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Single-nucleotide variants (SNVs) in segmental duplications (SDs) have not been

systematically assessed because of the limitations of mapping short-read sequencing
data’* Here we constructed 1:1 unambiguous alignments spanning high-identity SDs
across 102 human haplotypes and compared the pattern of SNVs between unique and
duplicated regions®*. We find that human SNVs are elevated 60% in SDs compared to
unique regions and estimate that at least 23% of this increase is due to interlocus gene
conversion (IGC) with up to 4.3 megabase pairs of SD sequence converted on average
per human haplotype. We develop a genome-wide map of IGC donors and acceptors,
including 498 acceptor and 454 donor hotspots affecting the exons of about 800
protein-coding genes. These include 171 genes that have ‘relocated’ on average

1.61 megabase pairs in a subset of human haplotypes. Using a coalescent framework,
we show that SD regions are slightly evolutionarily older when compared to unique
sequences, probably owing to IGC. SNVs in SDs, however, show a distinct mutational
spectrum:a27.1%increase in transversions that convert cytosine to guanine or the
reverse across all triplet contexts and a 7.6% reduction in the frequency of CpG-
associated mutations when compared to unique DNA. We reason that these distinct
mutational properties help to maintain an overall higher GC content of SD DNA
compared to that of unique DNA, probably driven by GC-biased conversion between
paralogous sequences™®.

Thelandscape ofhuman SNVs has been well characterized for more than
adecadeinlarge part owing to wide-reaching efforts such as the Inter-
national HapMap Project and the 1000 Genomes Project”®. Although
these consortia helped to establish the genome-wide pattern of SNVs
(as low as 0.1% allele frequency) and linkage disequilibrium on the
basis of sequencing and genotyping thousands of human genomes,
not all parts of the human genome could be equally ascertained.
Approximately 10-15% of the human genome® has remained inacces-
sible to these types of analysis either because of gaps in the human
genome sequence or, more frequently, the low mapping quality associ-
ated with aligning short-read whole-genome sequencing data. This is
because short-read sequence data are of insufficient length (<200 base
pairs (bp)) to unambiguously assign reads and, therefore, variants to
specificloci®. Although certain classes of large, highly identical repeats
(for example, a-satellites in centromeres) were readily recognized,
others, especially SDs'and their 859 associated genes™, in euchromatin
were much more problematic to recognize.

Operationally, SDs are defined asinterchromosomal or intrachromo-
somal homologous regionsinany genomethatare >1 kbpinlength and
>90% identical in sequence’™. As such regions arise by duplication as

opposed toretrotransposition, they were initially difficult to identify
and early versions of the human genome sequence had either missed or
misassembled these regions owing to their high sequence identity'>".
Large-insert BAC clones ultimately led to many of these regions being
resolved. Subsequent analyses showed that SDs contribute dispro-
portionately to copy number polymorphisms and disease structural
variation®*, are hotspots for gene conversion®, are substantially
enriched in GC-rich DNA and Alu repeats'®”, and are transcriptionally
diverse leading to the emergence, in some cases, of human-specific
genes thought to be important for human adaptation'® %, Despite
theirimportance, the pattern of SNVs among humans has remained
poorly characterized. Early on, paralogous sequence variants were
misclassified as SNVs?and, as a result, later high-identity SDs became
blacklisted from SNV analyses because short-read sequence data
could not be uniquely placed®*?. This exclusion has translated into
a fundamental lack of understanding in mutational processes pre-
cisely in regions predicted to be more mutable owing to the action of
IGC*%, Previously, we noted anincrease in SNV density in duplicated
regions when compared to unique regions of the genome on the basis
of our comparison of GRCh38 and the complete telomere-to-telomere

'Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA. ?Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA,
USA. *Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA. “Department of Electrical Engineering and Computer Sciences, University of California,
Berkeley, Berkeley, CA, USA. °UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA. *Howard Hughes Medical Institute, Chevy Chase, MD, USA. *A list of

authors and their affiliations appears at the end of the paper. *e-mail: eee@gs.washington.edu

Nature | Vol 617 | 11 May 2023 | 325


https://doi.org/10.1038/s41586-023-05895-y
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-023-05895-y&domain=pdf
mailto:eee@gs.washington.edu

Article

(T2T) human reference genome'®. Leveraging high-quality phased
genome assemblies from 47 humans generated as part of the Human
Pangenome Reference Consortium (HPRC)?, we sought to investigate
this difference more systematically and compare the SNV landscape of
duplicated and unique DNA in the human genome revealing distinct
mutational properties.

Strategy and quality control

Unlike previous SNV discovery efforts, which catalogued SNVs on the
basis of the alignment of sequence reads, our strategy was assembly
driven (Extended Data Fig. 1). We focused on the comparison of 102
haplotype-resolved genomes (Supplementary Table 1) generated as
partof the HPRC (n = 94) or other efforts (n = 8)>**'*?’ in which phased
genome assemblies had been assembled using high-fidelity (HiFi)
long-read sequencing®. The extraordinary assembly contiguity of
these haplotypes (contig N50, defined as the sequence length of the
shortest contigat 50% of the total assembly length, >40 Mbp) provided
anunprecedented opportunity to align large swathes (>1 Mbp) of the
genome, including high-identity SD repeats anchored by megabases
of synteny.

As SD regions are often enriched in assembly errors even among
long-read assemblies®**, we carried out a series of analyses to assess
the integrity and quality of these regions in each assembled haplo-
type. First, we searched for regions of collapse™ by identifying unusual
increases or decreases in sequence read depth®. We determine that,
on average, only 1.64 Mbp (1.37%) of the analysed SD sequence was
suspect owing to unusually high or low sequence read depth on the
basis of mapping of underlying read data— as such patterns are often
indicative of a misassembly® (Methods). Next, for all SD regions used
in our analysis we compared the predicted copy number by Illumina
sequence read depth with the sum based on the total copy number
from the two assembled haplotypes. These orthogonal copy number
estimates were highly correlated (Pearson’sR = 0.99,P< 2.2 x107%; Sup-
plementary Fig.1) implying that most SD sequences in the assemblies
have the correct copy number. To confirm these results in even the most
difficult to assemble duplications, we selected 19 of the largest and
mostidentical SDs across 47 haplotypes for a total of 893 tests. These
estimates were also highly correlated (Pearson’sR=0.99,P<2.2x107%;
Supplementary Figs.2 and 3), and of the 893 tests conducted, 756 were
identical. For the 137 tests for which estimates differed, most (n =125)
differed by only one copy. Finally, most of these discrepancies came
fromjust threelarge (>140 kbp) and highly identical (>99.3%) SDs (Sup-
plementary Fig. 3).

To validate the base-level accuracy, we next compared the quality
value for both SD and unique sequences using lllumina sequencing data
for 45 of the HPRC samples (Methods). Both unique (average quality
value =59s.d.1.9) and SD (average quality value =53 s.d. 1.9) regions
are remarkably high quality, which in the case of SDs translates into
lessthan1 SNV error every 200 kbp (Supplementary Fig. 4). We further
show that these high-quality assembles result inaccurate variant calls
(Supplementary Notes and Supplementary Figs. 5-9). We also assessed
the contiguity of the underlying assemblies using arecently developed
tool, GAVISUNK, which compares unique k-mer distributions between
HiFi-based assemblies and orthogonal Oxford Nanopore Technologies
sequencing data from the same samples. We found that, on average,
only 0.11% of assayable SD sequence was in error compared to 0.14%
of unique regions assayed (Supplementary Table 2), implying high
and comparable assembly contiguity. As a final control for potential
haplotype-phasingerrorsintroduced by trio HiFi assembly of diploid
samples, we generated deep Oxford Nanopore Technologies and HiFi
data from a second complete hydatidiform mole (CHM1) for which a
single paternal haplotype was present and applied a different assembly
algorithm® (Verkko 1.0; Extended Data Fig. 2). We show across our
many analyses that the results from the CHM1 Verkko assembly are
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consistentwithindividual haplotypes obtained from diploid HPRC sam-
ples producedby trio hifiasm*>*2 (Supplementary Fig.10). We therefore
conclude that phasing errors have, at most, a negligible effect on our
results and that most (>98%) SDs analysed were accurately assembled
from multiple human genomes allowing the pattern of SNV diversity
in SDs to be systematically interrogated.

Increased SNV density in SD regions

To assess SNVs, we limited our analysis to portions of the genome
where a 1:1 orthologous relationship could be unambiguously
assigned (as opposed to regions with extensive copy number varia-
tion). Using the T2T-CHMI13 reference genome, we aligned the HPRC
haplotypesrequiringalignments to be a minimumof1 Mbpinlength
and carry no structural variation events greater than 10 kbp (Methods
and Extended Data Fig. 1). Although the proportion of haplotypes
compared for any locus varied (Fig. 1a), the procedure allowed us
to establish, on average, 120.2 Mbp 1:1 fully aligned sequence per
genome for SD regions out of a total of 217 Mbp from the finished
human genome (T2T-CHM13 v1.1). We repeated the analysis for
‘unique’ (or single-copy) regions of the genome and recovered by
comparison 2,508 Mbp as 1:1 alignments (Fig. 1a). All downstream
analyses were then carried out using this orthologous alignment set.
We first compared the SNV diversity between unique and duplicated
regions excluding suboptimal alignments mapping to tandem repeats
or homopolymer stretches. Overall, we observe a significant 60%
increase in SNVs in SD regions (Methods; Pearson’s chi-squared test
with Yates’s continuity correction P< 2.2 x 107; Fig. 1b). Specifically,
we observe an average of 15.3 SNVs per 10 kbp versus 9.57 SNVs per
10 kbp for unique sequences (Fig. 1d). An empirical cumulative dis-
tribution comparing the number of SNVs in10-kbp windows between
SD and unique sequence confirms that this is a general property and
not driven simply by outliers. The empirical cumulative distribution
shows that more than half of the SD sequences have more SNVs than
their unique counterparts (Fig. 1b). Moreover, for all haplotypes we
divided the unique portions of the genome into 125-Mbp bins and
found that all SD bins of equivalent size have more SNVs than any of the
bins of unique sequence (empirical P value < 0.0005; Extended Data
Fig.3). This elevationin SNVsis only modestly affected by the sequence
identity of the underlying SDs (Pearson’s correlation of only 0.008;
Supplementary Fig. 11). The increase in SNVs (60%) in SDs is greater
thanthatinall other assayable classes of repeats: Alu (23%), L1 (-9.4%),
human endogenous retroviruses (-9.4%) and ancient SDs for which
the divergence is greater than 10% (12%) (Extended Data Fig. 4 and
Supplementary Table 3). We find, however, that SNV density correlates
withincreasing GC content (Supplementary Fig.12) consistent with Alu
repeats representing the only other class of common repeat to show
anelevation.

Previous publications have shown that African haplotypes are geneti-
cally morediverse, having on average about 20% more variant sites com-
pared to non-African haplotypes®. To confirm this observation in our
data, weexamined the number of SNVs per 10 kbp of unique sequence
in African versus non-African haplotypes (Fig. 1c,d) and observed a27%
(10.8 versus 8.5) excessin African haplotypes. As aresult,among African
haplotypes, we see that the average distance between SNVs (979 bp) is
19.4% closer than in non-African haplotypes (1,215 bp), as expected®*2.
African genomes also show increased variation in SDs, but it is less
pronounced with an average distance of 784 bases between consecu-
tive SNVs as compared to 909 bases in non-African haplotypes (13.8%).
Although elevated in African haplotypes, SNV density is higher in SD
sequence across populations and these properties are not driven by a
few sites but, once again, are a genome-wide feature. We put forward
three possible hypotheses to account for this increase although note
these are not mutually exclusive: SDs have unique mutational mecha-
nismsthatincrease SNVs; SDs have adeeper average coalescence than
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unique parts of the genome; and differences in sequence composition
(for example, GC richness) make SDs more prone to particular classes
of mutation.

Putative IGC

One possible explanation for increased diversity inSDs is IGC in which
sequence that is orthologous by position no longer shares an evolution-
ary history because a paralogue from a different location has ‘donated’
itssequence through ectopic template-driven conversion®, also known
asnonallelicgene conversion?. Toidentify regions of IGC, we developed
amethod that compares two independent alignment strategies to
pinpointregions where the orthologous alignment of an SD sequence
isinferior toanindependent alignment of the sequence without flank-
ing information (Fig. 2a and Methods). We note several limitations
of our approach (Supplementary Notes); however, we show that our
high-confidence IGC calls (20+ supporting SNVs) have strong overlap
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with other methods for identifying IGC (Supplementary Notes and
Supplementary Fig.13). Using thisapproach, we created agenome-wide
map of putative large IGC events for all of the HPRC haplotypes for
which 1:1 orthologous relationships could be established (Fig. 2).
Across all 102 haplotypes, we observe 121,631 putative IGC events
foranaverage of 1,193 events per human haplotype (Fig. 2b,c and Sup-
plementary Table 4). Of these events, 17,949 are rare and restricted
to asingle haplotype (singletons) whereas the remaining events are
observed in several human haplotypes grouping into 14,663 distinct
events (50% reciprocal overlap at both the donor and acceptor site). In
total, we estimate that there is evidence for 32,612 different putative
IGC events (Supplementary Table 5) among the SD regions that are
assessed at present. Considering the redundant IGC callset (n =121,631),
the average IGClength observedinour datais 6.26 kbp with the largest
eventobserved being 504 kbp (Extended DataFig.5). Onaverage, each
IGC event has 13.3 SNVs that support the conversion event and 2.03
supporting SNVs per kilobase pair, and as expected, there is strong
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identify eachwindow’s single best alignment position. These alignments were
compared to their original syntenic alignment positions, and if they were not
overlapping, we considered themto be candidate IGC windows. Candidate IGC
windows were then merged into larger intervals and realigned when windows
wereoverlappinginboth the donorand the acceptor sequence. We then used
the CIGAR string to identify the number of matching and mismatching bases at
the ‘donor’site and compared that to the number of matching and mismatching
basesattheacceptor site determined by the syntenic alignment to calculate

correlation (Pearson’s R=0.63, P <2.2 x107%; Fig. 2d) between the
length of the events and supporting SNVs. Furthermore, we validated
these supporting SNVs against llluminasequencing dataand find that
onaverage only 1% (12/1,192) of IGC events contain even one erroneous
SNV (Supplementary Fig.4). The putative IGC events detected with our
method are largely restricted to higher identity duplications with only
325eventsdetected in 66.1 Mbp of SDs with >10% sequence divergence
(Supplementary Figs. 14 and 15). We further stratify these results by
callset, minimum number of supporting SNVs and haplotype (Supple-
mentary Table 6). Finally, we use the number of supporting informative
SNVs to estimate the statistical confidence of every putative IGC call
(Fig. 2c, Supplementary Table 7 and Methods). Using these Pvalues,
we identify a subset of the high-confidence (P value < 0.05) IGC calls
with 31,910 IGC events and 10,102 nonredundant events.

Onaverage, weidentify 7.5 Mbp of sequence per haplotype affected
by putative IGC and 4.3 Mbp in our high-confidence callset (Fig. 2b).
Overall, 33.8% (60.77/180.0 Mbp) of the analysed SD sequence is
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affected by putative IGC in at least one human haplotype. Furthermore,
among allSDs covered by at least 20 assembled haplotypes, we identify
498 acceptor and 454 donor IGC hotspots withat least 20 distinct IGC
events (Fig.3 and Supplementary Table 8). IGC hotspots are more likely
toassociate with higher copy number SDs compared toarandom sam-
ple of SD windows of equal size (median of 9 overlaps compared to 3,
one-sided Wilcoxon rank sumtest P< 2.2 x 107¢) and regions with more
IGC events are moderately correlated with the copy number of the SD
(Pearson’sR=0.23,P<2.2 x107%; Supplementary Fig.16).1GC hotspots
also preferentially overlap higher identity duplications (median 99.4%)
compared to randomly sampled windows (median 98.0%, one-sided
Wilcoxon rank sum test P<2.2 x 107%),

These events intersect 1,179 protein-coding genes, and of these
genes, 799 have at least one coding exon affected by IGC (Supplemen-
tary Tables 9 and 10). As ameasure of functional constraint, we used the
probability of being loss-of-function intolerant (pLI) for each of the 799
genes® (Fig. 4a). Among these, 314 (39.3%) have never been assessed
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Fig.3|IGChotspots. a, Density of IGC acceptor (top, blue) and donor
(bottom, orange) sites across the ‘SD genome’. The SD genome consists of
allmain SD regions (>50 kbp) minus the intervening unique sequences.

b, Allintrachromosomal IGC events on 24 human haplotypes analysed for
chromosome15. Arcs drawnin blue (top) have the acceptorsite on the left-hand
side and the donor site on the right. Arcs drawnin orange (bottom) are arranged
oppositely. Protein-coding genes are drawn as vertical black lines above the
ideogram, and large duplication (blue) and deletion (red) events associated

for mutation intolerance (that is, no pLI) owing to the limitations of
mappingshort-read datafrom population samples®. Of the remaining
genes, weidentify 38 withapLIgreater than 0.5, including genes associ-
ated with disease (F8, HBGI and C4B) and human evolution (NOTCH2
and TCAF). Of the genes with high pLI scores, 12 are the acceptor site
foratleast 50 IGC events, including CB4, NOTCH2 and OPNLIW-alocus
for red-green colour blindness (Fig. 4b-e). We identify asubset of 418
nonredundant IGC events that are predicted to copy the entirety of a
genebody to a‘new location’ in the genome (Fig. 4f,g). Asaresult, 171
different protein-coding genes with at least 2 exons and 200 coding
base pairs are converted in their entirety by putative IGC eventsina
subset of human haplotypes (Supplementary Table 11), and we refer
to thisphenomenon as gene repositioning. These gene-repositioning
events are large (average 26 kbp; median 16.7 kbp) and supported by
a high number of SNVs (average 64.7; median 15.3 SNVs), suggesting
that they are unlikely to be mapping artefacts. Markedly, these puta-
tive IGC events copy the reference gene model on average a distance
of1.66 Mbp (median 216 kbp) fromits original location. These include
several disease-associated genes (for example, TAOK2, C4A, C4B, PDPK1
and/L27) as well as genes that have eluded complete characterization
owing to their duplicative nature® ",

withhumandiseases are drawn as horizontal lines just above the ideogram.
c,Zoomof the 30 highest confidence (lowest Pvalue) IGC events on
chromosome15between17 and 31 Mbp. The number to the left of each event
showsitslength (kbp) and that to the right shows itsnumber of SNVs. Genes
withIGC events are highlighted inred and associate with the breakpoint
regions of Prader-Willisyndrome. An expanded graphic with all haplotypes s
includedin Extended DataFig.7.

Evolutionary age of SDs

Our analysis suggests that putative IGC contributes modestly to the
significant increase of human SNV diversity in SDs. For example, if
we apply the least conservative definition of IGC (1 supporting SNV)
and exclude all putative IGC events from the human haplotypes, we
estimate that it accounts for only 23% of the increase (Extended Data
Fig. 6). If we restrict to higher confidence IGC events (P < 0.05), only
19.6% of the increase could be accounted for. An alternative explana-
tion may be that the SDs are evolutionarily older, perhaps owing to
reduced selective constraint on duplicated copies®?. To test whether
SDsequences seemto have a deeper average coalescence than unique
regions, we constructed a high-quality, locally phased assembly
(hifiasm v0.15.2) of a chimpanzee (Pan troglodytes) genome to cali-
brate age since the time of divergence and to distinguish ancestral
versus derived allelesin human SD regions (Methods). Constraining our
analysis to syntenic regions between humanand chimpanzee genomes
(Methods), we characterized 4,316 SD regions (10 kbp in size) where
we had variant calls from at least 50 human and one chimpanzee hap-
lotype. We selected at random 9,247 analogous windows from unique
regions for comparison. We constructed amultiple sequence alignment
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Fig.4|Protein-coding genes affected by IGC. a, Number of putative IGC events
intersecting exons of protein-coding genes as a function ofagene’s pLI. Of the
799 genes, 314 (39.3%) did not have apLIscore and are shown in the column
labelled No pLIdataavailable. b,c, Number of times agene exonactsas an
acceptor (b) oradonor (c) of anIGC event.d,e, IGCevents at the complement
factorlocus, C44 and C4B (d), and the opsin middle- and long-wavelength-

for each window and estimated the time to the most recent common
ancestor (TMRCA) for each 10-kbp window independently. We infer
that SDs are significantly older than the corresponding unique regions
of similar size (Supplementary Figs. 17 and 18; one-sided Wilcoxon
rank sumtest Pvalue = 4.3 x 107*), assuming that mutation rates have
remained constant over time within these regions since the human-
chimpanzee divergence. The TMRCAs inferred from SD regions are,
on average, 22% more ancient when compared to unique regions
(650 versus 530 thousand years ago (ka)), but only a 5% difference is
noted when comparing the median (520 versus 490 ka). However, this
effectallbut disappears (only a0.2%increase) after excluding windows
classified as IGC (Supplementary Fig. 19; one-sided Wilcoxon rank
sumtest P=0.05; mean TMRCA . = 528 ka, mean TMRCA, = 581 ka,
median TMRCA .. = 495 ka, median TMRCAg, = 496 ka).

SNV mutational spectrain SDs

As a third possibility, we considered potential differences in the
sequence context of unique and duplicated DNA. It has been recog-
nized for almost two decades that human SDs are particularly biased
towards Alurepeats and GC-rich DNA of the human genome**°. Nota-
bly,amongthe SNVsin SDs, we observed a significant excess of transver-
sions (transition/transversion ratio (Ti/Tv) =1.78) when compared to
unique sequence (Ti/Tv=2.06; P< 2.2 x 107", Pearson’s chi-squared test
with Yates’s continuity correction). Increased mutability of GC-rich DNA
isexpected and may explain, in part, the increased variationin SDs and
transversion bias®***., Using a more complete genome, we compared
the GC composition of unique and duplicated DNA specifically for the
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1:1 alignment coverage

sensitive genes associated with colour blindness (OPNIMW and OPNILW
locus; e). Predicted donor (orange) and acceptor (blue) segments by length
(number to left of event) and average number of supporting SNVs (number to
right of event) are shown. The number of human haplotypes supporting each
configurationis depicted by the histograms to theright. f,g, IGC events that
reposition entire gene models for the FCGR (f) and TRIM (g) loci.

regions considered in this analysis. We find that, on average, 42.4%
of the analysed SD regions are guanine or cytosine (43.0% across all
SDs) when compared to 40.8% of the unique DNA (Pvalue <2.2 107,
one-sided t-test). Notably, this enrichment drops slightly (41.8%) if
we exclude IGC regions. Consequently, we observe an increase of all
GC-containing triplets in SD sequences compared to unique regions
of the genome (Fig. 5a). Furthermore, the enrichment levels of par-
ticular triplet contexts in SD sequence correlate with the mutabi-
lity of the same triplet sequence in unique regions of the genome
(Pearson’sR=0.77,P=2.4 x107; Fig. 5b). This effect is primarily driven
by CpG-containing triplets, which are enriched between 14 and 30%
in SD sequences. Note, we observe a weaker and insignificant cor-
relation for the non-CpG-containing triplets (Pearson’s R=0.22,
P=0.27).Extrapolating from the mutational frequencies seenin unique
sequences, we estimate that thereis 3.21% more variation with SDs due
to their sequence composition alone.

To further investigate the changes in GC content and their effect
on variation in SDs, we compared the triplet mutational spectra of
SNVs from unique and duplicated regions of the genome to determine
whether the predominant modes of SNV mutation differed (Meth-
ods). We considered all possible triplet changes, first quantifying the
number of ancestral GC bases and triplets in SDs (Fig. 5a). A principal
component analysis (PCA) of these normalized mutational spectra
shows clear discrimination (Fig. 5c) between unique and SD regions
(PC1) beyond that of African and non-African diversity, with the first
principal component capturing 80.2% of the variation separating the
mutational spectrum of SDs and unique DNA. We observe several dif-
ferences when comparing the triplet-normalized mutation frequency
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Fig.5|Sequence compositionand mutational spectraof SDSNVs.

a, Compositionalincrease in GC-containing tripletsin SD versus unique regions
ofthe genome (coloured by GC content). b, Correlation between the enrichment
of certaintripletsin SDs compared to the mutability of that tripletin unique
regions of the genome. Mutability is defined as the sum of all SNVs that change
atripletdivided by the total count of that tripletin the genome. The enrichment
ratio of SD over uniqueregionsis indicated in text next to each triplet sequence.
Thetext (upperleft) indicates the value of the Pearson’s correlation coefficient
and the Pvalue froma two-sided t-test without adjustment for multiple
comparisons. ¢, PCA of the mutational spectraof tripletsin SD (circles) versus

of particular mutational events in SD and unique sequences (Fig. 5d).
Most notableisa7.6%reductionin CpG transition mutations—the most
predominant mode of mutation in unique regions of the genome due
to spontaneous deamination of methylated CpGs® (Supplementary
Tables12and 13).

The most notable changesin mutational spectrain SD sequences are
a27.1%increase in C>G mutations, al5.3% increase in C>A mutations
and a10.5% increase in A>C mutations. C>G mutations are associated
with double-strand breaks in humans and some other apes****. This
effect becomes more pronounced (+40.4%) in our candidate IGC
regions consistent with previous observations showing increases
in C>G mutations in regions of non-crossover gene conversion and

unique (triangles) regions polarized against achimpanzee genome assembly
and coloured by the continental superpopulation of the sample. AFR, African;
AMR, American; EAS, East Asian; EUR, European; SAS, South Asian.d, The
log[fold change] in triplet mutation frequency between SD and unique
sequences. Theyaxisrepresentsthe 5’ base of the triplet context; the first level
ofthex axis shows which central base has changed and the second level of the
x axis shows the 3’ base: heatmap depicts the log[fold change]. Asan example,
thetop left corner shows the log[fold change]in frequency of TAA>TCA
mutationsinSD versus unique sequences.

double-strand breaks** *. However, the increase remains in SD
regions without IGC (+20.0%) perhaps owing to extensive nonallelic
homologous recombination associated with SDs or undetected IGC
events*’.

To further investigate the potential effect of GC-biased gene con-
version (gBGC) on the mutational spectra in SDs, we measured the
frequency of (A,T)>(G,C) mutationsin SD regions with evidence of IGC
todetermine whether cytosine and guanine bases are being preferen-
tially maintained as might be expected in regions undergoing gBGC. If
we measure the frequency of (A,T)>(C,G) in windows with atleast one
haplotype showing evidence of IGC, then we observe that the frequency
is 4.7% higher than in unique regions of the genome; notably, in SDs
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withoutIGC, thisrate is reduced compared to that of unique sequence
(-3.5%). Additionally, there is a 5.8% reduction in (G,C)>(A,T) bases
consistent with IGC preferentially restoring CG bases that have mutated
to AT bases through gBGC. These results indicate that gBGC between
paralogous sequences may be astrong factor in shaping the mutational
landscape of SDs. Although, the (A, T)>(C,G) frequency is comparable
in SD regions not affected by IGC, the mutational landscape at large
is still very distinct between SDs and unique parts of the genome. In
PCA of the mutational spectra in SDs without IGC, the first principal
componentdistinguishing the mutational spectrum of SDs and unique
DNA capturesalarger fraction of the variation (94.6%) thanin the PCA
including IGC sites (80.2%; Supplementary Fig. 20).

Modelling of elevated SNV frequency

To model the combined effect of unique mutational properties, evolu-
tionary age and sequence content on the frequency of SNVs, we devel-
opedamultivariable linear regression using copy number, SD identity,
number of unique IGC events, GC content and TMRCA to predict the
number of SNVs seenin al0-kbp window. A linear model containingall
pairwise interactions of these predictors was able to explain10.5% of the
variationin SNVs per 10 kbp (adjusted R?), whereas amodel containing
only the number of IGC events explained only 1.8% of the variation. We
note that this measure of varianceis related but not directly comparable
to the finding that the elevation in the number of SNVs is reduced by
23%when excluding IGC regions. All of the random variables, including
their pairwise interactions, were significant (P value < 0.05) predictors
of SNVs per10 kbp except the interaction of number of IGC events with
GC content, copy number and TMRCA. The strongest single predic-
tors were the number of unique IGC events and the divergence of the
overlapping SD (Supplementary Table 14).

Discussion

Since the first publications of the human genome'**, the pattern of
single-nucleotide variationinrecently duplicated sequence hasbeen
difficult to ascertain, leading to errors®™.. Later, indirect approaches
were used to infer true SNVsin SDs, but these were far from complete*°.
More often than not, large-scale sequencing efforts simply excluded
suchregionsinaneffortto prevent paralogous sequence variants from
contaminating single-nucleotide polymorphism databases and leading
to false genetic associations®?. The use of phased genome assemblies
asopposed toaligned sequence reads had the advantage of allowing us
toestablish 1:1orthologous relationships as well as the ability to discern
the effect of IGC while comparing the pattern of single-nucleotide
variation for both duplicated and unique DNA within the same hap-
lotypes. As aresult, we identify over 1.99 million nonredundant SNVs
ina gene-rich portion of the genome previously considered largely
inaccessible.

SNV density is significantly elevated (60%) in duplicated DNA when
compared to unique DNA consistent with suggestions from primate
genome comparisons and more recent de novo mutation studies from
long-read sequencing data**"*%, Furthermore, an increased de novo
mutationratein SDs could support our observation of an elevated SNV
density without the need foranincrease in TMRCA. We estimate that at
least 23% of thisincrease is due to the action of IGC between paralogous
sequences that essentially diversify allelic copies through concerted
evolution.IGCin SDs seems to be more pervasive in the human genome
compared to earlier estimates™?, which owing to mapping uncertain-
ties or gaps could assay only a smaller subset of regions'>”. We estimate
more than 32,000 candidate regions (including 799 protein-coding
genes) with the average human haplotype showing 1,192 events when
compared to the reference. The putative IGC events are also much
larger (mean 6.26 kbp) than those of most previous reports?®*°, with
the top 10% of the size distribution >14.4 kbp in length. This has the
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net effect that entire genes are copied hundreds of kilobase pairs into
anew genomic context when compared to the reference. The effect of
such ‘repositioning events’ on gene regulation will be an interesting
avenue of future research.

Asfor allelicgene conversion, our predicted nonallelic gene conver-
sion events are abundant, cluster into larger regional hotspots and
favour G and C mutations, although this last property is not restricted
to IGC regions*~°. Although we classify these regions as putative IGC
events, other mutational processes such as deletion followed by
duplicative transposition could, in principle, generate the same signal
creating large tracts of ‘repositioned’ DNA. It should also be stressed
that our method simply relies on the discovery of a closer match within
the reference; by definition, this limits the detection of IGC events to
regions where the donor sequenceis already presentin the reference
asopposed toanalternative. Moreover, we interrogated only regions
where 1:1synteny could be unambiguously established. As more of the
genome is assessed in the context of a pangenome reference frame-
work, we anticipate that the proportion of IGC willincrease, especially
aslarge-copy-number polymorphic SDs, centromeres and acrocentric
DNA become fully sequence resolved?. Although we estimate 4.3 Mbp
of IGC in SDs on average per human haplotype, we caution that this
almost certainly represents a lower bound and should not yet be
regarded as a rate until more of the genome is surveyed and studies
arecarried outinthe context of parent-child trios to observe germline
events.

One of the most notable features of duplicated DNA is its higher GC
content. In this study, we show that there is a clear skew in the muta-
tional spectrum of SNVs to maintain this property of SDs beyond
expectations from unique DNA. This property and the unexpected
Ti/Tv ratio cannot be explained by lower accuracy of the assembly
of SD regions. We find a 27.1% increase in transversions that convert
cytosine to guanine or the reverse across all triplet contexts. GC-rich
DNA haslongbeenregarded as hypermutable. For example, C>G muta-
tions preferentially associate with double-strand breaks in humans
and apes*** and GC-rich regions in yeast show about 2-5 times more
mutations depending on sequence context compared to AT-rich DNA*.
Notably, inhuman SD regions, we observe a paucity of CpG transition
mutations, characteristically associated with spontaneous deamina-
tion of CpG dinucleotides and concomitant transitions®. The basis for
this is unclear, but it may be partially explained by the recent obser-
vation that duplicated genes show a greater degree of hypomethyla-
tionwhen compared to their unique counterparts'®. We propose that
excess of guanosine and cytosine transversions is a direct consequence
of GC-biased gene conversion® driven by an excess of double-strand
breaks that result from ahigh rate of nonallelichomologous recombina-
tion events and other break-induced replication mechanisms among
paralogous sequences.
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Methods

Defining unique and SD regions

To define regions of SD, we used the annotations available for
T2T-CHM13 v1.1 (ref. 10), which include all nonallelic intrachromo-
somal and interchromosomal pairwise alignments >1 kbp and with
>90% sequence identity that do not consist entirely of common
repeats or satellite sequences. To define unique regions, we found
the coordinatesin T2T-CHM13 that were not SDs, ancient SDs (<90%
sequence identity), centromeres or satellite arrays™ and defined these
areas to be the non-duplicated (unique) parts of the genome. For
both SDs and unique regions, variants in tandem repeat elements
as identified by Tandem Repeats Finder>? were excluded because
many SNVs calledinthese regions are ultimately alignment artefacts.
RepeatMasker v4.1.2 was used to annotate SNVs with additional repeat
classes beyond SDs*.

Copy number estimate validation

The goal of this analysis was to validate copy number from the assem-
bled HPRC haplotypes compared to estimates from read-depth analysis
of the same samples sequenced using lllumina whole-genome sequenc-
ing (WGS). Large, recently duplicated segments are prone to copy num-
ber variation and are also susceptible to collapse and misassembly
owing to their repetitive nature. HPRC haplotypes were assembled
using PacBio HiFiwith hifiasm>** creating contiguous long-read assem-
blies. We selected 19 SD loci corresponding to genes that were known
to be duplicated and copy number variable in the human species. We
k-merized the 2 haplotype assemblies corresponding to each locus
foreachindividualinto k-mers of 31 base pairsinlength. We then com-
puted copy number estimates over each locus for the sum haplotype
assemblies and calculated the difference based on Illumina WGS from
thesame sample. For both datasets, we derived these estimates using
FastCN, an algorithm implementing whole-genome shotgun sequence
detection®. When averaging across each region and comparing differ-
ences inassembly copy versus Illumina WGS copy estimate, we observe
that 756 out of 893 tests were perfectly matched (6 = 0), suggesting that
most of these assemblies correctly represent the underlying genomic
sequence of the samples.

Quality value estimations with Merqury

Estimates of the quality value of SD and unique regions were made using
Merqury vl.1and parental lllumina sequencing data®. We first used
Meryl to create k-mer databases (with a k-mer length of 21) using the
parental sequencing datafollowing the instructionsinthe Merqury doc-
umentation. Then Merqury was run with default parameters (merqury.
sh {k-mer meryl database} {paternal sequence} {maternal sequence})
to generate quality value estimates for the hifiasm assemblies.

Haplotype integrity analysis using inter-SUNK approach

For the 35 HPRC assemblies with matched ultralong Oxford Nano-
pore Technologies (ONT) data, we applied GAVISUNK v1.0.0 as an
orthogonal validation of HiFi assembly integrity®’. In brief, candidate
haplotype-specific singly unique nucleotide k-mers (SUNKs) of length
20 are determined from the HiFi assembly and compared to ONT reads
phased with parental lllumina data. Inter-SUNK distances are required
to be consistent between the assembly and ONT reads, and regions
that can be spanned and tiled with consistent ONT reads are consid-
ered validated. ONT read dropouts do not necessarily correspond
to misassembly—they are also caused by large regions devoid of
haplotype-specific SUNKs from recent duplications, homozygosity or
over-assembly of the region, as well as Poisson dropout of read coverage.

Read-depth analysis using the HPRC unreliable callset
Forthe 94 assembled HPRC haplotypes, we downloaded theregionsiden-
tified to have abnormal coverage form S3 (s3://human-pangenomics/

submissions/e9ad8022-1b30-11ec-ab04-0a13¢5208311-COVERAGE_
ANALYSIS_Y1_GENBANK/FLAGGER/JAN_09_2022/FINAL_HIFI_BASED/
FLAGGER_HIFI_ASM_SIMPLIFIED_BEDS/ALL/). We then intersected
theseregions with the callable SD regionsineach assembly to determine
the number of collapsed, falsely duplicated and low-coverage base
pairsineach assembly. The unreliable regions were determined by the
HPRC using Flagger v0.1 (https://github.com/mobinasri/flagger/)*.

Whole-genome alignments and synteny definition

Whole-genome alignments were calculated against T2T-CHM13 v1.1
with a copy of GRCh38 chrY using minimap2 v2.24 (ref. 58) with the
parameters -a -x asm20-secondary=no -s 25000 -K 8G. The align-
ments were further processed with rustybam v0.1.29 (ref. 59) using
the subcommands trim-paf to remove redundant alignments in the
query sequence and break-paf to split alignments on structural vari-
ants over 10 kbp. After these steps, the remaining alignments over
1Mbp of continuously aligned sequence were defined to be syntenic.
The software pipeline is available on GitHub at https://github.com/
mrvollger/asm-to-reference-alignment/ (refs. 58-67).

Estimating the diversity of SNVsin SDs and unique sequences
When enumerating the number of SNVs, we count all pairwise differ-
ences between the haplotypes and the reference, counting events
observed in multiple haplotypes multiple times. Therefore, except
when otherwise indicated, we are referring to the total number of
pairwise differences rather than the total number of nonredundant
SNVs (number of segregation sites). The software pipeline is avail-
able on GitHub at https://github.com/mrvollger/sd-divergence
(refs. 60-63,65,66,68).

Defining IGC events

Each query haplotype genome sequence was aligned to the reference
genome (T2T-CHM13 v1.1) using minimap2 v2.24 (ref. 58) consider-
ing only those regions that align in a 1:1 fashion for >1 Mbp without
any evidence of gaps or discontinuities greater than 10 kbp in size.
This eliminates large forms of structural variation, including copy
number variants or regions of large-scale inversion restricting the
analysis tolargely copy numberinvariant SD regions (about 120 Mbp)
and flanking unique sequence. Once these syntenic alignments were
defined, we carried out a second alignment fragmenting the 1:1syn-
teny blocks into 1-kbp windows (100-bp increments) and remapped
back to T2T-CHM13 to identify each window’s single best alignment
position. These second alignments were then compared to original
syntenic ones and if they no longer overlapped, we considered them
tobe candidate IGCregions. Adjacent IGC windows were subsequently
merged into larger intervals when windows continued to be mapped
non-syntenically with respect to the original alignment. We then used
the CIGAR string to identify the number of matching and mismatching
bases at the ‘donor’site and compared that to the number of matching
and mismatching bases at the acceptor site determined by the syn-
tenic alignment. A donor sequence is, thus, defined as a segment in
T2T-CHM13 that now maps with higher sequence identity toanew loca-
tion in the human haplotype (alignment method 2) and the acceptor
sequence is the segment in T2T-CHM13 that has an orthologous map-
ping to the same region inthe human haplotype (alignment method 1).
As such, there is dependence on both the reference genome and the
haplotype being compared. The software pipeline is available on
GitHub at https://github.com/mrvollger/asm-to-reference-alignment/
(refs. 58-67).

Assigning confidence to IGC events

To assign confidence measures to our IGC events, we adapted a previ-
ously described method® to calculate a Pvalue for every one of our
candidate IGC calls. Our method uses acumulative binomial distribu-
tion constructed from the number of SNVs supporting the IGC event
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and the total number of informative sites between two paralogues to
assign aone-sided Pvalue to each event. Specifically:

P(X<k)=B(k,n,p)

inwhich Bis the binomial cumulative distribution, n is the number of
informative sites between paralogues, kis the number of informative
sites that agree with the non-converted sequence (acceptor site), and
pisthe probability that at an informative site the base matches the
acceptor sequence. We assume p to be 0.5reflecting thatasupporting
base change can come from one of two sources: the donor or acceptor
paralogue. With these assumptions, our binomial model reports the
probability that we observe k or fewer sites that support the acceptor
site (thatis, no IGC) at random given the data, giving us a one-sided
Pvalue for each IGC event. No adjustments were made for multiple
comparisons.

Testing for IGCin unique regions

Totest the specificity of our method, we applied it to an equivalent total
of unique sequence (125 Mbp) on each haplotype, which we expected
to show no or low levels of IGC. On average, we identify only 33.5 1GC
events affecting 38.2 kbp of sequence per haplotype. If we restrict
thisto high-confidence IGC events, we see only 5.93 events on average
affecting 7.29 kbp. Thisimplies that our methodis detecting IGC above
background in SDs and that the frequency of IGC in SDs is more than
50 times higher in the high-confidence callsets (31,910 versus 605).

Additional genome assemblies

We assembled HG00514, NA12878 and HG03125 using HiFilong-read
data and hifiasm v0.15.2 with parental Illumina data®*. Using HiFi
long-read data and hifiasm v0.15.2 we also assembled the genome of
the now-deceased chimpanzee Clint (sample SO06007). The assembly
islocally phased as trio-binning and HiC datawere unavailable. Dataare
available on the National Center for Biotechnology Information (NCBI)
Sequence Read Archive (SRA) under the BioProjects PRINA551670
(ref. 4), PRINA540705 (ref. 70), PRJEB36100 (ref. 4) and PRJINA659034
(ref. 47). These assemblies are made available on Zenodo (https://doi.
org/10.5281/zen0do.6792653)".

Determining the composition of triplet mutations in SD and
unique sequences

The mutational spectrafor unique and SD regions from eachindividual
were computed using mutyper on the basis of derived SNVs polar-
ized against the chimpanzee genome assembly described above™ ™.
These spectrawere normalized to the triplet content of the respective
unique or SDregions by dividing the count of each triplet mutation type
by the total count of each triplet context in the ancestral region and
normalizing the number of counts in SD and unique sequences to be
the same. For PCA, the data were further normalized using the centred
log-ratio transformation, which is commonly used for compositional
measurements”, The code is available on GitHub at https://github.com/
mrvollger/mutyper_workflow/ (refs. 61-63,65,72,76).

Estimation of TMRCA

To estimate TMRCA for alocus of interest, we focus on orthologous
sequences (10-kbp windows) identified in synteny among human and
chimpanzee haplotypes. Under an assumption of infinite sites, the
number of mutations x;between ahuman sequence and its most recent
common ancestor is Poisson distributed with amean of u x T, inwhich
pisthemutationrate scaled with respect to the substitutions between
human and chimpanzee lineages, and T is the TMRCA. That is,
T=Y1,x/npinwhichnis the number of human haplotypes. To convert
TMRCA to time in years, we assume six million years of divergence
between human and chimpanzee lineages. We note that the TMRCA
estimates reported in the present study account for mutation variation

acrossloci (thatis, if the mutation rate is elevated for alocus, the effect
would be accounted for). Thus, for each individual locus, anindepend-
ent mutation (not uniform) rateisapplied depending on the observed
pattern of mutations compared to the chimpanzee outgroup.

Reporting summary
Furtherinformation onresearch designisavailable in the Nature Port-
folio Reporting Summary linked to this article.

Data availability

PacBio HiFiand ONT datahave been deposited into NCBISRA under the
following BioProject IDs: PRINA850430, PRJNA731524, PRINA551670,
PRJNA540705 and PRJEB36100. PacBio HiFidata for CHM1 are available
under the following SRA accessions: SRX10759865 and SRX10759866.
Sequencing datafor Clint PTR are available on NCBISRA under the Bio-
Project PRINA659034. The T2T-CHM13 vl.1 assembly can be found on
NCBI(GCA_009914755.3). Cell lines obtained from the NIGMS Human
Genetic Cell Repository at the Coriell Institute for Medical Research
are listed in Supplementary Table 1. Assemblies of HPRC samples are
available on NCBI under the BioProject PRJNA730822. All additional
assemblies used in thiswork (Clint PTR, CHM1, HG00514, NA12878 and
HGO03125), variant calls, assembly alignments, and other annotation
datausedinanalysis areavailable on Zenodo (https://doi.org/10.5281/
zenodo.6792653)™.

Code availability

The software pipeline for aligning assemblies and calling IGC is avail-
able on GitHub (https://github.com/mrvollger/asm-to-reference-
alignmentv0.1) and Zenodo (https://zenodo.org/record/7653446)%.
Code for analysing variants called against T2T-CHM13 v1.1is avail-
able on GitHub (https://github.com/mrvoliger/sd-divergencev0.1
and Zenodo (https://zenodo.org/record/7653464)%. The software
pipeline for analysing the triple context of SNVs s available on GitHub
(https://github.com/mrvollger/mutyper_workflowv0.1) and Zenodo
(https://zenodo.org/record/7653472)7. Scripts for figure and table
generation are available on GitHub (https://github.com/mrvollger/
sd-divergence-and-igc-figuresv0.1) and Zenodo (https://zenodo.
org/record/7653486)"’. GAVISUNK is available on GitHub (https://
github.com/pdishuck/GAVISUNK) and Zenodo (https://zenodo.org/
record/7655335)%.
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Reference assembly (T2T-CHM13 v1.1)
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Extended DataFig.1|Analysis schema for variant and IGC calling.
Whole-genome alignments were calculated for the HPRC assemblies against
T2T-CHM13 vl.1with acopy of GRCh38 chrY using minimap2v2.24. The
alignments were further processed to remove alignments that were redundant
inquerysequence or that had structural variants over 10 kbp inlength. After
these steps, the remaining alignments over 1 Mbp were defined to be syntenic
and usedindownstream analyses. We then counted all pairwise single-
nucleotide differences between the haplotypes and the reference and
stratified these resultsinto uniqueregions versus SD regions based on the SD
annotations from T2T-CHM13 v1.1. All variants intersecting tandem repeats
were filtered to avoid spurious SNV calls. To detect candidate regions of IGC,
the query sequence with syntenic alignments was fragmented into 1kbp

windows witha100 bp slide and realigned back to T2T-CHM13 vl.lindependent
of the flanking sequence using minimap2 v2.24 to identify each window’s
single best alignment position. These alignments were compared to their
original syntenic alignment positions, and if they were not overlapping, we
considered them to be candidate IGC windows. Candidate IGC windows were
then mergedintolargerintervals and realigned when windows were overlapping
inboththe donorandtheacceptorsequence. Wethenused the CIGAR string to
identify the number of matching and mismatchingbases at the “donor” site and
compared that to the number of matching and mismatching bases at the
acceptor site determined by the syntenic alignment to calculate the number of
supporting SNVs.
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Data analysis The software pipeline for aligning assemblies and calling IGC is available on GitHub (https://github.com/mrvollger/asm-to-reference-
alignment v0.1) and Zenodo (https://zenodo.org/record/7653446). Code for analyzing variants called against T2T-CHM13 v1.1 is available on
GitHub (https://github.com/mrvollger/sd-divergence v0.1) and Zenodo (https://zenodo.org/record/7653464). The software pipeline for
analyzing the triple context of SNVs is available on GitHub (https://github.com/mrvollger/mutyper_workflow v0.1) and Zenodo (https://
zenodo.org/record/7653472). Scripts for figure and table generation are available on GitHub (https://github.com/mrvollger/sd-divergence-
and-igc-figures v0.1) and Zenodo (https://zenodo.org/record/7653486). GAVISUNK is available on GitHub (https://github.com/pdishuck/
GAVISUNK) and Zenodo (https://zenodo.org/record/7655335).
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- mutyper=0.6.1
- beftools=1.13
- bedtools=2.30
- dipcall=0.3
- minimap2=2.24
- pysam=0.19.1
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PacBio HiFi and ONT data have been deposited into NCBI Sequence Read Archive (SRA) under the following BioProject IDs: PRINA850430, PRINA731524,
PRINA551670, PRINA540705, and PRIEB36100. PacBio HiFi data for CHM1 are under the following SRA accessions: SRX10759865 and SRX10759866. Sequencing
data for Clint PTR is available on NCBI SRA under the BioProject PRINA659034. The T2T-CHM13 v1.1 assembly can be found on NCBI (GCA_009914755.3). Cell lines
obtained from the NIGMS Human Genetic Cell Repository at the Coriell Institute for Medical Research are listed in Table S1. Assemblies of HPRC samples are
available on NCBI under the BioProject PRINA730822. All additional assemblies used in this work (Clint PTR, CHM1, HG00514, NA12878, HG03125), variants calls,
assembly alignments, and other annotation data used in analysis are available on Zenodo (https://doi.org/10.5281/zenodo.6792653).
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Reporting on sex and gender The biological sex (male and female) of the samples used has been included; however, variation on the Y chromosome was
not accessed due to an incomplete reference assembly.

Population characteristics The superpopulation of individuals has been included.
Recruitment Participants were recruited in separate studies from this study.
Ethics oversight Sample were collected by other studies as part of the 1000 Genomes Project with the following consent form:

https://www.internationalgenome.org/sites/1000genomes.org/files/docs/Informed%20Consent%20Form%20Template.pdf
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Sample size In this study we used all available samples with comparable assembly quality, including 47 samples from the HPRC, 3 samples from HGSVC,
and the haploid assemblies of CHM1, CHM13, and GRCh38.

Data exclusions  No data excluded.
Replication All analysis can be replicated using the software pipelines posted on GitHub and Zenodo.

Randomization  The allocation of samples was not random as we used all available samples. Furthermore, it was not necessary as we did not perform analysis
comparing cases versus controls.

Blinding Blinding is not applicable to this study because we did not perform any experiments where there was treatment and control groups that
would necessitate blinding.
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Materials & experimental systems Methods
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Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) CHM13hTERT (abbr. CHM13) cells were originally isolated from a hydatidiform mole at Magee-Womens Hospital (Pittsburgh,
PA) as part of a research study (IRB MWH-20-054). All other transformed lymphoblast cell lines belonging to the 1000
Genomes Project were obtained from the Coriell Cell Repository as part of the NHGRI catalog. Cell lines obtained from the
NIGMS Human Genetic Cell Repository at the Coriell Institute for Medical Research are listed in Table S1.

Authentication The CHM13hTERT cell line was authenticated via STR analysis and karyotyped to show a 46,XX karyotype (Miga et al., Nature,
2020). The other cell lines used in this study have not been authenticated to our knowledge.

Mycoplasma contamination The CHM13hTERT cell line is negative for mycoplasma contamination (Miga et al., Nature, 2020). The other cell lines used in
this study have not been assessed for mycoplasma contamination to our knowledge.

Commonly misidentified lines  No commonly misidentified cell lines were used in this study.
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