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The artificial intelligence-based model 
ANORAK improves histopathological 
grading of lung adenocarcinoma

Xiaoxi Pan1,2,19, Khalid AbdulJabbar    1,2,108, Jose Coelho-Lima3,4,108, 
Anca-Ioana Grapa1,2, Hanyun Zhang1,2, Alvin Ho Kwan Cheung    5, 
Juvenal Baena    6,20, Takahiro Karasaki    5,7, Claire Rachel Wilson    6,8, 
Marco Sereno    9, Selvaraju Veeriah5,7, Sarah J. Aitken    3,4, Allan Hackshaw    10, 
Andrew G. Nicholson11,12, Mariam Jamal-Hanjani    7,13,14, TRACERx Consortium*, 
Charles Swanton    5,7,14, Yinyin Yuan1,2,19,109 , John Le Quesne    15,16,17,109  & 
David A. Moore    5,7,18,109 

The introduction of the International Association for the Study of Lung 
Cancer grading system has furthered interest in histopathological grading 
for risk stratification in lung adenocarcinoma. Complex morphology 
and high intratumoral heterogeneity present challenges to pathologists, 
prompting the development of artificial intelligence (AI) methods. 
Here we developed ANORAK (pyrAmid pooliNg crOss stReam Attention 
networK), encoding multiresolution inputs with an attention mechanism, 
to delineate growth patterns from hematoxylin and eosin-stained slides. 
In 1,372 l un g a de no ca rc inomas across four independent cohorts, AI-based 
grading was prognostic of disease-free survival, and further assisted 
pathologists by consistently improving prognostication in stage I tumors. 
Tumors with discrepant patterns between AI and pathologists had notably 
higher intratumoral h et er og en eity. Furthermore, ANORAK facilitates the 
morphological and spatial assessment of the acinar pattern, capturing 
acinus variations with pattern transition. Collectively, our AI method 
enabled the precision quantification and morphology investigation of 
growth patterns, reflecting intratumoral histological transitions in  
l un g a de nocarcinoma.

Lung adenocarcinoma (LUAD), the most common type of non-small 
cell lung cancer, is histologically characterized by distinct growth  
patterns: lepidic, papillary, acinar, cribriform, micropapillary and solid1 
(Extended Data Fig. 1a). The proposed International Association for 
the Study of Lung Cancer (IASLC) grading system, based on a combi-
nation of the predominant growth pattern and high-grade patterns 
(cribriform, micropapillary and solid) within individual tumors, is 
highly prognostic2. However, there is interobserver variability among 

pathologists due to the challenges of consistently defining, recog-
nizing and quantifying the wide spectrum of growth patterns3. This 
variability particularly affects differentiating lepidic, papillary and 
acinar patterns2,4, as well as the estimated proportion of high-grade 
patterns in non-high-grade pattern-predominant tumors2,5. Accurate 
quantification is challenging when there are multiple admixed growth 
patterns across several histological sections, as is the case in most 
LUADs. This challenge is compounded by the difficulty of defining the 
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pattern (0.7170), which was lower than DeepLabv3+ (0.7381). ANORAK 
also achieved overall promising performance at the patch-level and 
WSI-level evaluations (patch-Dice: ANORAK: 0.6034, other methods: 
0.3770–0.5691; WSI agreement: ANORAK: 60.00–65.31%, other meth-
ods: 16–48.98%; Extended Data Fig. 3c). Furthermore, the parameters 
of ANORAK are 4.10 million, that is, more lightweight than other con-
volutional models (6.67–15.55 million; Extended Data Fig. 3c). Taken 
together, the proposed model may have advantages in performance 
and computing over other methods.

In all four cohorts, AI-predicted growth pattern proportions 
were highly correlated with the pathologists’ estimates (Fig. 2b and 
Supplementary Table 1), notably for the solid pattern (TRACERx 421, 
Spearman’s rho = 0.79; LATTICe-A correlations against each patholo-
gist’s scoring, rho1 = 0.80, rho2 = 0.77, rho3 = 0.78; TCGA, rho = 0.67). 
The lowest correlations were observed for the micropapillary pattern 
(rho = 0.35–0.44 across three cohorts), which was also the pattern 
with the lowest interobserver agreement (LATTICe-A, 14.5–66.7%, 
average 39.8%; Extended Data Fig. 4a). When tumors were grouped 
according to their predominant pattern, the overall agreement rates 
between AI-predicted and manual scoring ranged between 50.18% 
and 67.96% (Supplementary Table 2 and Fig. 2c) across four cohorts. 
This is lower than the interobserver rates in LATTICe-A (53.49–74.08%; 
Extended Data Fig. 4b) but consistent with the known level of agree-
ment between pathologists in previous studies (≥51.7%)3,13. The kappa 
statistics suggested a moderate agreement between AI and patholo-
gists as well as inter-pathologists for predominant pattern assess-
ment (averaged kappa index of AI-pathologist in four cohorts = 0.46; 
inter-AI-pathologists in LATTICe-A = 0.46; inter-pathologists in 
LATTICe-A = 0.49; Supplementary Table 3 and Extended Data Fig. 4b). 
Likewise, the overall agreement rates of AI-based grading according 
to the IASLC guidelines (AI grading hereafter) (65.73–76.80%; Sup-
plementary Table 2 and Fig. 2e) were lower than the rates between 
pathologists in LATTICe-A (71.95–82.01%; Extended Data Fig. 4c,e), 
but the kappa statistics indicated a moderate agreement with manual 
grading, comparable with interobserver agreement (averaged kappa 
index of AI-pathologist in four cohorts = 0.47; inter-AI-pathologists 
in LATTICe-A = 0.50; inter-pathologists in LATTICe-A = 0.50; Supple-
mentary Table 3 and Extended Data Fig. 4c). Interestingly, tumors 
with discrepant classification between AI and manual scoring had a 
notably higher intratumoral heterogeneity in growth pattern com-
position, measured using the Shannon diversity index based on 
pathological scores, compared to tumors concordant between AI and 
manual scoring (TRACERx 421, P = 8.5 × 10−7; LATTICe-A, P1 < 2.22 × 10−16, 
P2 = 2.8 × 10−12, P3 < 2.22 × 10−16; TCGA, P = 0.00076; Fig. 2d). A consist-
ent trend was observed between discrepant and agreement classifica-
tions assessed by pathologists in LATTICe-A (P < 2.22 × 10−16, 4.3 × 10−13, 
1.6 × 10−15; Extended Data Fig. 4d).

AI grading consistently improves patient risk stratification
Patients with IASLC grade 1 and 2 tumors as identified by AI had nota-
bly favorable disease-free survival (DFS) compared to patients with 
IASLC grade 3 tumors in TRACERx 421 (n = 206, P = 0.003, hazard ratio 
(HR) = 0.48, 95% confidence interval (CI) = 0.30–0.78) and LATTICe-A 
(n = 729, P = 1.73 × 10−7, HR = 0.53, 95% CI = 0.42–0.68; Fig. 3a). This prog-
nostic effect remained notable when AI grading was incorporated in a 
multivariable model (TRACERx 421, n = 206, P = 0.009, HR = 0.51, 95% 
CI = 0.31–0.85; LATTICe-A, n = 729, P = 0.001, HR = 0.64, 95% CI = 0.49–
0.84; Fig. 3b). The prognostic effect was slightly changed when tumor 
stage was replaced by tumor size (TRACERx 421, P = 0.004, HR = 0.48, 
95% CI = 0.29–0.79; LATTICe-A, P = 0.001, HR = 0.64, 95% CI = 0.49–0.84; 
Extended Data Fig. 5a). The overall prognostic effect of the pair-wise 
comparison was consistently retained in the univariable (TRACERx 
421, P = 0.011; LATTICe-A, P = 7.81 × 10−7) and multivariable analyses 
(TRACERx 421, tumor stage: P = 0.033, tumor size: P = 0.014; LATTICe-A, 
tumor stage: P = 0.004, tumor size: P = 0.003; Extended Data Fig. 5a).

cutoff between different patterns where they represent a spectrum  
of histological appearances6. This poses challenges for accurate prog-
nostic inference and reproducibility in clinical studies.

Computer-assisted approaches powered by artificial intelligence 
(AI) have been widely applied to histological image analysis7–11. While 
some studies have applied deep learning models to LUAD growth pat-
tern classification12,13, automated IASLC grading by AI methods is yet to 
be explored. Moreover, previous deep learning methods were mainly 
based on patch-wise classification that predicts a histological subtype 
for each patch, overlooking the detailed morphological structure of 
patterns. To capture the distinct pattern morphology, we developed 
an AI method based on pixel-wise classification to segment growth 
pattern islands and automate the IASLC grading for risk stratification 
and outcome prediction.

In this study, we developed an AI method to segment LUAD 
growth patterns at the pixel level using hematoxylin and eosin (H&E) 
whole-slide images (WSIs) (Fig. 1a and Extended Data Fig. 1b,c) and 
applied it to 5,540 diagnostic slides from 1,372 cases, spanning four 
cohorts: TRAcking non-small cell lung Cancer Evolution through 
therapy (Rx) (TRACERx); Leicester Archival Thoracic Tumor Investiga-
tory Cohort-Adenocarcinoma (LATTICe-A); The Cancer Genome Atlas 
(TCGA) LUAD; and Dartmouth Lung Cancer Histology Dataset (DHMC) 
(Fig. 1b). The growth pattern proportions, predominant pattern and 
IASLC grading of a tumor can be derived automatically based on growth 
pattern mapping (Fig. 1c). This pixel-wise segmentation method also 
revealed the morphological properties of growth patterns and enabled 
analysis of the degree of spatial heterogeneity, highlighting its advan-
tages over patch-wise classification algorithms.

Results
A hierarchical AI model for growth pattern quantification
To spatially map complex growth patterns in LUAD, we developed 
ANORAK (pyrAmid pooliNg crOss stReam Attention networK), which 
encodes cross-stream interactions using a multi-order attention mecha-
nism within convolutional neural networks14 (Fig. 1a and Extended Data 
Fig. 1b,c). Moreover, a pyramid pooling module (PPM)15 distributed 
global contextual information of growth patterns to guide high-level 
feature learning. ANORAK was trained on data annotated from 49 WSIs 
in the TRACERx 100 cohort (Extended Data Fig. 1a) by three thoracic 
subspeciality pathologists (Extended Data Fig. 1b), and validated on a 
total of 5,540 WSIs from 1,372 LUAD tumors across four cohorts (Fig. 1b 
and Table 1). This model enabled precision mapping of diverse growth 
patterns at pixel-level resolution, thereby facilitating automated grad-
ing and analysis of morphological intratumoral heterogeneity (Fig. 1c).

ANORAK generated promising outputs for growth pattern seg-
mentation (Fig. 2a and Extended Data Figs. 2a,b and 3a). To validate 
the effectiveness of the developed model, we conducted the ablation 
study at the patch level (Extended Data Fig. 3b). Overall, multi-stream 
variants were more promising than single-stream ones, gaining an 
advantage by gathering different types of features. Moreover, methods 
with attention modules (multi-FO, multi-SO, ANORAK) achieved better 
overall performance, implying that the attention techniques came into 
effect. Specifically, first-order attention (multi-FO) improved perfor-
mance by around 3% compared to the adding fashion (multi-ADD), 
while second-order attention (multi-SO) showed an approximate 
5% improvement when compared to multi-FO. This suggested that 
high-level feature interactions across streams could be more effective 
than merging at low-level feature learning, highlighting the importance 
of high-level features in semantic segmentation15,16. The proposed 
model adopted both first-order and second-order attention modules, 
enhancing the overall performance with notable improvements. To 
compare this with existing methods, ANORAK outperformed several 
widely used approaches in semantic segmentation, including attention 
U-Net17, DeepLabv3+ (ref. 18), DANet19 and MedT20, for growth pattern 
subtypes (0.4430–0.7463; Extended Data Fig. 3c) except for solid 
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To determine the prognostic information provided by AI com-
pared to manual scoring and the clinical baseline characteristics,  
we focused on the large LATTICe-A cohort. While manual IASLC  
grading from all three pathologists was prognostic (Extended Data 
Fig. 5b–d), AI grading achieved a comparable performance with all 
three pathologists (Fig. 3b) in LATTICe-A. When Cox regression models 
were considered for predicting DFS (baseline; age, sex, tumor stage), 
AI grading (baseline + automated IASLC grading) and manual grading 
(baseline + a pathologist’s manual IASLC grading), AI grading achieved 
a comparable performance with pathologists and clinical baseline for 
stage I–III tumors in LATTICe-A (n = 729, concordance index (C-index): 
AI = 0.682, 95% CI = 0.650–0.713; path 1 = 0.679, 95% CI = 0.645–0.713; 
path 2 = 0.680, 95% CI = 0.647–0.713; path 3 = 0.675, 95% CI = 0.644–
0.707; baseline = 0.665, 95% CI = 0.633–0.697; Fig. 3c). Consistent 
performance was observed for stage I–III tumors in TRACERx 421 
(n = 206, C-index: AI = 0.689, 95% CI = 0.625–0.752; path = 0.689, 95% 
CI = 0.625–0.752; baseline = 0.670, 95% CI = 0.608–0.733; Fig. 3c). In 
patients with early-stage tumors, the C-index of AI grading was com-
parable with pathologist grading but higher than baseline in TRACERx 
421 (n = 108, C-index: AI = 0.700, 95% CI = 0.618–0.783; path = 0.695, 
95% CI = 0.607–0.783; baseline = 0.665, 95% CI = 0.571–0.759;  
Fig. 3c). However, in LATTICe-A, the association between DFS and AI 
grading was consistently higher than the grading from pathologists 
(n = 337, C-index: AI = 0.643, 95% CI = 0.584–0.702; path 1 = 0.630, 
95% CI = 0.570–0.690; path 2 = 0.615, 95% CI = 0.548–0.683; path 
3 = 0.600, 95% CI = 0.526–0.673; baseline = 0.560, 95% CI = 0.495–0.625;  
Fig. 3c). Furthermore, once AI grading was added to manual grading  

(Supplementary Table 4), the prognostic value of the combined  
grading was consistently improved for stage I tumors (incre-
ment in C-index for path in TRACERx 421 = 0.013; path 1 = +0.023;  
path 2 = +0.028; path 3 = +0.043 in LATTICe-A; Fig. 3c), which was  
marginally higher than adding an additional manual grading in 
LATTICe-A (Extended Data Fig. 5e and Supplementary Table 5).

Taken together, these data suggest that AI grading adds indepen-
dent prognostic value for patient stratification, particularly for  
stage I disease in which clinical decision-making regarding adjuvant 
therapy following surgery can be challenging in the absence of evidence 
for outcome benefit.

Assisting pathologists in challenging scenarios
To evaluate the utility of our AI method to assist pathologists with 
LUAD grading, we identified four specific scenarios and used the large 
LATTICe-A cohort with manual grading available from three patholo-
gists. We focused on stage I LUAD tumors, a group of patients with an 
unmet need for predicting which patients are likely to relapse to guide 
early intervention, potentially with adjuvant therapy21.

The first scenario consisted of cases with highly diversified growth 
patterns indicated by the Shannon diversity index (Fig. 4a), which 
was notably higher in cases with discrepant predominant patterns 
between AI and pathologists (Fig. 2d). When evaluated in cases with 
high growth pattern diversity based on the Shannon index derived from 
manual scoring, AI grading consistently obtained a higher C-index than 
pathological grading for DFS prediction (AI = 0.602, 95% CI = 0.485–
0.720; path 1 = 0.590, 95% CI = 0.472–0.709, n1 = 169; AI = 0.602, 95% 
CI = 0.497–0.706; path 2 = 0.572, 95% CI = 0.453–0.692, n2 = 162; 
AI = 0.620, 95% CI = 0.537–0.704; path 3 = 0.578, 95% CI = 0.494–0.663, 
n3 = 167; stage I, Fig. 4a; stages I–III, Extended Data Fig. 6a; all models 
included baseline clinical parameters, same hereafter).

Second, we focused on tumors scored predominantly as lepidic or 
acinar by each pathologist, excluding any morphologically homoge-
neous tumor that received a score of 90% or more for either pattern22. 
There is an ongoing difficulty in the histopathological discrimination 
between in situ and invasive disease4, and the distinction between 
invasive acinar and lepidic growth altered by interstitial fibrosis or 
iatrogenic compression with alveolar collapse can be particularly 
difficult. Differences in classification between pathologists can gene-
rate a shift between low and medium grade, which was observed 
among pathologists in the LATTICe-A cohort (Extended Data Fig. 4a). 
Therefore, these heterogeneously scored lepidic-predominant or 
acinar-predominant tumors present a challenging scenario to further  
test the added benefit of an AI grading system. AI grading consist-
ently achieved a better performance in predicting DFS against path-
ological grading (AI = 0.658, 95% CI = 0.546–0.770; path 1 = 0.616, 
95% CI = 0.513–0.718, n1 = 146; AI = 0.621, 95% CI = 0.530–0.711; path 
2 = 0.587, 95% CI = 0.478–0.695, n2 = 136; AI = 0.703, 95% CI = 0.625–
0.781; path 3 = 0.599, 95% CI = 0.512–0.687, n3 = 175; stage I, Fig. 4b; 
stages I–III, Extended Data Fig. 6b). There was a similar challenge in 
distinguishing between lepidic and papillary growth. When predomi-
nantly but heterogeneously presented (<90%) lepidic and papillary 
tumors were investigated in the context of comparing DFS predic-
tion, AI grading consistently achieved a higher C-index (AI = 0.651, 
95% CI = 0.420–0.882; path 1 = 0.619, 95% CI = 0.427–0.811, n1 = 92; 
AI = 0.658, 95% CI = 0.449–0.8670; path 2 = 0.614, 95% CI = 0.442–0.786, 
n2 = 77; AI = 0.602, 95% CI = 0.423–0.780; path 3 = 0.532, 95% CI = 0.373–
0.692, n3 = 79; stage I, Fig. 4b; stages I–III, Extended Data Fig. 6b).  
The absence of statistical significance could be attributed to the  
relatively smaller number of patients and events in each group.

The third scenario was the detection of aggressive, high-grade  
patterns. Although there was a high concordance rate for cases com-
posed predominantly of high-grade patterns (Extended Data Fig. 4e), 
the proposed IASLC grading system sets a 20% cutoff for high-grade 
patterns to qualify as grade 3, adding challenges to identify high-grade 

Table 1 | Patient demographics (all cohorts)

Characteristic TRACERx 421 LATTICe-A TCGA LUAD DHMC

Number of patients 
(diagnostic slides)

206 (1,184) 845 (3,979) 178 (234) 143 (143)

Pathological score 
available

1 3 1 1

Age, mean 
(minimum, 
maximum)

68.43 (37, 92) 67.66 (31, 
86)

65.48 (42, 
85)

–

Sex, n (%)

 Female 111 (53.88) 444 (52.54) 102 (57.30) –

 Male 95 (46.12) 401 (47.46) 76 (42.70) –

Tumor stage, n (%)

 I 108 (52.43) 337 (39.88) 92 (51.69) –

 II 54 (26.21) 202 (23.91) 40 (22.47) –

 III 44 (21.36) 190 (22.49) 33 (18.54) –

 IV 0 (0) 0 (0) 12 (6.74) –

 Not applicable 0 (0) 116 (13.73) 1 (0.56) –

Smoking status, n (%)

 Current smoker 88 (42.72) 259 (30.65) – –

 Ex-smoker 101 (49.03) 419 (49.59) – –

 Never smoker 17 (8.25) 64 (7.57) – –

 Not applicable – 103 (12.19)

Adjuvant treatment, n (%)

 Yes 64 (31.07) 134 (15.86) – –

 No 142 (68.93) 711 (84.14) – –

Type of surgery, n (%)

  Lobectomy or 
greater

180 (83.98) 640 (70.53) – –

 Sublobar resection 26 (16.02) 89 (29.47) – –
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Fig. 2 | Performance of AI in the prediction and quantification of growth 
patterns. a, Segmentation example generated by ANORAK. b, Correlations of 
growth pattern proportions at the tumor level between AI and pathologists. 
Growth pattern proportions were not available in the DHMC cohort; thus, 
plots relevant to proportions were not illustrated for the DHMC (same in d and 
e). P values were corrected for multiple comparisons using the Benjamini–
Hochberg method. c, Performance comparison with pathologists in predicting 
the predominant pattern per case (the cribriform predominant slide per 
tumor was not available in the DHMC cohort). d, Growth pattern intratumoral 

heterogeneity substantially contributed to the discrepancy between AI and 
pathologists (TRACERx 421, P = 8.467 × 10−7, n = 206; LATTICe-A, P1 < 2.22 × 10−16, 
P2 = 2.816 × 10−12, P3 < 2.22 × 10−16, n = 845; TCGA, P = 0.0007632, n = 177). Each 
P value was calculated using a two-sided Wilcoxon rank-sum test and not 
adjusted for multiple comparisons. The median value is indicated by a thick 
horizontal line; the first and third quartiles are represented by the box edges; the 
whiskers indicate 1.5× the interquartile range. e, Performance comparison with 
pathologists in the prediction of IASLC grading per case.
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Fig. 3 | Survival analyses of AI and pathologist grading. a, Kaplan–Meier 
curves illustrating the difference in DFS according to AI grading. b, Multivariable 
Cox regression analyses showing that the prognostic effect of AI grading is 
independent of age, sex, tumor stage, smoking pack-years, adjuvant therapy 
and type of surgery (TRACERx 421: P = 0.009408, LATTICe-A: P = 0.00118). HRs 
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prediction measured according to C-index for stage I (TRACERx 421, n = 108; 
LATTICe-A, n = 337) and stage I–III (TRACERx 421, n = 206, LATTICe-A, n = 729) 
tumors, where the baseline characteristics included age, sex and tumor stage; AI 
included baseline parameters and AI grading; path included baseline parameters 
and pathologist grading; AI + path included baseline parameters, and AI and 
pathologist gradings. C-indexes with 95% CIs are shown on the vertical axis.  
AIC, Akaike information criterion.
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patterns from non-high-grade pattern-predominant tumors. There-
fore, we selected tumors with high-grade patterns (≥5%) at lower 
abundance (≤30%) as scored by each pathologist and compared  
their manual grading with AI grading. Such analyses allowed us to  
examine manually scored tumors, which may be ‘close calls’ among 
observers when determining the high-grade pattern cutoff. A higher 
C-index for AI grading was consistently observed compared with  
all pathologists’ grading in predicting DFS (AI = 0.631, 95% CI = 0.486–
0.776; path 1 = 0.574, 95% CI = 0.392–0.757, n1 = 79; AI = 0.560,  
95% CI = 0.347–0.773; path 2 = 0.505, 95% CI = 0.313–0.696, n2 = 63; 
AI = 0.640, 95% CI = 0.521–0.759; path 3 = 0.607, 95% CI = 0.461–0.753, 
n3 = 128; stage I, Fig. 4c; stages I–III, Extended Data Fig. 6c).

Finally, we considered cases with high numbers of diagnostic  
slides per tumor (Fig. 4d), defined as four or more slides (n = 233, 
decreased kappa index in Fig. 4d). In these cases, AI grading achieved 
a C-index higher than average for the manual grading but lower than 
pathologist 1 in predicting DFS (AI = 0.638, 95% CI = 0.577–0.699; path 1 =  
0.645, 95% CI = 0.581–0.709; path 2 = 0.615, 95% CI = 0.551–0.680;  
path 3 = 0.607, 95% CI = 0.523–0.691; stage I, Fig. 4d; stages I–III, 
Extended Data Fig. 6d).

These data indicated that our proposed AI method was not inferior 
to pathological grading and could assist pathologists to grade growth 
patterns in certain challenging scenarios.

Acinar morphology and spatial heterogeneity
Precise spatial delineations of growth patterns allowed us to study the 
spatial configuration of tumors as morphologically distinct pattern 
islands (Fig. 2a and Extended Data Figs. 2a,b and 3a). Acinar growth, 
often considered as an intermediate state during the transition of mor-
phological patterns6,23, was also the most prevalent pattern in stage I 
tumors in the LATTICe-A cohort (Fig. 5a). The area of individual acinar 
islands was similar to that of micropapillary islands, and smaller than 
those of other patterns (Fig. 5b). These data led us to investigate the 
importance of morphological features and spatial distribution of acinar 
islands that may be indicative of histology pattern transition.

We used area and shape measured using pixel number and solidity 
index (Extended Data Fig. 7a) to represent the morphological features 
of individual acinar islands. Acinar island area and shape were nota-
bly different in tumors (≥5% of acinar) with different predominant 
patterns (TRACERx 421 n = 173; LATTICe-A n = 654; Extended Data 
Fig. 7b). Smaller acinar islands were enriched in lepidic-predominant 
tumors compared to acinar-predominant and papillary-predominant 
tumors (TRACERx 421 P = 0.00052; LATTICe-A P = 5.4 × 10−12; Fig. 5c 
and Extended Data Fig. 7c). This may reflect the acinar structures 
in lepidic-predominant disease frequently representing airspaces 
with iatrogenic collapse24. The area of acinar islands in high-grade 
pattern-predominant (cribriform, micropapillary and solid) 
tumors were also smaller than those in acinar-predominant and 
papillary-predominant tumors (TRACERx 421 P = 9.8 × 10−11; LATTICe-A 
P < 2.22 × 10−16; Fig. 5c and Extended Data Fig. 7c). Notably, this area 
feature was a strong discriminator between acinar-predominant and 
cribriform-predominant tumors (TRACERx 421 P = 0.0007; LATTICe-A 
P = 1.5 × 10−7; Fig. 5d), indicating that acini may form differently in 
acinar-predominant tumors compared to others. The transition from 
an acinar to a cribriform pattern may frequently occur to large acinar 
islands through gland fusion (Extended Data Fig. 7e), while smaller 
acinar structures may remain. Alveolar architectures in airspace 
detected in acinar-predominant tumors might also be supporting 
large ‘glands’. Acinar islands with regular shapes were enriched in 
high-grade-predominant tumors compared with lepidic subtypes 
(TRACERx 421 P = 0.0024; LATTICe-A P = 4.1 × 10−7; Fig. 5e and Extended 
Data Fig. 7d), which is again consistent with morphological variance 
due to the compressibility of lepidic growth. Taken together, the mor-
phological features of acinar islands vary notably in tumors predomi-
nantly enriched with different patterns (Fig. 5f).

To investigate the spatial arrangement of acinar patterns, we 
developed an acinar scattering score that measured the degree of aci-
nus dispersion. A low score indicated locally clustered acinar islands, 
while a high score implied a dispersion of acinar islands throughout 
the tissue (Extended Data Fig. 7f). Low acinar scattering was found 
more frequently in lepidic-predominant tumors compared to all oth-
ers (TRACERx 421 P = 0.017; LATTICe-A P = 0.004; Fig. 5g), indicating 
that clustered acinar islands may reflect the compression induced 
by iatrogenic collapse and may also suggest that the transition from 
lepidic to acinar occurs in an organized manner25. We next explored 
acinar scattering in the context of outcome prediction. Tumors with 
highly scattered acini were associated with reduced DFS compared 
to lowly scattered tumors (TRACERx 421 n = 205, P = 0.003, HR = 1.89, 
95% CI = 1.25–2.86; LATTICe-A n = 837, P = 5.09 × 10−7, HR = 1.63, 95% 
CI = 1.35–1.98; Fig. 5h) in univariate analysis. In a multivariable model 
incorporating acinar scattering and AI grading, acinar scattering 
was independent of AI grading (TRACERx 421 P = 0.004; LATTICe-A 
P = 2.61 × 10−5; Fig. 5i). These data suggest that acinar scattering may be 
a potential pattern reflecting histological transition events, and that 
high scattering may be a morphological phenotype indicating poor 
prognosis, which can be assessed from H&E images.

Discussion
We have developed an AI method ANORAK for the precise classification 
of growth patterns in LUAD. To the best of our knowledge, this is the 
first AI method to dissect LUAD growth patterns at the pixel level and 
be tested in over 1,000 cases, setting a benchmark in automated grad-
ing of LUAD. Our method can automatically estimate growth pattern 
proportions and predominant patterns within a tumor, providing an 
unbiased and automated pipeline for determining IASLC grading in 
LUAD. Moreover, the precise delineation of growth patterns can provide 
insights into the heterogeneous landscape of LUAD, which cannot be 
addressed by patch-wise classification methods.

The AI method was evaluated in four cohorts, comprising a total 
of 1,372 tumors. The overall agreement of predominant pattern at 
the tumor level between AI and pathologists across four cohorts was 
moderate, which is consistent with the inter-pathologist agreement 
in the LATTICe-A and DHMC cohorts13. Similar results were found 
in previous studies. Boland et al.3 reported an agreement of 51.7% 
between two pathologists for a large cohort of individuals with LUAD 
(n = 534), while Thunnissen et al.4 showed good agreement for typical 
cases and fair agreement for difficult cases by comparing scores from 
26 pathologists. In addition, tumors with a discrepant predominant 
pattern classification between AI and manual scoring were more het-
erogeneous compared to tumors in agreement. Previous attempts were 
made to determine how clonal evolution is reflected in growth pattern 
heterogeneity through the identification of molecular alterations that 
accompany the transition between growth patterns6. This detailed 
analysis in a small number of tumors found that changes in expres-
sion, rather than mutations, accompanied the transition; as such, clear 
evidence of divergent tumor clones reflected in the growth pattern 
was not identified. On a larger scale, in the TRACERx study, although 
without specific focus on sampling to capture divergent growth pat-
terns, there was a tendency for tumors to evolve from low-grade or 
mid-grade to higher grade growth patterns in individuals with LUAD 
where an ancestor–descendant relationship could be described based 
on clonal or subclonal loss of heterozygosity22.

The proposed IASLC grading system was originally introduced 
to improve prognostication using tumor morphology2. In our study, 
AI grading improved the performance of predicting DFS compared 
to the baseline and pathological grading for stage I tumors, and be 
comparable for stage I–III tumors. Moreover, the prognostic value of 
AI grading was independent of clinical parameters in the TRACERx 
421 and LATTICe-A cohorts. In typical clinical practice, the colineage 
of postsurgical recurrence is not definitively confirmed, although 
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Fig. 5 | Characterization of tumors with acinar morphological features and 
spatial heterogeneity. a, LUAD subtype distribution across stages in LATTICe-A 
showing that acinar is the most prevalent pattern in stage I tumors. b, Area 
distribution of growth pattern islands delineated by AI in TRACERx 421 and 
LATTICe-A, indicating that the areas of acinar islands are similar to micropapillary 
islands, but smaller than lepidic, papillary, cribriform and solid islands. c, 
Smaller acinar island areas were enriched in lepidic-predominant (TRACERx 
421, P = 0.0005161, n = 108; LATTICe-A, P = 5.413 × 10−12, n = 420) and high-
grade-predominant tumors (TRACERx 421, P = 9.797 × 10−11, n = 157; LATTICe-A, 
P < 2.2 × 10−16, n = 593) compared to acinar-predominant and papillary-
predominant tumors. d, Acinar island areas were notably smaller in cribriform-
predominant tumors compared to acinar-predominant tumors (TRACERx 
421, P = 0.0006956, n = 95; LATTICe-A, P = 1.515 × 10−7, n = 290). e, Acinar island 
shapes were notably regular in high-grade-predominant tumors compared to 
lepidic-predominant tumors (TRACERx 421, P = 0.002439, n = 81; LATTICe-A, 
P = 4.118 × 10−7, n = 295). c–e, Each point is a tumor; the y axis is the mean area 

(c,d) or solidity index (e) of all the individual acinar islands within a tumor. The 
P value was calculated using a two-sided Wilcoxon rank-sum test not adjusted 
for multiple comparisons. The median value is indicated by a thick horizontal 
line; the first and third quartiles are represented by the box edges; the whiskers 
indicate 1.5× the interquartile range. f, Acinar morphological features reflecting 
different growth patterns; small-area acinar islands with irregular shapes were 
more likely observed in lepidic-predominant tumors, whereas in cribriform-
predominant and solid-predominant tumors, small-area acinar islands with a 
regular shape were enriched. g, Spatial arrangement of acinar islands across 
predominant subtypes. h, Kaplan–Meier curves comparing tumors with low and 
high levels of acinar scattering for TRACERx 421 and LATTICe-A. i, Multivariable 
Cox regression analyses showing that tumors exhibiting a high degree of acinar 
scattering were linked to decreased DFS compared to tumors with low acinar 
scattering, independent of AI grading in TRACERx 421 (P = 0.004209) and 
LATTICe-A (P = 2.61 × 10−5). HRs of each variable with 95% CIs are shown on the 
horizontal axis; the P value was derived using a Wald test. **P < 0.01, ***P < 0.001.
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data from the TRACERx 421 cohort showed that only two out of 49 
cases of clinically classified postsurgical recurrence were of different 
lineage using whole-exome sequencing26. While we acknowledge that 
these uncommon events limit the ability to predict recurrence from 
resection specimens, this applies equally to both our method and 
established practices.

The LATTICe-A cohort, consisting of 845 tumors with scores from 
three pathologists, allowed a comprehensive investigation of the clini-
cal impact of the AI method and showed its benefit as a morphological 
biomarker. This benefit was slightly higher than that brought by an 
additional manual grading for stage I tumors, and was comparable 
with additional manual grading for stage I–III tumors. Furthermore, 
analyses of manual scoring demonstrated that tumors with multiple 
slides and intratumoral morphological heterogeneity were particu-
larly challenging cases. In these cases, AI grading achieved a stronger 
predictive ability compared to manual grading for stage I tumors. 
Because stage I patients frequently receive surgical resection without 
adjuvant therapy, the accurate prediction of recurrence, to better 
target individual patients for adjuvant therapies, is critical. These data 
illustrate the clinical utility of our AI method for stage I tumors, which 
could potentially be used as an alternative or independent variable to 
manual grading, or be applied specifically to challenging cases.

The AI method enables the spatial profiling of growth patterns 
at the pixel level, allowing morphological and spatial heterogeneity 
analyses at the growth pattern island level. This would be unattainable 
with alternative manual or patch-wise classification methods. We used 
the area and solidity index to measure acinar island morphology and 
found that small acinar islands were enriched in lepidic-predominant 
and high-grade-predominant tumors, while the shape of these 
small acini in lepidic-predominant tumors was more irregular than 
high-grade-predominant tumors. This may reflect tumor cell biologi-
cal and microenvironmental differences regarding the formation of 
acinar structures within the context of different predominant archi-
tectures. Because acinar morphological features were obtained by 
averaging thousands of acinar islands within a tumor, noise due to 
island segmentation was mitigated (Supplementary Figs. 1–7). We also 
developed a metric for measuring the spatial distribution within the 
tissue space of acinar islands, termed acinar scattering. Low acinar scat-
tering was notably associated with lepidic-predominant tumors com-
pared to others, suggesting that acinar spatial distribution may reflect 
the transition of growth patterns toward more aggressive behavior.  
High acinar scattering was correlated to unfavorable outcomes,  
independent of AI grading.

This study has some limitations. The Dice coefficient of ANORAK is 
still limited, indicating that error modes exist. Intratumoral and tumor 
microenvironment heterogeneity may result in variations in growth 
pattern morphology, making segmentation more challenging, spe-
cifically among lepidic, papillary and acinar patterns. Meanwhile, the 
patching operation during the training and testing stages may limit the 
field of view, thus losing context information. Stain color shift may also 
have the potential for misclassification despite the color augmenta-
tions and normalizations applied to mitigate this impact. These factors 
may contribute to local error modes, which, when accumulated, may 
result in errors at the WSI level. In addition, because the model counted 
the number of pixels to determine the predominant pattern per tumor, 
and the area of micropapillary islands was smaller than the papillary 
structures27, the discrepancy between AI and pathologists regarding 
papillary-predominant and micropapillary-predominant patterns may 
be considered another error mode. Furthermore, because we only 
collected histopathology annotations from invasive non-mucinous 
LUAD as training data, invasive mucinous and preinvasive tumors 
with distinct morphologies are therefore outside of the scope, which 
may generate inaccurate results or completely fail if applied to such 
samples. In addition, we selected a ‘challenging case series’ from the 
LATTICe-A cohort, because the other cohorts considered in this study 

had fewer cases satisfying the selection criteria. However, LATTICe-A 
is not a screening-based cohort. It is therefore crucial to validate  
the potential clinical benefits of AI grading in further cohorts that 
include screening-detected tumors. Because there are no other studies  
reporting the importance of acinar spatial arrangement, further vali-
dations and studies of the biological implications of acinar scattering 
are needed.

In summary, the AI method we developed can automate the  
predominant growth pattern and IASLC grading for LUAD tumors, 
achieving a moderate agreement with pathologists; this was validated  
in four cohorts consisting of 1,372 cases. In the TRACERx 421 and 
LATTICe-A cohort, AI grading was an independent prognostic indi-
cator and had a stronger prognostic ability than pathological grad-
ing alone for stage I tumors in the LATTICe-A cohort. The prognostic  
performance of AI grading was further underlined in challenging  
scenarios consisting of cases with multiple slides and greater intra-
tumoral heterogeneity. Furthermore, specific morphological fea-
tures of tumor acini have the potential to infer different underlying  
tumor biology, with the spatial heterogeneity of acinar islands reflect-
ing divergent tumor behavior and prognosis.

Methods
Study cohorts
TRACERx is a multi-center, prospective study, which began recruit-
ment in April 2014 (https://clinicaltrials.gov/ct2/show/NCT01888601, 
approved by an independent research ethics committee, ref. no. 13/
LO/1546). Formalin-fixed paraffin-embedded and H&E-stained histo-
pathology diagnostic slides were scanned using the NanoZoomer S210 
digital slide scanner (catalog no. C13239-01) and NanoZoomer digital 
pathology system v.3.1.7 (Hamamatsu) at ×40 (0.228 μm per pixel 
resolution)28,29. LATTICe-A is a retrospective series of all consecutively 
resected primary LUAD tumors at a single UK surgical center between 
1998 and 2014. The work was ethically approved by a UK National Health 
Service research ethics committee (ref. no. 14/EM/1159) and complies 
with Strengthening the Reporting of Observational Studies in Epide-
miology guidelines. All archived slides containing tumor material were 
used to capture the full diversity of each lesion. Slides were dearchived 
and scanned using a Hamamatsu NanoZoomer XR at ×40 (0.226 μm per 
pixel resolution)23,29. Available diagnostic slides from the TCGA LUAD30 
were downloaded from https://portal.gdc.cancer.gov/ in 2021. The 
DHMC13 was downloaded from https://bmirds.github.io/LungCancer/ 
in 2021. Further information on the research design is available in the 
Nature Research Reporting Summary linked to this article.

The training set of the AI method consisted of 49 WSIs from 49 
patients in the TRACERx 100 cohort28,29. The WSIs were sparsely anno-
tated by three independent thoracic subspeciality pathologists, yielding 
3,662 patches (768 × 768 pixels at ×20, approximately 0.45 μm per pixel) 
of annotations for six typical growth patterns (Extended Data Fig. 1a)  
and non-tumor areas, for example, normal tissue and blank areas.

The AI method was then applied and evaluated on a total of 5,540 
WSIs from four cohorts, which were collected, processed and scanned 
independently. This included patients with invasive non-mucinous 
LUAD as primary diagnosis (excluding adenocarcinoma in situ, mini-
mally invasive adenocarcinomas and other variants) from the TRACERx  
421 cohort (n = 206, 1,184 slides)22,26, LATTICe-A cohort (n = 845, 3,979 
slides)23, TCGA LUAD cohort (n = 178, 234 slides)30, DHMC cohort 
(n = 143, 143 slides)13 (Table 1). TRACERx 100 is a subset of TRACERx 
421. For the TRACERx 421 and LATTICe-A cohorts, slides were from all 
the diagnostic blocks containing tumor cells. For the DHMC cohort 
and most patients (91%) in the TCGA cohort, only one slide was avail-
able. Hence, we only considered these two cohorts for agreement 
performance comparison. No statistical method was used to predeter-
mine sample size but our sample sizes are similar to those reported in  
previous publications13,22,26,29,30 and subject to available diagnostic 
slides. Blinding and randomization were not relevant because this was 
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an observational study. Patients were not allocated to any interventions 
and they were followed up and assessed as per routine practice. No 
results from this study were reported back to patients, so there is no 
likelihood of people changing their behaviors based on these findings. 
The deep learning model was trained without knowing the outcome of 
patients, which represents a form of blinding.

Manual pathological grading of growth patterns, as well as indi-
vidual pattern proportion scoring, were available for the TRACERx 421, 
LATTICe-A and TCGA cohorts. The DHMC cohort only had predominant 
pattern data for each slide. In the LATTICe-A cohort, three independent 
consultant-level thoracic subspeciality pathologists provided growth 
pattern scoring for each tumor.

In the TRACERx 421 cohort, DFS was defined as the period from 
the date of registration to the time of radiological confirmation of the 
recurrence of the primary tumor registered for the TRACERx or the 
time of death by any cause. During the follow-up, three participants 
with LUAD (CRUK0512, CRUK0428 and CRUK0511) developed new 
primary cancer and subsequent recurrence from either the first pri-
mary lung cancer or the new primary cancer diagnosed during the 
follow-up. These cases were censored at the time of the diagnosis of 
the new primary cancer for DFS analysis because of the uncertainty of 
the origin of the third tumor22.

In the LATTICE-A cohort, recurrence data were obtained from the 
examination of patient records, notably paper notes and radiological 
databases, to identify the date of radiologically or biopsy-confirmed 
recurrence. Cancer-specific death was determined by the presence 
of lung cancer in the cause of death in the death certificate. Overall 
survival refers to the date of death.

Deep learning model architecture
We developed a deep learning-based model14 ANORAK which leveraged 
cross-stream interaction to recognize and segment six histological pat-
terns (lepidic, acinar, papillary, micropapillary, cribriform and solid) 
on WSIs at the pixel level. The model applied ResNet50 (ref. 31) as the 
backbone with customized modifications to account for the limited 
training data. It encoded three streams (coarse, intermediate and fine) 
with different scales of information to gather abundant features at dif-
ferent resolutions (×10 at approximately 0.9 μm per pixel, ×5 and ×2.5). 
The first-order attention (Extended Data Fig. 1c) introduced global 
contextual information at an early stage to guide low-level feature 
learning and enable the first round of interactions between streams. 
Each output in the coarse and intermediate streams was then fed into 
a convolution layer to align the depth dimension with the fine stream 
output. A PPM15 (Extended Data Fig. 1c) was used to integrate high-level 
features. Afterwards, such features were forwarded to a second-order 
attention module, learning the relationship of streams to extract more 
discriminative features, and driving high-level feature exchanging 
between streams (Extended Data Fig. 1c and Fig. 1a).

Implementation and evaluation
Before training, the annotated tiles were divided into nonoverlapping 
patches, except for patches at the bottom and right edges, with a size 
of 768 × 768 pixels at ×20. During training, four data augmentation 
strategies were used to mitigate overfitting: random rotation within 
90 degrees; random width-shift and height-shift up to 20% of the input 
width and height; randomly zooming in or out in a range of (0.8, 1.2); and 
random adjustment of the saturation within (0.8, 2.0) and hue within 
(−0.1, 0.1). Color augmentation was not applied to the cross-validation 
stage because data were from the same cohort. The model was trained 
for 60 epochs with a batch size of eight. Cross-entropy loss was applied 
as the objective function, which was minimized by the Adam optimizer 
with a step-wise learning rate. The initialization rate was set to 10−3 for 
the first ten epochs; then, it was decreased by ten times for the next 40 
epochs, which was then followed by another ten times of decreasing 
(10−5) for the remaining ten epochs. The pipeline was implemented 

with Python v.3.8, tensorflow-gpu v.2.2, keras v.2.4.3, h5py v.2.10.0, 
numpy v.1.20.3, opencv-python v.4.5.3.56, pandas v.1.3.2, pillow v.8.3.1 
and scipy v.1.7.1.

The ablation experiments at the patch level included compari-
sons with the baseline method (single-stream), multi-stream with 
the element-wise add combination (multi-ADD), multi-stream with 
first-order attention alone (multi-FO), multi-stream with second-order 
attention alone (multi-SO) and the proposed ANORAK model (multi-FO 
and multi-SO). The proposed model was compared against other widely 
used approaches in semantic segmentation, including attention 
U-Net17, DeepLabV3+ (ref. 18), DANet19 and MedT20. We applied the Dice 
coefficient to evaluate segmentation performance at the patch level 
and the agreement of predominant patterns to assess prediction at the 
WSI level. Comparisons were conducted with fivefold cross-validation 
for the TRACERx 100 cohort (n = 53) and on a subset of the LATTICe-A 
cohort (n = 50), an independent dataset to the training dataset.

Growth pattern and grading inference
Each WSI was divided into tiles of 2,000 × 2,000 pixels with the mag-
nification downsampled to ×20 (approximately 0.45 μm per pixel)29. 
Each tile was then normalized to a target image to align the color before 
feeding it to the well-trained deep learning model, which, in turn, gene-
rated corresponding masks for all growth pattern regions detected at 
the pixel level. The tile masks were then stitched and further down-
sampled to ×1.25 (approximately 7.2 μm per pixel). Small components 
were empirically removed as postprocessing; lepidic patterns that were 
less than approximately 0.05 mm2, and papillary, cribriform and solid 
patterns that were less than approximately 0.015 mm2 were removed.

The predominant pattern and grading were inferred from a 
stitched and downsampled mask (approximately 7.2 μm per pixel). 
The growth pattern proportion for each tumor was computed as the 
proportion across all slides of a given tumor:

gj =
∑m

i=1Sij
∑m

i=1∑
n=6
j Sij

P = argmax(gj)

where gj is a proportion for the j pattern, j represents lepidic, acinar, 
papillary, cribriform, micropapillary and solid, i is the i-th slide, m 
is the number of slides per tumor, n is the number of patterns and  
Sij is the number of pixels identified for the j pattern with the i-th slide. 
The predominant pattern, P, is determined as the pattern with the  
highest proportion. The growth pattern grading driven by AI followed 
the IASLC grading system2: grade 1, lepidic-predominant tumors with 
less than 20% of high-grade patterns (solid, micropapillary, cribriform); 
grade 2, acinar-predominant or papillary-predominant tumors with 
less than 20% of high-grade patterns; and grade 3, any tumor with 20% 
or more high-grade patterns.

Agreement between AI and pathological scores with regard to 
predominant patterns
The strongest correlation for growth pattern proportion between the 
AI and manual estimates was observed for the solid pattern (TRACERx 
421, rho = 0.79; LATTICe-A correlations against each pathologist’s scor-
ing, rho1 = 0.80, rho2 = 0.77, rho3 = 0.78; TCGA, rho = 0.67; Fig. 2b and 
Supplementary Table 1), followed by acinar (TRACERx 421, rho = 0.69; 
LATTICe-A, rho1 = 0.67, rho2 = 0.58, rho3 = 0.65; TCGA, rho = 0.56;  
Fig. 2b and Supplementary Table 1). A moderate correlation was 
observed for the micropapillary subtype (TRACERx 421, rho = 0.35; 
LATTICe-A, rho1 = 0.35, rho2 = 0.42, rho3 = 0.40; TCGA, rho = 0.44; 
Fig. 2b and Supplementary Table 1). Compared with other patterns, 
solid-predominant tumors had the highest agreement levels between 
AI and manual scoring (TRACERx 421, 85.5%; LATTICe-A, 85.4%, 79.9%, 
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85.3% against three pathologists; TCGA, 72%; DHMC, 90.2%; Fig. 2c). A 
lower agreement rate was observed for micropapillary-predominant 
tumors (TRACERx 421, 0%; LATTICe-A, 38.1%, 19.7% and 50% against 
three pathologists; TCGA, 20%; DHMC, 0%; Fig. 2c). Most discrepant 
micropapillary-predominant cases were identified as papillary and 
acinar by AI (TRACERx 421, 40%; LATTICe-A, 42.8%, 63.1%, 43.7%; TCGA, 
60%; DHMC, 100%), suggesting that micropapillary islands frequently 
mixed with acinar or papillary in micropapillary-predominant tumors.

C-index measuring prognostic ability
We used the C-index to measure the prognostic ability of the sur-
vival models. Cox regression models were considered for predicting 
DFS; specifically, the baseline model included age, sex, tumor stage 
(excluded for stage I tumors as the stage information remains the 
same). The AI grading-based model included clinical baseline char-
acteristics and automated IASLC grading. The manual grading-based 
model included clinical baseline characteristics together with a pathol-
ogist’s manual IASLC grading. When excluding clinical parameters, AI 
grading achieved a comparable C-index with pathological grading in 
stage I (TRACERx 421: AI = 0.588, 95% CI = 0.483–0.692; path = 0.593, 
95% CI = 0.461–0.724; LATTICe-A: AI = 0.616, 95% CI = 0.571–0.661; 
path 1 = 0.609, 95% CI = 0.563–0.656; path 2 = 0.593, 95% CI = 0.545–
0.641; path 3 = 0.571, 95% CI = 0.483–0.658; Supplementary Table 6)  
and stage I–III tumors (TRACERx 421: AI = 0.588, 95% CI = 0.547–
0.630; path = 0.581, 95% CI = 0.530–0.632; LATTICe-A: AI = 0.577, 95% 
CI = 0.554–0.600; path 1 = 0.577, 95% CI = 0.552–0.603; path 2 = 0.574, 
95% CI = 0.551–0.597; path 3 = 0.569, 95% CI = 0.546–0.591; Supple-
mentary Table 6).

Acinar morphological features
The pixel number and solidity index, that is, the proportion of pixels 
in the convex hull that were also in a region of interest, were used to 
measure the individual acinar island area and shape generated by the 
AI method. A higher solidity index indicated a more regular shape. The 
average area and solidity index of all the individual acinar islands identi-
fied from the available slides were taken as the tumor-level features.

Acinar scattering score
We adapted an established score, standard distance32, to measure 
the spatial distribution of acinar patterns, which we termed ‘acinar 
scattering’:

d =
√√
√

∑n
i=1(xi − x0)

2 +∑n
i=1( yi − y0)

2

n × N

where d is the standard distance, n is the number of isolated acinar 
islands within the tissue identified by the proposed AI method, N is the 
area of the tissue, (xi, yi) is the centroid of an acinar island and (x0, y0) is 
the mean center of all the acinar islands.

x0 =
∑n

i=1xi
n , y0 =

∑n
i=1yi
n

A higher acinar scattering score indicated a more scattered dis-
tribution of acini across the tissue. The median value of all available 
slides for a given tumor was taken as the tumor-level score. The optimal 
cutoff (0.36) separating tumors into low-scattering and high-scattering 
groups was selected from the discovery cohort, LATTICe-A, which was 
then applied directly to the TRACERx 421 cohort.

In a univariable model, acinar scattering was prognostic of DFS 
for LATTICe-A in grade 2 and 3 tumors, respectively (grade 2, n = 212, 
P = 1.95 × 10−5, HR = 2.48, 95% CI = 1.63–3.76; grade 3, n = 570, P = 0.007, 
HR = 1.35, 95% CI = 1.08–1.68; Extended Data Fig. 8b,c), but not in grade 
1 tumors (Extended Data Fig. 8a). In the TRACERx 421 cohort, high 
acinar scattering was associated with reduced DFS in grade 3 tumors 

(n = 137, P = 0.042, HR = 1.64, 95% CI = 1.01–2.65) and remained border-
line in grade 2 tumors (n = 56, P = 0.053, HR = 2.74, 95% CI = 0.99–7.61), 
but was not notable in grade 1 tumors. The lack of statistical signifi-
cance was probably due to the smaller number of patients and events 
in the grade 1 subgroup. When merging grade 1 and 2 tumors, the 
prognostic effect of acinar scattering was observed (TRACERx 421, 
n = 68, P = 0.025, HR = 2.79, 95% CI = 1.14–6.85; LATTICe-A, n = 267, 
P = 1.39 × 10−5, HR = 2.36, 95% CI = 1.60–3.48; Extended Data Fig. 8d).

Statistics and reproducibility
Correlation tests used Spearman’s method and were generated  
using the function cor.test from the stats v.4.1.2R package. Confusion 
matrices were obtained using the function confusionMatrix from the 
caret v.6.0-93R package. Fleiss’ kappa was computed to assess the 
agreement among observers using the function kappam.fleiss from 
the irr v.0.84.1R package. Survival analyses were conducted using the 
Kaplan–Meier estimator (ggsurvplot R function from the survminer 
v.0.4.9 and survival v.3.2-13R packages) as well as the Cox model (coxph 
R function, displayed using the ggforest R function). The differences 
between grade strata Kaplan–Meier curves were determined using 
Wald tests. Forest plots showed the HR on the x axis; each variable’s HR 
was plotted and annotated with a 95% CI. All HRs were computed for all 
time points (the whole survival curve was not at a specific time point). 
For statistical comparisons among groups, a two-sided, nonparametric, 
unpaired Wilcoxon rank-sum test was used for the continuous variables, 
while a Fisher’s exact test was used for the categorical variables. A 
Kruskal–Wallis test was used for comparisons among over two groups, 
unless stated otherwise. Predictive performance was assessed using 
a C-index33 within 5 years, computed with the function Inf.Cval from 
the survC1 v.1.0-3R package. Multicollinearity between AI and manual 
grading, and between two manual gradings were assessed using the 
function vif from the car v.3.0-12R package. All statistical tests were 
two-sided and P < 0.05 was considered as statistically significant. To 
adjust P values for multiple comparisons, the Benjamini–Hochberg 
method was used. The packages tidyverse v.2.0.0 and tidyr v.1.3.0 were 
used for data processing in R. Plotting was done using ggplot2 v.3.4.1, 
RColorBrewer v.1.1-3 and ggpubr v.0.5.0R packages. All statistical 
analyses were conducted in R v.4.1.2.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The training dataset consisting of annotations on small image tiles have 
been deposited in Zenodo (https://doi.org/10.5281/zenodo.10016027). 
Previously published image data that were reanalyzed in this study can 
be requested from https://bmirds.github.io/LungCancer/. The human 
LUAD diagnostic slide images were derived from the TCGA Research 
Network at https://portal.gdc.cancer.gov/. Images generated by the AI 
model in Fig. 2a and Extended Data Figs. 2, 3a and 7f can be accessed 
at figshare (https://doi.org/10.6084/m9.figshare.24599796). For the 
TRACERx study, all of the scanned diagnostic histological images have 
a study number label embedded in the file that prevents complete 
anonymization. Therefore, these images cannot be shared, in line with 
the ethical approval for the study. Requests for access to the TRACERx 
dataset for academic noncommercial research purposes can be sub-
mitted through the Cancer Research UK and UCL Cancer Trials Centre 
(ctc.tracerx@ucl.ac.uk) and are subject to review of a project proposal 
that will be evaluated by a TRACERx data access committee, entering 
into an appropriate data access agreement and any applicable ethical 
approvals. The time frame of response to requests is about 6 months. 
LATTICe-A study data and materials are currently subject to a material 
and data transfer agreement between the University of Leicester, the 
University of Cambridge and NHS Greater Glasgow and Clyde, which 
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includes a restricted access period of 5 years, precluding any access by 
other third parties during this time. After the 5-year period, restricted 
access data can be accessed by application to NHS Greater Glasgow and 
Clyde Biorepository (clare.orange@ggc.scot.nhs.uk; john.lequesne@
glasgow.ac.uk) as custodians; the data access request will be reviewed 
and released under their research ethics committee-approved tissue 
bank protocols. Requests will be reviewed and approved within 6–8 
weeks and will be accompanied by a data sharing agreement detailing 
the conditions and restrictions of use and publication. Source data are 
provided with this paper.

Code availability
The AI pipeline for growth pattern segmentation is available at https://
github.com/xi11/AIgrading. All code used for the analyses was devel-
oped in R v.4.1.2 and is available to reproduce all figures (https://github.
com/xi11/AIgrading).
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Extended Data Fig. 1 | Precise pathological annotations for training and sub-modules of the developed deep learning model (ANORAK). a. Examples 
illustrating morphologically distinct growth patterns in lung adenocarcinoma. b. Distribution of annotations regarding the number of patches and pixels. c. Detailed 
architectures of sub-modules developed for the AI method.
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Extended Data Fig. 2 | Segmentation performance. a,b. Segmentations generated by AI at low-power and high-power resolutions, deposited in 10.6084/
m9.figshare.24599796.
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Extended Data Fig. 4 | Inter-pathologists comparison for predominant 
pattern and IASLC grading in LATTICe-A. a. Interobserver agreement of 
each pattern. b, c. Interobserver agreement of predominant pattern and 
IASLC grading at tumor level. d. Growth pattern intra-tumoral heterogeneity 
substantially contributed to the discrepancy between pathologists (n = 845 

each, P1 < 2.22 × 10−16, P2 = 4.323× 10−13, P3 = 1.589 × 10−15). P value was calculated 
using a two-sided Wilcoxon rank-sum test and not adjusted for the multiple 
comparisons. The median value is indicated by a thick horizontal line; the first 
and third quartiles are represented by box edges; whiskers indicate 1.5 times 
interquartile range. e. Interobserver agreement of each grade.
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Extended Data Fig. 5 | Survival analyses of AI and pathological gradings. 
a. Pair-wise comparison of AI grades in univariable and multivariable Cox 
proportional hazards models. b–d. Multivariable Cox regression analyses 
showing pathological gradings were independent of age, sex, tumor 
stage, smoking pack-years, adjuvant therapy, type of surgery in LATTICe-A 
(P1 = 0.00524, P2 = 0.000913, P3 = 0.0169). HRs of each variable with 95% 

confidence intervals are shown on the horizontal axis; P value was derived with 
Wald test. Asterisks indicate: *P < 0.05, **P < 0.01, ***P < 0.001. e. Comparison of 
improvements driven by AI and additional manual scoring for stage I (n = 337) and 
stage I-III (n = 729) tumors in LATTICe-A, where models included age, sex, tumor 
stage and gradings from AI or/and pathologists. C-indexes with 95% confidence 
intervals are shown on the vertical axis.
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Extended Data Fig. 6 | Assistance of AI in grading challenging scenarios for 
stage I-III tumors in LATTICe-A. a. Challenging scenario 1, tumors with highly 
diversified growth patterns indicated by the Shannon diversity index (n1 = 363, 
n2 = 361, n3 = 390). b. Challenging scenario 2, differentiation between lepidic- 
and acinar-predominant tumors (n1 = 274, n2 = 222, n3 = 340), and between 

lepidic- and papillary-predominant tumors (n1 = 162, n2 = 134, n3 = 137). c. 
Challenging scenario 3, tumors with high-grade patterns between 5% and 30% 
(n1 = 162, n2 = 117, n3 = 252). d. Challenging scenario 4, tumors with no less than 
4 slides (n = 551). C-indexes of each variable with 95% confidence intervals are 
shown on the vertical axis.
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Extended Data Fig. 7 | Morphological and spatial analyses of acinar island. 
a. Acinar morphological feature measures, area and solidity index. b. Acinar 
islands are morphologically different among tumors with different predominant 
patterns (TRACERx 421, P = 1.493 × 10−9 and P = 0.0005932, n = 173; LATTICe-A, 
P < 2.22 × 10−16 and P = 2.626 × 10−10, n = 654). P value was calculated using 
a one-way Kruskal-Wallis rank-sum test and not adjusted for the multiple 
comparisons. c. Acinar island areas were less varied in lepidic-predominant 
(TRACERx 421, P = 0.002889, n = 108; LATTICe-A, P = 7.743 × 10−9, n = 420) and 
high-grade-predominant (TRACERx 421, P = 7.617 × 10−8, n = 157; LATTICe-A, 
P = 1.611 × 10−15, n = 593) tumors than acinar- and papillary-predominant tumors. 

d. Acinar island shapes were less varied in high-grade-predominant tumors than 
lepidic predominant tumors (TRACERx 421, P = 6.374 × 10−6, n = 81; LATTICe-A, 
P = 8.184 × 10−16, n = 295). b-d. Each point is a tumor, y axis is the standard deviation 
of the area or solidity index for all the individual acinar islands within a tumor. The 
median value is indicated by a thick horizontal line; the first and third quartiles are 
represented by box edges; whiskers indicate 1.5 times interquartile range.  
c-d. P value was calculated using a two-sided Wilcoxon rank-sum test and not 
adjusted for the multiple comparisons. e. Example illustrating the transition from 
acinar to cribriform. f. Examples of high and low acinar scattering inferred from 
H&E images with the AI method, deposited in 10.6084/m9.figshare.24599796.
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Extended Data Fig. 8 | Acinar scattering stratifying subgroups of AI grading. 
a. Acinar scattering stratifying patients at AI grade 1 (TRACERx 421 P = 0.5112, 
n = 12; LATTICe-A P = 0.5397, n = 55). b. Acinar scattering stratifying patients at 
AI grade 2 (TRACERx 421 P = 0.0533, n = 56; LATTICe-A P = 1.947 × 10−5, n = 212). 
c. Acinar scattering stratifying patients at AI grade 3 (TRACERx 421 P = 0.04235, 

n = 137; LATTICe-A P = 0.007446, n = 570). d. Acinar scattering stratifying patients 
at AI grades 1&2 (TRACERx 421 P = 0.02517, n = 68; LATTICe-A P = 1.387 × 10−5, 
n = 267). HRs of each variable with 95% confidence intervals are shown on the 
horizontal axis. P value was derived with Wald test, and not adjusted for multiple 
comparisons. Asterisks indicate: *P < 0.05, **P < 0.01, ***P < 0.001.
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