear mixed-effects models

regarding the available case numbers, effects with p-values < 0.1

were also considered as “significant” signals. IBM SPSS Statistics

28.0 and R version 4.0.2 was used for analysis.
TABLE 2 Demographic and clinical data.

Sex

Male Female
Number of patients: 19 10 (53%) 9 (47%)

Demographic data
Median age (years), (range) 2 (0–15) 3 (0–18)

0–12 months 4 (40%) 3 (33%)

13–24 months 1 (10%)

25 months – 12 years 3 (30%) 5 (56%)

>12 years 2 (20%) 1 (11%)

Diagnoses (number)
AS (1) AI (1)

ASD (1) ASD (1)

AVSD (2) ccTGA, MA, PA (1)

Ebstein’s anomaly (1) DORV, TGA, PS, VSD (1)

CoA, AS, VSD (1) HLHS (1)

PA, VSD (1) PAPVD (1)

TA (1) TOF (1)

VSD (2) TA (1)

VSD, ASD (1)

Procedures (number)
Complex surgery (2) Complex surgery (1)

ASD closure (1) Aortic valve replacement (1)

Modified Fontan
operation (1)

ASD closure (1)

AVSD correction (1) Modified Fontan operation (1)

Pulmonary
replacement (2)

Glenn Shunt (2)

Ross operation (1) PAPVD correction (1)

VSD closure (2) TOF repair (1)

VSD closure (1)

Characteristics of operation and CPB (median; range)
RACHS-1 2 (1–6) 2 (1–4)

Operation time (min) 343 (135–777) 331 (177–754)

CPB-time (min) 180 (60–480) 180 (60–480)

Aortic cross-clamp time
(min)

45 (0–259) 67 (0–266)

Perfusion time (min) 133 (60–467) 162 (56–480)

Re-perfusion time (min) 22 (0–184) 13 (0–178)

AS, Aortic stenosis; AI, Aortic insufficiency; ASD, Atrial septal defect; AVSD,

Atrioventricular septal defect; CoA, Coarctation; (cc)TGA,(congenital corrected)

transposition of the great arteries; DORV, Double outlet right ventricle; HLHS,

Hypoplastic left heart syndrome; MA, Mitral atresia; PA, Pulmonary atresia; PAPVD,

Partial anomalous pulmonary venous connection; PS, Pulmonary stenosis; TA,

Tricuspid atresia; TOF, Tetralogy of Fallot; VSD, Ventricuklar septal defect; RACHS-

1, Risk Adjustment for Congenital Heart Surgery 1; CPB, cardiopulmonary bypass.
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3 Results

For this pilot study, we enrolled 19 patients consisting of 10 males

and 9 females. The median age was 2.9 years ranging from 0 to 18

years. Our cohort did not include neonatal patients. Demographic

and data on diagnoses and procedures are summarized in Table 2.

The study cohort represented a broad range of patients with

congenital heart disease concerning both age and complexity of

anomalies treated at our center. All patients survived until hospital

discharge. On-pump beating cardiac surgery was performed in 5

patients (2 pulmonary valve replacements, 2 Glenn-anastomosis,

and 1 modified-Fontan procedure). Aortic cross-clamping was

necessary in 14 patients. In 6 patients systemic mild-moderate

hypothermia (32–35.9°C) and in 5 patients moderate deep

hypothermia (<30°C–31.9°C, with the lowest temperature 28°C) was

applied, whereas 8 patients were kept at normothermia during CPB.

Duration of mechanical ventilation and maximum as well as mean

vasoactive-inotropic score (VIS) was comparable in both male and

female patients. However, duration of stay on the PICU was longer

in male compared to female patients (median 31 h and 9 h,

respectively as summarized in Table 3). Acute kidney injury as

defined by KDIGO criteria, infections, and arrhythmia presented

frequent complications in our patient cohort (Table 3) (51). One

patient showed respiratory failure, hemodynamic instability, and

increased demand for volume and catecholamines after modified

Fontan procedure and was re-intubated during the first 24 h after

initial surgery (55, 56). After catheterization on the first postoperative
TABLE 3 Perioperative characteristics.

Sex

Male Female
Number of patients: 19 10 (53%) 9 (47%)

Mechanical ventilation (h) 9.7 (5.5–270) 7.6 (4.9–339)

Length of PICU stay (h) 30.8 (7.2–463) 8.75 (7.2–890)

VIS mean (median; range)
1–24 h 0.68 (0.01–13.02) 0.30 (0–7.2)

25–48 h 0 (0–6.7) 0 (0–4.57)

49–72 h 0 (0–5.1) 0 (0–1.97)

1–72 h 0.33 (0–7.6) 0.19 (0–4.61)

VIS max (median; range)
1–24 h 3.3 (0.2–26.02) 3.46 (0–12.89)

25–48 h 0 (0–11.8) 0 (0–6.29)

49–72 h 0 (0–16.4) 0 (0–2.91)

1–72 h 3.33 (0.2–26.02) 3.46 (0–12.89)

Complications (number)
Infection 1 3

Arrhythmia 2 0

Acute kidney injury 3 (30%) 2 (22%)

Postoperative S/T-ratio >12.6% up to 72 h
(range in %)

1 (14.1) 2 (13.7–16.8)

Fluid overload > 10% (range)
24 h 6 (2–16) 4 (−1–16)
48 h 0 (−9 - 4) 0 (−7 - 3)

72 h 0 (−7 - 0) 0 (−6 - 3)

Cardiac arrest 0 0

PICU, Pediatric intensive care unit; VIS, Vasoactive-inotropic Score; Max,

maximum; S/T-ratio, Subcutaneous-thoracic ratio.
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FIGURE 2

Example of chest x-ray analysis for assessment of subcutaneous-thoracic (S/T) ratio according to sonntag et al. (52) (A) Pre- and (B) postoperative
x-rays of a patient with an S/T-ratio 16.8.
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day, the patient received a re-thoracotomy and takedown of the

Fontan-procedure. Another patient showed an atrioventricular block

III° postoperatively and received a transvenous pacemaker 10 days

after initial cardiac surgery. S/T-ratio and fluid overload were

assessed as criteria for CLS. In 7 patients S/T ratio was not

analyzable due to a cut off soft tissue on the x-ray. 3 patients showed

an S/T-ratio >12.6% during the first 72 h after CPB (an exemplary

chest x-ray analysis is shown in Figure 2). During the first 24 h after

operation both male and female patients presented a median fluid

overload of 16% (Table 3). None of the enrolled patients died during

hospitalization, 30-day mortality was 0% in both male and female

patients. One patient with univentricular heart physiology was

released after initial shunt operation and 6 weeks later readmitted to

another hospital due to gastroenteritis. Two days after readmission

the patient had an in-hospital cardiac arrest most likely due to shunt

thrombosis, was transferred to our hospital under resuscitation

conditions, where we ended the treatment due to the poor prognosis.
3.1 Analysis of biomarkers

We collected blood and urine samples at the respective timepoints

for all patients (Figure 1. Protocol of timepoints). The study protocol

included blood and urine sample collection at the same timepoints.

The urine samples were used to discover new urinary biomarker for

early detection of acute kidney injury using proteomics analysis.

However, not in all 19 patients included in the feasibility study urine

samples could be collected during all timepoints. Furthermore, as

this manuscript focuses on the feasibility of the customized magnetic

bead panels, data on proteomic analysis will be published separately.

For 15 patients, blood samples were obtained at all timepoints. In 3

patients T3 was not obtained as patient care on PICU did not allow

sample acquisition at that timepoint, and one patient needed a re-

thoracotomy at this timepoint.

Our first objective—the reliable measurement of protein

concentrations in the serum of children in the clinical setting—was

achieved. In short, the analyzed biomarkers could be detected using

the customized magnetic bead panels. For IL-6, IL-8, MCP1, and
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FGF-23 a value above the limit of detection/quantification (LOD/Q)

could be quantified in all samples. For CIRBP n = 9 samples showed

values below the LOD/Q, while for IL-1β n = 10 sample values were

below the LOD/Q. For IL-10 and VEGF-A one sample each was

below LOD/Q.

3.1.1 Cytokines analyzed
IL-6, IL-8, MCP-1, and IL-10 all showed low baseline serum

concentrations at induction of anesthesia (T0; Figure 3). In

comparison to baseline values, both pro-inflammatory cytokines

IL-6 and IL-8 were significantly increased at all postoperative

timepoints (T1, IL-6 p < 0.001, IL-8 p < 0.001; T2, IL-6 p < 0.001,

IL-8 p < 0.001; T3, IL-6 p = 0.002, IL-8 p = 0.002). Furthermore,

IL-10 serum concentration was significantly increased at all

postoperative timepoints (T1, p < 0.001; T2, p < 0.001; T3,

p = 0.007). MCP-1 serum concentration was significantly higher

directly after surgery (T1, p = 0.025,). Individual differences

between baseline and the three postoperative time points are

displayed in Figure 4, for all cytokines analyzed.

IL-1β baseline levels were generally higher than other analyzed

cytokines, and serum concentrations showed a non-significant

increase directly after surgery (T1). Overall, no significant

increase in IL-1β serum concentration was observed (Figures 3, 4).

Furthermore, we examined the course of serum biomarkers

concentrations with linear mixed-effects models adjusted for age, sex,

and duration of surgery (Figure 5). IL-1β, IL-10, and MCP-1 serum

concentrations increased directly after surgery and decreased at 6

and 24 h after operation (T2 and T3) upon returning to baseline

levels. Whereas IL-6 showed a persistent increased concentration

directly after operation, IL-8 peaked at T2 (6 h after operation) and

returned to baseline level over time. Furthermore, linear mixed-effect

models for the course of IL-1β serum concentration revealed the

interaction of female sex and time as potentially significant (β(SE) =

14.3(7.7), p = 0.071; Table 4), indicating a more pronounced time

course for female sex. Interestingly, we observed a tendency in

increased IL-1β serum concentrations at all analyzed timepoints in

male compared to female patients, however, this difference was not

statistically significant (Figure 6).
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FIGURE 3

Biomarker serum concentration [pg/ml] analyzed using customized magnetic bead panels. Timepoints of blood sample collection: T0 = baseline, at
anesthesia induction; T1 = arrival on the intensive care unit; T2 = 6 h after T1; T3 = 24 h after T1. Dots represent statistical outliers. Statistical analysis
was performed using the Wilcoxon test; p-values were adjusted for 3 parallel tests (all post-operative measurements vs. baseline) and *p < 0.05 was
considered statistically significant.
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3.1.2 Biomarkers for endothelial dysfunction
Serum concentrations of SDC-1, Ang-2, and TM increased

significantly after operation. SDC-1 serum concentration was

low at induction of anesthesia and showed a significant

increase both directly (T1, p < 0.001) and 6 h after surgery
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(T2, p = 0.002) in comparison to baseline (T0) (Figures 3A,B).

Furthermore, TM serum levels increased directly after surgery

(T1, p = 0.042) and 6 h (T2, p = 0.047) compared to baseline

values (Figures 3, 4) with serum concentrations undulating

around 30 pg/ml (Figure 3A). Ang-2 serum concentrations
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FIGURE 4

Change in biomarker serum concentration [pg/ml] compared to T0 (time of anesthesia induction). Timepoints of post-surgery blood sample
collection: T1 = arrival on the intensive care unit (median 8 h after T0); T2 = 6 h after T1; T3 = 24 h after T1. The red line at 0 indicates no change,
positive values increase and negative values decrease compared to T0. Dots represent statistical outliers. p-values were adjusted for 3 parallel
tests; stars indicate significant changes (p < 0.05).
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increased significantly at all postoperative timepoints (T1,

p = 0.002; T2, p = 0.004; T3, p = 0.016, Figures 3, 4).

VEGFA showed a different dynamic with a significant decrease

in serum levels directly after surgery (T1, p = 0.039) in comparison

to baseline (Figures 3, 4).

Analyzing the course of biomarker serum concentrations,

SDC-1 increases postoperatively, showing a peak at 6 h after

operation, whereas both TM and Ang-2 serum concentration

increase over time (Figure 5). Furthermore, modelling the course

of SDC-1 and TM serum concentrations, we found age and/or

the interaction of time with age, female sex, or duration of

surgery to show statistical significance (all p < 0.1, Table 4). For

TM serum concentrations indicating stronger fluctuation with

higher age and increasing duration of surgery flattened by female

sex. For SDC-1 suggesting a generally lower level with increasing

age and stronger fluctuation with increasing duration of surgery

flattened by female sex. The course of Ang-2 serum

concentration also seems to be influenced by age and duration of

surgery but not by female sex (Table 4).

3.1.3 Fibroblast growth factor (FGF-23)
Fibroblast growth factor FGF-23 has been previously

described as a biomarker for acute kidney injury (AKI) after
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pediatric cardiac surgery (57–60). As we plan to analyze

potential biomarkers for acute kidney injury in our clinical

trial, we included FGF-23 in our customized magnetic bead

panel. FGF-23 concentration significantly increased directly

after operation as compared to preoperative serum levels (T1,

p < 0.001), and remained significantly higher until 6 h after

operation (T2 p = 0.007, Figures 3, 4).

Analyzing the course of serum concentration with linear

mixed-effect models, FGF-23 peaked directly after surgery,

decreased 6 h after surgery, and increased again 24 h after

surgery (Figure 5). Potential variables of interest influencing the

course of FGF-23 serum concentration was duration of surgery

(p < 0.1, Table 4), tending to increase fluctuation.

3.1.4 CIRBP Serum concentration
CIRBP was detectable at all investigated timepoints. Serum

concentration increased postoperatively although not statistically

relevant (Figure 3). In comparison to baseline, CIRBP showed an

increase at T1 then returning to baseline levels over time (Figures 4, 5).

In the longitudinal model we found a signal that duration of surgery

had a significant influence on the course of CIRBP serum

concentration (p < 0.1, Table 4). There was no significant sex related

difference in CIRBP serum concentrations (Figure 6).
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FIGURE 5

Course of biomarker serum concentration [pg/ml] analyzed with linear mixed-effects models adjusted for age, sex and duration of surgery. The model
estimation is shown as bold black line with 95% confidence interval. Dots with connecting lines represent individual courses of biomarker serum
concentrations for single patients. Timepoints of blood sample collection: T0 = at anesthesia induction (median 8 h before T1); T1 = arrival on the
intensive care unit (=0 h); T2 = 6 h after T1; T3 = 24 h after T1.
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As CIRBP is known to be upregulated by mild to moderate

hypothermia (28–34°C) (40, 42), we analyzed CIRBP serum

concentrations in patients treated with hypothermia during CPB.

However, we did not detect significant differences in CIRBP

serum levels between patients undergoing normothermic,

mild-moderate hypothermic, or moderate deep hypothermic CPB.
4 Discussion

As both systemic inflammatory reactions and CLS are frequent

complications after cardiac surgery in children with CHD, early

diagnosis and treatment of patients at risk remain challenges in

postoperative clinical management. This feasibility study was

conducted to evaluate customized multiplex magnetic bead

panels for the analysis of proinflammatory cytokines, previously

described biomarkers for vascular leakage, acute kidney injury,

and CIRBP in pediatric patients undergoing cardiac surgery at

our center. CIRBP has been previously described as an

inflammatory mediator and its serum or plasma concentration

has been analyzed in adults after septic or hemorrhagic shock as

well as after cardiac surgery. To our knowledge this is the first
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study to analyze serum concentrations of CIRBP in children with

CHD before, during, and after cardiac surgery.

Peripheral blood concentrations of CIRBP have so far been

analyzed using western-blot analysis and Enzyme-linked

Immunoabsorbant Assay. As far as we know, CIRBP has not been

analyzed using a customized magnetic bead panel and furthermore

has not been detected in a pediatric cohort. Merck/Millipore

established the customized magnetic bead panel and validated the

measurements for our feasibility study using our serum samples.

Using this technique, we were able to detect CIRBP as well as the

other biomarkers including cytokines (IL-1β, IL-6, IL-8, MCP-1,

and IL-10), markers for endothelial dysfunction (SDC-1, TM,

Ang-2, and VEGF), and FGF-23 as a marker for kidney injury in

a minimal serum sample volume (25 μl) in all enrolled patients.

As blood sample volume is an important restriction in pediatric

clinical studies, the ability to detect multiple analytes in a minimal

serum volume is an important goal. Especially as we plan to enroll

patients of different ages including neonates, infants, and toddlers

up to adolescents with CHD for a larger follow-up clinical trial,

the successful quantification of all analyzed biomarkers using the

customized magnetic panel is an important achievement of this

feasibility study.
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TABLE 4 Estimates of the linear mixed-effects models for the course of biomarkers over the 4 time points of measurement adjusted for age, sex and
duration of surgery, and respective interaction terms with time. For significant parameters the p-value is shown in bold fond. Timepoints of blood
sample collection in the model were: −8 h (T0) = at anesthesia induction; 0 h (T1) = arrival on the intensive care unit; 6 h (T2) = 6 h after T1; 24 h (T3)
= 24 h after T1.

IL1b IL6 IL8 IL10 MCP1 FGF23

ß (SE) p ß (SE) p ß (SE) P ß (SE) p ß (SE) p ß (SE) p
(Intercept) 37.1 (18.2) 0.054 3.3 (708.1) 0.996 11.9 (365.6) 0.974 15.9 (182) 0.931 558.5 (1,522.7) 0.715 319.8 (313.0) 0.313

Age 1.3 (1.3) 0.334 −0.1 (52.4) 0.999 0.0 (27.1) 0.999 −0.4 (12.7) 0.974 −23.9 (112.7) 0.833 −3 (23.2) 0.897

Time −23.5 (20.5) 0.262 1,137 (2,146.5) 0.599 482.6
(1,155.3)

0.678 −829.7
(524.1)

0.121 −5,159 (4,630) 0.271 −1,516.5
(798.2)

0.065

Time² −18.9 (18.2) 0.306 −111.8
(1,589.2)

0.944 88.5 (857.7) 0.918 338.6 (409.3) 0.413 1,604.6 (3,428.6) 0.642 −288.9 (587.6) 0.626

Time³ −14.8 (11.3) 0.202 −120.2
(1,025.3)

0.907 411.9 (548.2) 0.456 −335.4
(250.9)

0.188 −2,270.8
(2,210.7)

0.310 −769.5 (386.4) 0.053

Female sex −23.1 (13.5) 0.103 −1.0 (539.9) 0.998 −1.6 (278.8) 0.995 −5.5 (133) 0.967 69 (1,161) 0.953 −56.7 (238.6) 0.813

Duration of surgery −1.6 (2.4) 0.531 0.0 (98.9) 1.000 0.1 (51.1) 0.998 −0.7 (24.1) 0.978 5.5 (212.8) 0.979 1.8 (43.7) 0.967

Age *time −0.9 (1.3) 0.476 14.4 (152) 0.925 −35.9 (82) 0.663 15.8 (37.1) 0.674 311.3 (327.9) 0.348 1.8 (56.2) 0.974

Age * time² 0.8 (1.2) 0.489 −102.9 (115.2) 0.377 −33.4 (62.2) 0.594 −6.6 (28.4) 0.816 −216.5 (248.5) 0.389 −23.6 (42.5) 0.583

Age * time³ −0.8 (0.6) 0.221 −65.2 (70.2) 0.358 6.3 (37.8) 0.868 4.1 (17.1) 0.812 136.2 (151.4) 0.373 −2.5 (26.1) 0.924

Female sex * time 18.0 (14.2) 0.212 −318.5
(1,578.9)

0.841 −865.1
(851.6)

0.314 −243.4
(385.5)

0.531 3,240.2 (3,406.3) 0.347 186.2 (584.7) 0.752

Female sex * time² 2.6 (13) 0.844 −254.6 (1,203) 0.833 138.1 (648.6) 0.832 133.9 (299.9) 0.658 −1,380.4
(2,595.3)

0.598 −137.7 (445.9) 0.759

Female sex * time³ 14.3 (7.7) 0.071 744.6 (784.5) 0.348 392.6 (422) 0.356 −76.2 (191.7) 0.693 1,451.1 (1,692.2) 0.396 −431.1 (291.8) 0.147

Duration of surgery *
time

1.2 (2.9) 0.679 −103.4 (313.4) 0.743 44.2 (168.3) 0.794 49.6 (76.4) 0.519 −274.1 (676) 0.687 110 (117.1) 0.353

Duration of surgery *
time²

3.0 (2.1) 0.173 322.7 (229.3) 0.167 67.7 (123.7) 0.587 −2.3 (56.6) 0.967 440.3 (494.7) 0.378 274.4 (84.8) 0.002

Duration of surgery *
time³

0.7 (1.6) 0.685 92.1 (167.2) 0.584 −74.6 (88.2) 0.401 15.3 (40.5) 0.707 −92.7 (360.2) 0.798 187.6 (64.7) 0.006

cont. VEGFA Ang-2 TM SDC1 CIRBP

ß (SE) p ß (SE) p ß (SE) p ß (SE) p ß (SE)
(Intercept) 168.7 (105.5) 0.116 195.7 (330.1) 0.557 74.6 (103.6) 0.481 10.3 (19.6) 0.602 33.2 (2.1) <0.001

Age −16.2 (7.8) 0.043 −20.4 (24.4) 0.409 −3.6 (8.1) 0.660 −0.3 (1.5) 0.819 −0.3 (0.2) 0.093

Time 686.5 (297.7) 0.026 −364.4 (775.7) 0.641 −117.5 (82) 0.163 −34.3 (52.6) 0.518 −0.8 (5.2) 0.882

Time² −52.8 (219.7) 0.811 152.7 (597.4) 0.800 −63.2 (69.3) 0.369 −45.3 (40.5) 0.270 1.2 (4.0) 0.772

Time³ 272.8 (143.2) 0.063 −365.6 (376.5) 0.337 −58.2 (48.1) 0.236 −28 (25.4) 0.277 −3.5 (2.5) 0.177

Female sex 86.8 (80.4) 0.286 −67 (251.7) 0.791 91.5 (80.3) 0.270 3.3 (15.0) 0.825 −2.1 (1.6) 0.197

Duration of surgery 8.6 (14.7) 0.562 47.8 (46.1) 0.307 −4.0 (14.4) 0.784 0.1 (2.7) 0.970 0 (0.3) 0.924

Age *time 6.3 (21.3) 0.770 112.5 (57.4) 0.057 2.3 (6.1) 0.703 7.1 (3.9) 0.074 0.3 (0.4) 0.386

Age * time² 17.9 (16) 0.270 11.7 (44.0) 0.791 0.3 (7.2) 0.966 1.7 (3.0) 0.580 0.2 (0.3) 0.524

Age * time³ 3.6 (9.9) 0.720 −45.4 (26.6) 0.096 2.6 (3.4) 0.457 5.8 (1.8) 0.002 −0.2 (0.2) 0.272

Female sex * time −448.5 (223.4) 0.051 −296.4 (591.5) 0.619 −20.9 (63.8) 0.746 −57 (40.1) 0.163 0.5 (4.0) 0.906

Female sex * time² −182.5 (168) 0.283 −279.5 (458.1) 0.545 22.3 (60.7) 0.716 −8.1 (31.0) 0.795 0.2 (3.1) 0.955

Female sex * time³ −158.8 (110.5) 0.158 −498.5 (300.4) 0.104 −10.8 (34.5) 0.756 −36.4 (20.2) 0.079 −4.9 (2.0) 0.020

Duration of surgery * time −68.7 (43.7) 0.123 46.3 (108.4) 0.672 9.2 (12.7) 0.474 10.1 (7.4) 0.177 −0.1 (0.7) 0.921

Duration of surgery * time² −22.3 (31.7) 0.485 145.5 (85.2) 0.095 16.5 (9.4) 0.089 18.4 (5.8) 0.003 0.2 (0.6) 0.673

Duration of surgery * time³ −36.7 (23.8) 0.129 231.7 (60.7) <0.001 3.8 (7.6) 0.619 3.8 (4.1) 0.351 1.1 (0.4) 0.011
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4.1 Cytokines

We analyzed pro-inflammatory cytokines IL-1β, IL-6, and IL-8

serum concentrations in our cohort. Both IL-6 and IL-8 levels were

increased directly after operation and remained increased during

all analyzed postoperative timepoints compared to baseline values

(Figures 3, 4). Analysis of the course of biomarker serum

concentrations over time using linear mixed-effects models,

IL-6 remained upregulated during all postoperative timepoints,

whereas IL-8 showed a peak at 6 h and decreased 24 h after

surgery (Figure 5). We did not see a significant regulation of

IL-1β during the analyzed timepoints compared to baseline levels
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(Figures 3, 4), however linear mixed-effects models showed IL-1β

increasing directly after operation and returning to baseline levels

over time (Figure 5). The regulation of both IL-6 and IL-8

concentrations after CPB are consistent with previous clinical

studies analyzing cytokine concentrations in children and infants

after cardiac surgery (61–67). Allan et al. analyzed various

cytokine plasma concentration in infants (median age 37 days)

undergoing cardiac surgery at similar timepoints up to 24 h after

CPB. Although this study concentrated on one age group, they

detected similar dynamics of cytokine regulation with both IL-6

and IL-8 being upregulated directly after cardiac surgery (61).

Furthermore, we recently analyzed cold-shock proteins as well as
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FIGURE 6

Sex associated differences of CIRBP, IL-1β, IL-6 and IL-8 serum concentrations [pg/ml]. Timepoints of blood sample collection: T0 = baseline, at
anesthesia induction; T1 = arrival on the intensive care unit; T2 = 6 h after T1; T3 = 24 h after T1. Dots represent statistical outliers.Statistical analysis
was performed using the Mann-Whitney test; p-values were adjusted for 4 parallel tests for each biomarker; none of the differences, also due to
small case numbers, were statistically significant.
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cytokines in dry blood spot samples of 23 patients with CHD of

varying ages and diagnoses (median age 19 years) undergoing

CPB and hypothermia. Both IL-6 and IL-8 were significantly

increased after CPB and stayed elevated up to 24 h after surgery

(62). However, in our previously published patient cohort we

also detected a significant increase in IL-1β 24 h after CPB (62),

which we did not see in our feasibility study. However,

postoperative regulation of IL-1β has been controversial in

clinical studies so far. Whereas no significant regulation of IL-1β

has been reported in neither infants nor children after CPB

(61, 66), there have been reports that IL-1β levels are

significantly elevated in direct response to CPB in infants (63).

As the median patient age was significantly higher in our last

cohort the differing secretion dynamics might be due to age

difference. Nevertheless, larger patients’ cohorts are needed to

further investigate a possible age dependency.

Analysis with linear mixed-effects models showed time and

female sex as potential variables of interests in IL-1β serum

concentration course (Table 4). Furthermore, we detected a trend

in increased IL-1β serum concentrations at all timepoints in

female patients (Figure 6) However, as we conducted a

hypothesis-generating, non-confirmatory clinical study these

signals need to be evaluated in future studies.

Furthermore, we analyzed the chemokine MCP-1 as well as the

anti-inflammatory cytokine IL-10. Analyzing the course of serum

concentration over time using linear mixed-effects models suggests
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MCP-1 and IL-10 to have a similar regulation dynamic. Both

cytokines were upregulated directly after cardiac surgery and

decreased back to baseline levels over time (Figure 4). This

observed regulation is consistent with the results of various clinical

studies analyzing infants and children after CPB (61, 64–66). We

previously described an increase in both MCP-1 and IL-10 directly

after CPB and decrease to baseline levels 24 h after surgery (62).

However, other studies focusing on infants after pediatric cardiac

surgery report different regulation of IL-10. Gu et al. detected an

increase of IL-10 concentration directly after CPB showing a peak

at 12 h after surgery before decreasing (63). While Trotter et al.

showed that IL-10 levels remained elevated up to 7 days after CPB

(67). As we did not analyze cytokine concentrations 12 h after

CPB, we might have missed a potential further increase of IL-10

in our patient cohort. Nevertheless, a possible age-dependency

needs to be investigated further.
4.2 Biomarker for endothelial dysfunction

SDC-1, Ang-2, and TM serum concentrations increased after

operation. Both SDC-1 and TM increased both directly as well as

6 h after operation, whereas Ang-2 was upregulated during all

postoperative timepoints as compared to baseline (Figures 3, 4). In

vivo studies have shown that ischemia/reperfusion-induced injury

leads to glycocalyx shedding and a significant increase in SDC-1
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release (68). Various clinical studies have reported that SDC-1

concentration increases after cardiac surgery in both adults and

pediatric patients (14, 38, 39, 69). Bruegger et al. analyzed SDC-1 in

infants undergoing CPB with both beating heart aortic clamping

and deep hypothermic circulatory arrest. They report a significant

upregulation of serum SDC-1 concentration directly after CPB with

SDC-1 remaining upregulated until intensive care unit (ICU)

admission (39). In adults undergoing coronary artery bypass

grafting with or without the use of CPB, SCD-1 was significantly

upregulated during surgery and normalized during the first 24 h

after surgery (69). However, previous clinical studies analyzing SDC-

1 after pediatric cardiac surgery analyzed SDC-1 levels up to 2 h

after surgery (38, 39). To our knowledge, this is the first report of

SDC-1 levels 24 h after CPB in children. Analysis of the course of

biomarker serum concentrations reveals a differing dynamic of the

analyzed biomarkers for endothelial dysfunction as SDC-1 peaks at

6 h after operation whereas both Ang-1 and TM concentrations

increase during the analyzed postoperative timepoints (Figure 5).

Changes in TM concentration after pediatric cardiac surgery

have not been studied so far. TM has been shown to be

associated with poor outcome in both children and adults

suffering from sepsis (18, 19). In septic adults, TM serum

concentration correlated with the risk of development of

disseminated intravascular coagulation, multiple organ failure, or

death during ICU stay (18, 19). TM enables thrombin-mediated

activation of protein C playing a part in coagulation, fibrinolysis,

and inflammation (70, 71). As it is released upon inflammation

and endothelial cell damage (72), it remains an interesting

potential biomarker for SIRS and CLS and its’ regulation after

pediatric cardiac surgery warrants further investigation.

Whereas Ang-2 levels increased after CPB, we report a

significant decrease of VEGF-A directly after CPB and a slight

increase during later timepoints although not statistically

significant (Figures 3, 4). Giuliano et al. analyzed both Ang-2

and VEGF-A plasma concentrations in children undergoing CPB

(median age 5 months) at the same timepoints as in our study

(prior to operation, 0, 6 and 24 h after CPB). Ang-2 was

significantly elevated 6 h after CPB and remained upregulated

until 24 h after CPB. VEGF-A concentrations, however, were not

significantly regulated after CPB (35).

SDC-1 has been associated with severe acute kidney injury as

well as prolonged duration of stay on the intensive care unit as

well as hospital stay after pediatric CPB (38). Ang-2 concentration

at 6 h after CPB has been reported to show a correlation with

CPB time and surgery complexity as assessed via RACHS-1.

Furthermore, Ang-2 concentration was associated with the

duration of stay on the ICU (35). VEGF concentration has been

shown to be elevated after CPB in neonates and was associated

with postoperative capillary leak syndrome (36). Elevated

preoperative as well as postoperative VEGF-A concentrations have

been associated with cyanotic congenital heart disease (36, 37).

Analysis with linear mixed-effects models revealed age,

female sex, and duration of surgery as potential variables to

influence both SDC-1 and TM course of serum concentrations

over time, whereas Ang-2 concentration seems to be

influenced by age and duration of surgery (Table 4). To our
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knowledge this has not been reported so far, however our

study cohort represents a small and heterogenous group both

in relation to age and cardiac defect. Additionally, there was

no neonatal patient included in our study cohort. Therefore,

both associations with cardiac anomalies as well as age and

adverse clinical outcome need to be investigated further.
4.3 Fibroblast growth factor (FGF-23)

FGF-23 has been associated with AKI after CPB in children

(59, 60). FGF23 is an osteocyte-derived hormone playing an

important role in phosphate and vitamin D homeostasis (73).

Serum FGF23 has been shown to be increased in both early

stages of chronic kidney disease (74) as well as in early stages of

acute kidney injury (75, 76). Preoperative FGF23 serum

concentration was associated with AKI development after CPB

suggesting FGF23 as a suitable screening marker for AKI (60).

Additionally, FGF23 has also been described to be associated

with inflammatory processes in experimental studies (77). We

report a significant increase at both directly as well as 6 h after

surgery in our patient cohort (Figures 3, 4). AKI occurred in 5

patients (26%, 22% in female and 30% in male patients). In

accordance with AKI, FGF-23 serum concentrations seem to be

influenced by the duration of surgery (Table 4). We report that

FGF23 serum concentrations could be measured adequately using

our customized panel.
4.4 CIRBP

CIRBP has been reported as a key player in the innate

inflammatory response. Both in vitro and in vivo studies have

shown that CIRBP enhances inflammation by inducing

proinflammatory cytokines and DAMPs release (44). CIRBP

antiserum as well as blockage of its receptors have been shown

to reduce systemic inflammation, organ dysfunction, and

mortality in in vivo sepsis and hemorrhagic shock model

(44, 47). We could detect CIRBP in all patients, with increasing

serum concentration after cardiac surgery (Figures 3, 4).

Furthermore, linear mixed-effects models revealed duration of

surgery having a potential influence on CIRBP serum

concentrations (Table 4). However, as the purpose of this

feasibility study was to establish the validity of our customized

magnetic bead panel in order to analyze multiple analytes using

only a small sample volume, the question of the present study is

related to the measurability of biomarkers in the setting of CPB

in children. Due to the size of our cohort, the potential value

and significance of CIRBP as a biomarker was not assessed in

this study. Nevertheless, the stable course for 17 out of 19

patients could raise the question if for the 2 patients with higher

initial values and different progression the post-surgery recovery

was divergent from the rest of the group. This has to be

investigated in a larger sample. Following the positive results of

this feasibility study, we further conducted a larger trial including

108 patients and are in the process of analyzing the results. To
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our knowledge this is the first study analyzing CIRPB in a pediatric

population. So far, CIRBP has been detected in peripheral blood of

patients suffering from septic and hemorrhagic shock (44, 46) with

high CIRBP concentrations correlating with a poor survival rate

(46). Furthermore, CIRBP has been detected in adult patients

after cardiac surgery with CPB showing a correlation between

duration of CPB and postoperative lung dysfunction (78).

Whereas serum CIRBP was detectable in all patients suffering

from hemorrhagic shock with a mean blood collection time of

43 h after onset of shock, CIRBP could not be detected in the

control group (44). Zhou et al. report elevated plasma levels of

CIRBP in septic patients and suggests CIRBP as an independent

predictor for sepsis mortality as non survivors showed

significantly higher CIRBP levels compared to survivors (46).

Chen et al. analyzed CIRBP plasma concentration using Enzyme-

linked immunosorbent-Assay in 31 adult patients (median age 60

years; 17 male, 14 female) undergoing cardiovascular surgery at 1

day before surgery, as well as 6 h, and 1, 3, and 5 days after

surgery. They observed a significant increase in serum CIRBP 6 h

after CPB that returned to baseline levels 5 days after surgery.

CIRBP plasma levels were upregulated up to 1,300pg/ml

postoperatively. Furthermore, they also observed a correlation

between increased CIRBP concentrations with increasing

CPB duration (78).

Interestingly, hypothermia did not have an influence on

CIRBP concentration in serum. We recently investigated the

gene expression of both cold-shock proteins RNA-binding

motif 3 (RBM3) and CIRBP in patients treated with targeted-

temperature management (33°C for 24 h) after cardiac arrest.

CIRBP mRNA expression showed a tendency of upregulation

after 24 h of cooling and decreased significantly during the

following 48 h, whereas RBM3 was significantly elevated after

24 h of cooling (79). Chen et al. also did not observe a

significant regulation of CIRBP due to hypothermia during

CPB (mean temperature during CPB 31.6 ± 1.4°C) (78).

However, the number of patients treated with hypothermia in

our study was small and varied in temperatures between 28

and 32.1°C. Therefore, potential effects due to hypothermic

treatment might not have been detected. Furthermore, we did

not analyze the effect of body temperature after CPB on

CIRBP concentration. As both slow rewarming after

hypothermia during CPB and hyperthermia/fever could occur

after pediatric cardiac operation, the possible effect of body

temperature following CPB on CIRBP serum concentration

needs to be analyzed in larger patients cohorts. In the

following clinical study, we plan on assessing temperature

along with other vital parameters up to 72 h after cardiac

operation to investigate possible correlations.
4.5 Sex-associated differences

It is known that there are sex dependent differences

concerning the incidence of specific cardiac defects in CHD.

Transposition of the great arteries and left-sided obstructions

occur more often in males, whereas atrial septal defects and
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Ebstein’s anomalies are reported to be more frequent in female

patients (80). Moreover, retrospective analyses report that male

patients are more likely to undergo complex high-risk cardiac

surgery (81). This aspect might influence early postoperative

morbidity and potentially biomarker concentration. However,

data on sex associated differences regarding postoperative

mortality is to date inconsistent (82, 83). Trotter et al.

investigated sex related differences in postoperative cytokine

levels in 18 infants and children after CPB. All patients

showed significant increases in IL-8 and IL-10 after surgery,

however IL-10 plasma concentration was reported significantly

higher in female patients (67). We did not observe a sex

dependent regulation in IL-10 concentrations, but we did

observe a non-significant trend in higher IL-1β at all

respective timepoints in male patients (Figure 6). To our

knowledge, a correlation between gender and CIRBP

expression and secretion has not been investigated so far. We

did not detect sex related differences in CIRBP serum

concentrations (Figure 6). Trotter et al. reported a significant

increase in the sex steroid progesterone in both male and

female patients after CPB, but observed that only male

patients developed multiple organ dysfunction (67).

Considering the relatively small number of patients in their

study and differences in clinical outcome the reported sex-

dependent differences might also be related to clinical

outcome, age, or original clinical syndrome. (67), This needs

to be considered in our feasibility study as well. Although,

both male and female patients had a comparable risk for in-of

hospital mortality as assessed by RACHS-1 and operation time

as well as time on CPB was similar (Table 2), length of PICU

stay and mean VIS during the first 24 h after surgery was

higher in male patients (Table 3).
Limitations

The present feasibility study was conducted as a single-center

study enrolling a small number of consecutive heterogenous

patients in regards to sex, age, cardiac anomalies, and

subsequently complexity of cardiac surgeries. In all analyzed

patients, surgery was conducted using CPB. The study protocol

did not include a control group to evaluate the analyzed

biomarkers in healthy children or children without cardiac

surgery. Unfortunately, it would not have been justifiable from

an ethics perspective, as we would need to draw blood from

healthy infants and children, which can be a traumatic

experience in pediatric patients. Since our cohort already has

central venous access before the start of the operations, it was

completely painless and easy to obtain blood samples at all time

points from our pediatric patients. Furthermore, the

concentration of analyzed biomarkers could be influenced by

preoperative preparation of patients such as fasting or anesthesia

induction as the baseline values were obtained after anesthesia

induction directly before surgery. In summary, the results of this

pilot study need to be confirmed by a clinical study analyzing a

larger number of patients.
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5 Conclusion

A valid measurement of the regulation of CIRBP in the clinical

setting of cardiac surgery in children is possible. Measurements of

potential biomarkers in a larger clinical trial in a pediatric patient

cohort using small serum samples during cardiac surgery are

essential to validate the promising preliminary results.

This feasibility study shows that multiple analytes can be

quantified in a minimal serum volume (25 μl) using a

customized multiplex magnetic bead panel. Moreover, a valid

measurement of the release of CIRBP into the circulation in a

clinical setting of cardiac surgery in children was possible.

Measurements of potential biomarkers in a larger clinical trial in

a pediatric patient cohort using small serum sample volumes

collected during cardiac surgery are essential to validate these

promising preliminary results.
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