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A B S T R A C T   

Aim: We aimed to evaluate the applicability of a customized NanoString panel for molecular subtyping of 
recurrent or metastatic head and neck squamous cell carcinoma (R/M− HNSCC). Additionally, histological an-
alyses were conducted, correlated with the molecular subtypes and tested for their prognostic value. 
Material and Methods: We conducted molecular subtyping of R/M− HNSCC according to the molecular subtypes 
defined by Keck et al. For molecular analyses a 231 gene customized NanoString panel (the most accurately 
subtype defining genes, based on previous analyses) was applied to tumor samples from R/M− HNSCC patients 
that were treated in the CeFCiD trial (AIO/IAG-KHT trial 1108). A total of 130 samples from 95 patients were 
available for sequencing, of which 80 samples from 67 patients passed quality controls and were included in 
histological analyses. H&E stained slides were evaluated regarding distinct morphological patterns (e.g. tumor 
budding, nuclear size, stroma content). 
Results: Determination of molecular subtypes led to classification of tumor samples as basal (n = 46, 45 %), 
inflamed/mesenchymal (n = 31, 30 %) and classical (n = 26, 25 %). Expression levels of Amphiregulin (AREG) 
were significantly higher for the basal and classical subtypes compared to the mesenchymal subtype. While 
molecular subtypes did not have an impact on survival, high levels of tumor budding were associated with poor 
outcomes. No correlation was found between molecular subtypes and histological characteristics. 
Conclusions: Utilizing the 231-gene NanoString panel we were able to determine the molecular subtype of R/ 
M− HNSCC samples by the use of FFPE material. The value to stratify for different treatment options remains to 
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be explored in the future. The prognostic value of tumor budding was underscored in this clinically well an-
notated cohort.   

Introduction 

Squamous cell carcinomas of the head and neck (HNSCC) comprise 
one of the most prevalent malignancies in the western world [1]. In 
general, prognosis of recurrent or metastatic disease (R/M− HNSCC) 
remains poor and therapeutic options are limited to systemic treatment 
[2,3]. For more than a decade the standard of care in the palliative first- 
line setting was the EGFR monoclonal antibody cetuximab administered 
as an adjunct to cisplatin/carboplatin and 5-fluorouracil [4]. Recent 
clinical trials aimed to improve the outcome of R/M− HNSCC patients, 
amongst others the multicenter phase II Study CeFCiD, in which the 
efficacy of cetuximab, 5-flourouracil, and cisplatin with the same 
regimen adding docetaxel in R/M− HNSCC was tested [5]. The trial did 
not demonstrate a survival benefit from therapy intensification in first- 
line R/M HNSCC compared to standard therapy [5]. 

However, detailed survival analysis revealed that selected R/ 
M− HNSCC patients potentially might benefit from therapy intensifica-
tion and molecular tissue-based biomarkers might help to identify this 
subset of patients [5,6]. In particular, gene expression analyses are 
utilized to determine molecular profiles of various cancers which help to 
predict survival outcomes or treatment responses [7,8]. 

In several landmark studies including the TCGA, four gene expres-
sion subtypes in HNSCC were identified: basal, mesenchymal, atypical 
and classical [9,10]. Subsequently, significant differences of distinct 
subgroups concerning their treatment responses to e.g. cetuximab 
therapy were observed in preclinical models as well as in HNSCC pa-
tients [11,12]. Besides, increased expression of EGFR pathway members, 
especially Amphiregulin (AREG) and Epiregulin in the basal subtype, was 
correlated with treatment response to cetuximab in these models and in 
cell line studies [6,13]. 

As gene expression profiling by whole transcriptome sequencing is 
cost- and time-consuming and requires an extensive bioinformatic 
pipeline to determine the named molecular subgroups the applicability 
in the routine clinical setting is hampered [14,15]. Thus, the first aim of 
our study was to develop a more straightforward and easy to conduct 
approach to be possibly applied as a diagnostic procedure. Hence, a 
focused customized NanoString panel was created to assess the molec-
ular subtypes of HNSCC and applied to the CeFCiD study population [5]. 
We developed this panel based on the classifier of Keck at al. since close 
correlation with morphologic characteristics, molecular processes, sur-
vival, and copy number changes supported a biologic and clinical basis 
for this validated approach. The NanoString approach was chosen as it 
allows for the robust and reliable analysis of formalin-fixed paraffin- 
embedded (FFPE) specimens [15]. 

Consequently, focusing on the CefCID study, the second aim was to 
elucidate morphomolecular biomarkers for patient prognosis in R/ 
M− HNSCC patients. To this end, we focused on morphologic patterns 
which have been demonstrated to be of prognostic significance in the 
initial diagnostic setting in treatment-naïve patients: tumor budding 
(TB), proliferation (mitotic activity), stroma content, lymphocytic 
infiltrate and the molecular subtypes determined by the NanoString 
panel [16–22]. 

TB is supposed to be the morphologic correlate of aggressive tumors 
leading to lymph node and distant metastases [23]. Its prognostic sig-
nificance could be shown for many tumor entities including head and 
neck cancer [24–26]. While in previous studies in head and neck can-
cers, primary tumors of therapy-naïve patients were analyzed, infor-
mation on the predictive and prognostic impact of TB in the R/ 
M− HNSCC are to the best of our knowledge up to date not available 
[27]. 

We hypothesized a correlation between molecular subtypes and 

histopathological patterns demonstrating the informative value of our 
customized 231-gene NanoString panel in clinical practice. Further-
more, we aimed to test the prognostic significance of TB and other po-
tential morphologic biomarkers in a R/M− HNSCC cohort and mutual 
correlations of morphologic and molecular parameters. 

Materials and methods 

Study design 

The CeFCiD trial was designed as a prospective, open-label, ran-
domized, multicenter phase II study at 15 centers in Germany evaluating 
treatment intensification by the addition of docetaxel to platinum, 5-FU 
and cetuximab [5]. Patient consent for molecular analyses and trans-
lational research was given at study entry as part of the informed con-
sent to trial enrollment. Participating trial centers were asked to provide 
FFPE tissue from enrolled patients in 2016. All analyses were conducted 
in accordance with the Declaration of Helsinki. 

The CeFCiD trial included 180 patients for first line treatment of R/ 
M− HNSCC. Detailed patient characteristics, study protocol data and 
inclusion and exclusion criteria were described previously [5]. The 
primary endpoint of the study was progression-free survival (PFS), 
which was determined as the time between study entry and the first 
radiologic confirmation of disease progress or death from any cause. 

Histological analyses 

Histological analyses were conducted on digitized H&E stained slides 
of FFPE material. Slides were scanned on a slide scanner (Aperio AT2, 
Leica Biosystems GmbH, Nussloch, Germany) and evaluated on a stan-
dard monitor (Fujitsu B24T-7, Fujitsu Limited, Tokyo, Japan, resolution 
1920 x 1080) utilizing Aperio ImageScope x64 (version 12.4.0.7018; 
Leica Biosystems GmbH, Nussloch, Germany). One digitized high-power 
field (HPF) comprised 97 464 µm2 which corresponded to a field 
diameter of 0.35 mm in light microscopy. The slides were analyzed 
independently by two experienced pathologists (FS, MB) who were 
blinded to clinicopathological parameters (Table 1). Cases with different 
results between both raters were reevaluated and discussed until a 
consensus was reached. 

Histological classification of tumors into conventional and basaloid 
was conducted according to the current WHO classification of tumors of 
the head and neck [28]. Subsequently, conventional HNSCC were sub-
typed into keratinizing and non-keratinizing cases as previously 
described [17]. Histopathologic grading (G1/G2/G3) was performed 
according to the WHO classification [28]. The assessment of TB was 
conducted as previously described [17]. In short, TB was defined as the 
detachment of four or less tumor cells from the main tumor mass which 
infiltrated the adjacent stroma. First, slides were scanned at low-power 
magnification to identify the area with highest budding activity (hotspot 
area) and subsequently this area was analyzed at high-power magnifi-
cation in one HPF. 

According to previous publications, minimal cell nest size (MCNS) 
was defined as single tumor cells or the minimal number of cohesive 
tumor cells, respectively, which were detached from the main tumor 
mass and invaded the adjacent stroma [17]. For the assessment of mi-
toses a tumor area was chosen in analogy to TB evaluation and the 
number of tumor cell mitoses was recorded for one HPF. Stroma content, 
necrosis and lymphocytic infiltrate were evaluated at low-power 
magnification within the borders of the invasive tumor. Here, the area 
which was covered by the invasive carcinoma and the areas which were 
covered by stroma/necrosis/lymphocytes were estimated. 
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Subsequently, the ratio of areas covered by stroma/necrosis/lympho-
cytes and areas covered by invasive carcinoma was calculated as a 
percentage. For the estimation of stroma content and lymphocytic 
infiltrate, necrotic areas were excluded from the assessment. The nuclear 
size was determined as the average multiple of the nuclear size of tumor 
cells compared to adjacent lymphocytes [16]. Perineural invasion was 
defined as previously described [22]. The presence of tumor formations 
in lymphatic vessel lumina was defined as lymphovascular invasion. 

RNA extraction 

RNA extraction and NanoString analyses were conducted as previ-
ously described [30]. In short, H&E stained slides of HNSCC cases were 
examined to identify tumor regions and to estimate tumor cell content. 
Tumor regions were annotated by a pathologist (MB) and subsequently, 
microdissection for RNA extraction was conducted from 3 µm thick 
sections. Only areas with a minimal tumor cell content of 20 % (median 
65 %) were used. RNA was then extracted according to manufacturer’s 
instructions on a Maxwell extraction system (Promega, Madison, WI) 
and quantified by Qubit (Thermo Fisher Scientific, Waltham, MA). 

NanoString panel design & analyses 

Gene selection for the panel design was based on their expression 
values in previous analysis of molecular subtypes [31]. All genes 
included in the panel are listed in Supplemental table 1. Genes with the 
strongest statistical correlation to a particular subtype were chosen. 
Panel validation was done employing previously analyzed samples with 
an assigned molecular subtype [6]. For mRNA expression analyses, 400 
ng (concentration 100 ng/µl) isolated RNA per sample were hybridized 
on a nCounter Analysis System using a customized NanoString panel 
consisting of 231 genes according to manufacturer’s instructions 
(NanoString Technologies, Seattle, WA). The nCounter System and the 

nSolver Analysis software were applied for quantification and extraction 
of absolute read counts (NanoString Technologies, Seattle, WA). Addi-
tional in-silico quality control and follow-up analyses of the NanoString 
data were conducted using the Bioconductor package ‘NanoStringNorm’ 
[32]. Molecular data are available on Gene Expression Omnibus under 
GSE212070. 

Molecular subtype classification 

Samples were assigned a molecular subtype class based on a centroid 
classification approach. The centroid consisted of the subtype-defining 
genes chosen from the previously published centroid by Keck et al. 
[31]. For molecular subtyping the three “supergroups” according to the 
classification by Keck et al. were used: basal, classical and inflamed/ 
mesenchymal. A successful subtype assignment was obtained by a 
stepwise approach for each sample to: step A) pass the bioinformatic 
quality control assurance; step B) subtype classification for samples 
quantified by a p-value lower than 0.05 (under exclusion of samples 
with p ≥ 0.05); step C) compare transcriptomic similarity between 
subtype assignment and bioinformatic clustering of each sample - 
resulting in inclusion of samples with overlap between assigned sub-
types and corresponding bioinformatic clustering. Hence, samples 
which were assigned a subtype “X” but which were located in cluster “Y” 
were assumed to be wrongly assigned. Those samples (n = 23) were 
excluded from further analysis. 

Dataset normalization was conducted with the ‘NanoStringNorm’ R- 
package, version 1.2.1 [32]. The ‘stringR’ and ‘ggplot2′ packages in 
conjunction with the ‘pheatmap’ R-package (RRID:SCR_016418) were 
utilized for visualization and string manipulation [33,34]. For differ-
ential expression analyses, the ‘LIMMA’ R-package was utilized [35,36]. 
For computational analysis R (version 4.1.3) [37] and SPSS v25 (Inter-
national Business Machines Corporation (IBM), Armonk, NY) were used. 

Table 1 
Clinicopathological data of the CeFCiD cohort (n = 57 patients with complete follow-up data, histopathological and transcriptomic data).   

Whole cohort Treatment arm A Treatment arm B Basal subtype Classical subtype Inflamed/mesenchymal subtype  
n % n % n % n % n % n % 

Age (years; median/IQR) 60 (IQR 11)  
58 (IQR 9) 

61.5 (IQR 7.8)  
57 (IQR 7) 

59 (IQR 8.8) 63.5 (IQR 7) 

Sex             
male 51  89.5 26  83.9 25 96.2 21 84 15 93.8 15 93.8 
female 6  10.5 5  16.1 1 3.8 4 16 1 6.2 1 6.2 
Tumor stage             
3 6  10.5 5  16.1 1 3.8 3 12 2 12.5 1 6.2 
4 51  89.5 26  83.9 25 96.2 22 88 14 87.5 15 93.8 
Grading             
1 1  1.8 1  3.2 0 0 1 4 0 0 0 0 
2 40  70.2 23  74.2 17 65.4 19 76 11 68.8 10 62.5 
3 16  28.1 7  22.6 9 34.6 5 20 5 31.2 6 37.5 
Lymphovascular invasion             
absent 47  82.5 26  83.9 21 80.8 21 84 12 75 14 87.5 
present 10  17.5 5  16.1 5 19.2 4 16 4 25 2 12.5 
Perineural invasion             
absent 54  94.7 29  93.5 25 96.2 23 92 16 100 15 93.8 
present 3  5.3 2  6.5 1 3.8 2 8 0 0 1 6.2 
Localization             
Hypopharynx 13  22.8 8  25.8 5 19.2 6 24 3 18.8 4 25 
Larynx 11  19.3 6  19.4 5 19.2 7 28 1 6.2 3 18.8 
Oral cavity 8  14.0 5  16.1 3 11.5 4 16 3 18.8 1 6.2 
Oropharynx 14  24.6 4  12.9 10 38.5 3 12 6 37.5 5 31.2 
Tongue 7  12.3 5  16.1 2 7.7 4 16 1 6.2 2 12.5 
Tonsil 4  7.0 3  9.7 1 3.8 1 4 2 12.5 1 6.2 
Histotype             
basaloid 4  7.0   4 15.4 0 0 1 6.2 3 18.8 
conventional (keratinizing) 29  50.9 20  64.5 9 34.6 18 72 7 43.8 4 25 
conventional (non-keratinizing) 24  42.1 11  35.5 13 50 7 28 8 50 9 56.2 
Keratinization             
absent 26  45.6 12  38.7 14 53.8 8 32 9 56.2 9 56.2 
present 31  54.4 19  61.3 12 46.2 17 68 7 43.8 7 43.8  
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Statistical analyses 

Comparisons between nominal and ordinal-scaled variables were 
calculated with Fisher’s exact test. For continuous data, the Mann- 
Whitney-U-Test was applied. Associations between variables were 
calculated with Pearson’s Product-Moment Correlation. The Kaplan- 
Meier method was used to estimate overall and progression-free sur-
vival intervals and comparisons between groups were calculated with 
the Log-Rank-test. All tests were conducted two-sided and p-values <
0.05 were considered statistically significant. 

Cutoff identification 

Patient stratification according to the histological characteristics 
(TB, MCNS, mitotic activity, stroma content, necrosis, lymphocytic 
infiltrate, nuclear size) was conducted utilizing “Cutoff Finder” [29]. For 
each parameter patients were stratified into two groups according to the 
most significant results of a Log-Rank test calculated for PFS starting at 
the date of study entry. For lymphovascular invasion, perineural inva-
sion and keratinization cases were stratified with regards to the absence 
or presence of the corresponding characteristic. 

Figure 1. In the CEFCID trial 180 patients were randomized, which is the Intention-To-Treat population. Sequencing raw data for 130 samples from 95 patients was 
available for analyses (1). 114 samples from 90 patients passed the sequencing data quality control (2). We could assign a molecular subtype to 103 samples from 87 
patients with statistical significance (p-value < 0.05; (3)). We homogenized the subtype clusters by discarded samples whose subtype did not match their cluster’s 
subtype which left 80 samples from 67 patients for down-stream analyses (4). In parallel, histologic slides in adequate quality were available from 70 (of the 80 
samples selected in (4)) from 58 patients (5). Samples/patients completely overlapped between molecular and morphologic analysis (6). For subsequent survival 
analysis, we included all patients with complete molecular and morphologic data and complete follow-up data - which rendered 57 patients available for survival 
calculations. One sample/patient with complete morphomolecular data was lost due to incomplete survival data (7). Of note, as recommended in literature, mor-
phomolecular data obtained from the most recent sample was included. Thus, survival analyses are based on 57 samples from 57 patients (7)). 
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Results 

Molecular subtypes of R/M− HNSCC 

FFPE material – obtained at different dates during the course of the 
disease – was available for 130 samples from 95 patients of the CeFCiD 
cohort. 114 (88 %) passed the sequencing data quality control (RNA- 
degradation, tumor purity). We could assign a statistically significant 
molecular subtype (p-value < 0.05) via the Keck et al. centroid classifier 
to 103 (90 %) samples [31]. We excluded 23 samples that were located 
in a cluster that differed from their subtype (details are given in the 
materials and methods section above), with 80 (78 %) samples from 67 
patients remaining for down-stream analyses (Figure 1). 

From eight patients (11.9 %) more than one sample was obtained 
and included in transcriptomic analysis (Supplemental Table 2). In 
contrast, for survival analysis (see below) only the most recently ob-
tained sample per patient was utilized as recommended by Weber et al. 
[38]. 

Most samples were obtained from the primary tumor (n = 37, 46 %, 

percentages relate to the 80 remaining samples) followed by samples 
obtained from recurrences (n = 22, 28 %) and samples without ac-
cording information (n = 19, 24 %). Two samples (3 %) were obtained 
from lymph node metastases. Detailed clinicopathological information 
about the study cohort is shown in Table 1 and Supplemental table 2. 

For survival analysis only patients for whom complete metadata 
regarding molecular subtypes, histomorphology and follow-up were 
available were included. Hence, 57 of 67 patients remained for survival 
analysis (Figure 1). 

Utilizing our customized 231 gene NanoString panel, most samples 
were assigned to the basal subtype (n = 46, 45 %) followed by the 
inflamed/mesenchymal (n = 31, 30 %) and classical (n = 26, 25 %) 
subtypes (Figure 1). Down-stream analyses such as survival and histo-
logical correlations were only run on the 80 (78 %) classified samples 
from 67 patients whose subtype matched that of the subtype cluster they 
were located in, see Figure 2. Molecular subtyping did not yield prog-
nostic significance regarding survival for none of the outcome variables 
(p > 0.05 each). 

Figure 2. UMAP of the samples annotated by their molecular subtype. A projection of the high-dimensional transcriptomic data onto a two-dimensional plane 
visualizes that molecular clusters are identifiable and distinct from each other. A sample’s position indicates its relative similarity of its transcriptome to all 103 
samples with significant p-values based on the gene expression. 
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Gene expression of EGFR pathway members differ between molecular 
subgroups 

Significant differences between subtypes with respect to gene 
expression levels of AREG were detected (Figure 3), revealing that the 
basal subtype showed a positive log fold change of 1.6 (p < 0.001) 
relative to the classical subtype and of 2.4 (p < 0.001) relative to the 
inflamed/mesenchymal subtype. Furthermore, significantly higher 
expression levels of AREG could be determined for the classical subtype 
compared to the inflamed/mesenchymal subtype (log fold change 0.8, p 
= 0.01). 

For the EGFR gene, a significant differential expression was observed 
between the basal and inflamed/mesenchymal subtype (log fold change 
0.8, p = 0.027). 

Patient stratification using histological parameters 

Regarding grading, 1 tumor was graded as G1, 49 tumors as G2 and 
20 tumors as G3 (no information for n = 10 cases). As only one tumor 
was graded as G1, G1 and G2 tumors were combined. For 10 of the 80 
(12.5 %) samples which could be assigned a molecular subtype, while 
passing quality control, the quality of H&E staining was not high enough 
to allow a detailed analysis of morphological patterns. Exemplary il-
lustrations of the histological parameters analyzed are shown in Sup-
plemental figure 1. 

Metrics (median, interquartile range, mean, standard deviation, 
minimum, maximum) for the continuous histological parameters are 

shown in Supplemental table 3. 
Patient stratification based on the cutoffs identified by “Cutoff 

Finder” resulted in 2-tiered classification schemes for all histological 
parameters. The cutoffs and the corresponding distribution of samples 
are shown in Supplemental table 4. 

Survival analyses reveal TB as potential prognostic parameter 

Survival analyses were conducted after patient stratification with 
regards to the cutoffs identified by “Cutoff Finder”. Log-Rank tests and 
univariate Cox models were calculated for PFS and overall survival (OS) 
starting from the date of randomization (with PFS starting from the date 
of randomization representing the primary endpoint of the initial CeF-
CiD trial) as well as PFS and OS starting from the date of initial 
diagnosis. 

Among the histological parameters TB demonstrated prognostic 
significance. Here, cases with high TB showed shorter survival rates 
compared to cases with low TB for OS starting from the date of study 
entry (median 6.2 months vs. 13.6 months; p = 0.042, Figure 4). 
Moreover, a low mitotic count (median 5.4 months vs. 8.9 months; p =
0.009) and a big nuclear size (median 3.4 months vs. 5.6 months; p =
0.038) were associated with inferior survival rates for PFS starting from 
the date of randomisation. 

Results of the Log-Rank tests along with the hazard ratios tests for the 
histological parameters are summarized in Table 3. 

Figure 3. AREG and EGFR gene expression for each subgroup. A significantly higher expression of AREG could be detected in the basal and classical subtype 
compared to the mesenchymal subtype. The EGFR gene was significantly higher expressed in the samples with a basal subtype classification relative to samples 
classified as having a mesenchymal subtype (BA: basal subtype, CL: classical subtype, MS: mesenchymal subtype). 
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Clinicopathological and histological correlations with molecular subtypes 

Pearson’s Product-Moment Correlation was calculated for the his-
tological parameters (Supplemental figure 2). Here, dense inflammatory 
infiltrate was correlated with a bigger cell nest size (r = 0.26, p = 0.03) 
whereas bigger nuclear sizes were associated with smaller MCNS (r =
-0.30, p = 0.01). High TB was associated with smaller cell nest sizes (r =
-0.34, p = 0.005), less inflammation (r = -0.26, p = 0.03) and higher 
amounts of necrosis (r = 0.26, p = 0.03). 

Considering the classification of samples with respect to the cutoffs 
identified, a high budding activity was associated with a higher number 
of G3 tumors (35.1 % vs. 0 %) and a lower number of G1/G2 tumors 
(64.9 % vs. 100 %; p = 0.014). Furthermore, tumors with a high amount 
of necrosis were more often basaloid (20.7 % vs. 0 %) and conventional 
(keratinizing) (51.7 % vs. 46.3 %) and less often conventional (non- 
keratinizing) (27.6 % vs. 53.7 %; p = 0.002). Similarly, tumors with a 
high amount of necrosis were associated with perineural invasion (17.2 
% vs. 0 %; p = 0.010). Additionally, tumors with high-grade inflam-
mation showed more often G1/G2 differentiation (81.2 % vs. 50.0 %; p 
= 0.011). Correlations for clinical and histological parameters are 
shown in detail in Table 2 and Supplemental table 5. 

Discussion 

Prognosis of most patients with R/M− HNSCC is unfavorable and up 
to date, established biomarkers to predict treatment responses in the R/ 
M− HNSCC setting are lacking [39]. However, molecular subtypes based 
on gene expression patterns have been defined resembling the biological 
nature of the disease with potential prognostic and predictive implica-
tions. Furthermore, histological parameters might help in prognostic 

classification of patients and therefore in planning of follow-up 
procedures. 

Different molecular classifiers for head and neck cancer have been 
published with largely overlapping signatures. The classifier by Keck at 
al. demonstrated three biological distinct molecular subgroups with two 
additional subgroups of HPV positive tumors in classical or mesen-
chymal/inflamed subtype. The group validated their signatures on a 
large independent cohort which underlined the feasibility of their clas-
sifier. We therefore based our analyses on the work of Keck et al. Uti-
lizing our highly compact NanoString panel, we were able to determine 
the molecular subtype of R/M− HNSCC in a vast majority of cases 
showing the applicability of this panel in clinical practice. To our 
knowledge this is the first study determining molecular subtypes of R/ 
M− HNSCC based on a NanoString approach which in our experience is 
fast, cost-effective and sufficiently performant on FFPE material 
[14,15]. The applicability and robustness of the NanoString nCounter 
platform has been shown previously, enabling researchers to conduct 
gene expression analyses even for samples with low RNA quality (e.g. 
FFPE material) [15]. In conclusion, the NanoString approach shows 
advantages compared to whole transcriptome analyses rendering it 
applicable for clinical practice. On the other hand, the limited number of 
genes evaluated on such a panel based approach in contrast to RNA 
sequencing bears the potential of missing gene expression profiles which 
might become of interest in the future. A further limitation of the small 
panel we used became obvious when we excluded 23 samples from the 
entire cohort due to the fact that bioinformatic clustering did not align 
with transcriptomic similarity. By choosing this rigorous approach we 
intended to minimize the chance of misclassification. 

At the gene expression level, Amphiregulin (AREG) constitutes one of 
the ligands of EGFR [40]. For R/M− HNSCC it could be shown that 

Figure 4. Kaplan-Meier plot for overall survival (starting from the date of randomisation) after stratification for tumor cell budding.  
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higher expression levels of AREG expression predicted response to 
cetuximab monotherapy [41]. In our study we could detect significantly 
higher gene expression levels for AREG in the basal and in the classical 
subtype compared to the mesenchymal/inflamed subtype. Therefore, 
not only could we demonstrate the applicability of our NanoString panel 
in assigning the molecular subtype of R/M− HNSCC but also validate the 
high expression of AREG in the basal subtype which has been associated 
with treatment response to cetuximab therapy in preclinical models [6]. 
Furthermore, for patients with metastatic colorectal cancer it could be 
shown that high levels of AREG expression predict disease control for 
cetuximab monotherapy [42]. However, the prognostic and predictive 
implications of different AREG gene expression levels in the molecular 
subtypes of HNSCC have to be addressed in prospective clinical studies 
analyzing larger patient cohorts. 

After patient stratification with regards to the molecular subtype we 
did not have any power to detect differences in PFS or OS. This might be 
explained by the limited effect sizes or the small cohort sizes of the 
molecular subgroups and the fact that both treatment arms within the 

CeFCiD trial contained the EGFR antibody [38,43,44]. An increase in the 
cohort size in studies tailored to this question might help to detect 
survival differences for each molecular subgroup. 

Analyzing the histological characteristics of the study cohort, prog-
nostic significance with poor outcomes could be shown for high TB for 
OS, and a low mitotic count and a big nuclear size for PFS. Especially the 
evaluation of TB might help in the prognostic stratification of R/ 
M− HNSCC patients considering that high TB has already been shown to 
be associated with adverse outcomes in previous publications which 
included treatment-naïve patients [17,45]. To the best of our knowl-
edge, this study is the first to demonstrate a significant adverse prog-
nostic impact of TB in the R/M− HNSCC setting potentially allowing a 
more personalized follow-up care for patients with R/M− HNSCC [46]. 
However, studies on larger cohorts are needed to validate the prognostic 
relevance of TB in R/M− HNSCC patients. 

Tumor budding is considered to be the morphological correlate of 
epithelial-mesenchymal transition and therefore, one could expect 
higher TB in mesenchymal/inflamed tumors [26,47]. However, we 
could not detect an association between the molecular subtypes and TB. 
Interestingly, we could observe a negative correlation between TB and 
inflammation, which might contribute to the inferior survival outcomes 
of patients with high TB compared to patients with low TB – a correla-
tion which has been observed in previous studies in oral HNSCC [48]. 
Therefore, the aggressive biological behavior of cases with high TB 
leading to lymph node and distant metastases might partially be 
accompanied and supported by the lower inflammatory infiltrate 
detected in these tumors facilitating immune escape mechanisms 
[25,49,50]. Especially in the light of choosing between immunotherapy 
and chemotherapy in the R/M setting this factor might be of high rele-
vance for treatment stratification. Thus, attempts to modulate the im-
mune response in tumors with high TB should be examined in future 
studies [51]. As expected, G1 and G2 tumors showed lower TB scores but 
showed a higher inflammatory infiltrate. Similarly, the association be-
tween grading and the immune infiltrate might be therapeutically 
exploited in the future. 

There are some limitations of our study that have to be considered. 
Applying the NanoString panel we were able to assign the molecular 
subtype of R/M− HNSCC cases. However, there might be targeted 
therapies for which therapy prediction of efficacy might be based on the 
gene expression profiles of genes that are not included in the 231 gene 
panel and therefore require additional molecular analyses. Furthermore, 
for histological analyses only H&E stained slides were available. Hence, 
no additional studies (e.g. immunohistochemical analyses of immune 
cell subpopulations) could be conducted. The cohort size was limited 
which did not allow a detailed analysis considering both treatment arms 
separately. In addition, study enrollment was conducted irrespective of 
HPV status which was therefore not available. Thus, the patients could 
not be stratified according to this parameter and mutual correlations of 
the HPV status with histological and molecular data could not be 
determined. 

Conclusion 

We were able to conduct molecular subtyping of R/M− HNSCC 
samples based on a customized NanoString approach. Especially in the 
light of evolving concepts of therapy stratification based on tumor 
biology in head and neck cancer, the easy-to-use approach of NanoString 
analysis on FFPE stored tissue proves the feasibility to determine the 
molecular subtype as well as a differential expression of selected 
potentially predictive genes of R/M− HNSCC. Furthermore, we con-
ducted a comprehensive analysis of tissue-based biomarkers in the 
prospective phase II study CeFCiD. Patient prognosis differed based on 
the histopathological parameter tumor budding (TB), which therefore 
might be a promising parameter for prognostic stratification of R/ 
M− HNSCC patients underlining the major future importance of 
morphology. 

Table 2 
Clinical and histological correlations of the CeFCiD cohort.   

Number of samples 
with available data 

Budding    

low high p 

Age (median; IQR) 70 58 (11) 61 (8)  0.607 
Sex     

male 64 11 
(84.6) 

53 
(93.0)  

0.308 

female 6 2 (15.4) 4 (7.0)  
Tumor stage     

3 10 0 (0.0) 10 
(17.5)  

0.190 

4 60 13 
(100.0) 

47 
(82.5)  

Grading     
G1/G2 50 13 

(100.0) 
37 
(64.9)  

0.014 

G3 20 0 (0.0) 20 
(35.1)  

Histotype     
basaloid 6 0 (0.0) 6 

(10.5)  
0.118 

conventional 
(keratinizing) 

34 4 (30.8) 30 
(52.6)  

conventional (non- 
keratinizing) 

30 9 (69.2) 21 
(36.8)  

Localization     
Hypopharynx 17 2 (15.4) 15 

(26.3)  
0.882 

Larynx 14 2 (15.4) 12 
(21.1)  

Oral cavity 10 2 (15.4) 8 
(14.0)  

Oropharynx 14 3 (23.1) 11 
(19.3)  

Tongue 8 2 (15.4) 6 
(10.5)  

Tonsil 7 2 (15.4) 5 (8.8)  
Lymphangiosis     

absent 56 11 
(84.6) 

45 
(78.9)  

>0.999 

present 14 2 (15.4) 12 
(21.1)  

Perineural invasion     
absent 65 13 

(100.0) 
52 
(91.2)  

0.576 

present 5 0 (0.0) 5 (8.8)  
Subtype     

basal 30 4 (30.8) 26 
(45.6)  

0.282 

classical 19 6 (46.2) 13 
(22.8)  

mesenchymal/ 
inflamed 

21 3 (23.1) 18 
(31.6)   
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Table 3 
Hazard ratios are reported which were calculated for each histological variable and the molecular subtype. Additionally, corresponding p-values are shown.   

Progression free 
survival 
from randomization 

p Overall survival 
from 
randomization 

p Progression free 
survival 
from diagnosis 

p Overall survival 
from diagnosis 

p 

Subtype (basal = 1)   0.269   0.184   0.785   0.758 
classical 1.24 (0.60–––2.56)  0.56 (0.27–––1.14)  1.22 (0.60–––2.47)  0.77 

(0.38–––1.56)  
mesenchymal/inflamed 0.66 (0.34–––1.30)  0.62 (0.32–––1.21)  1.22 (0.62–––2.39)  0.98 

(0.50–––1.91)  
Histotype (basaloid = 1)   0.926   0.784   0.788   0.323 
keratinizing 1.16 (0.35–––3.88)  1.24 (0.37–––4.13)  0.85 (0.26–––2.85)  0.60 

(0.18–––2.02)  
non-keratinizing 1.05 (0.31–––3.56)  1.01 (0.30–––3.46)  0.72 (0.21–––2.49)  0.43 

(0.12–––1.50)  
Grading (G1/G2 = 1)   0.655   0.782   0.775   0.730 
G3 1.16 (0.61–––2.20)  0.91 (0.47–––1.76)  1.11 (0.57–––2.13)  1.12 

(0.57–––2.19)  
Keratinization (absent = 1)   0.977   0.680   0.243   0.161 
present 1.01 (0.57–––1.80)  1.13 (0.64–––2.00)  1.41 (0.79–––2.54)  1.51 

(0.85–––2.70)  
Tumor budding (low = 1)   0.173   0.042   0.731   0.484  

1.60 (0.81–––3.15)  2.03 (1.02–––4.05)  0.88 (0.43–––1.80)  1.28 
(0.63–––2.60)  

Cell nest size (large = 1)   0.624   0.135   0.441   0.970 
small 1.17 (0.63–––2.15)  1.60 (0.86–––2.98)  0.77 (0.41–––1.46)  1.01 

(0.54–––1.89)  
Mitoses (low = 1)   0.009   0.279   0.050   0.060 
high 0.43 (0.23–––0.82)  0.72 (0.40–––1.30)  0.53 (0.28–––1.01)  0.56 

(0.30–––1.04)  
Nuclear size (small = 1)   0.038   0.070   0.916   0.285 
large 2.04 (1.02–––4.10)  1.81 (0.94–––3.47)  1.04 (0.53–––2.05)  1.42 

(0.75–––2.70)  
Stroma content (low = 1)   0.239   0.534   0.536   0.647 
high 0.69 (0.38–––1.28)  0.83 (0.45–––1.50)  1.21 (0.66–––2.25)  0.87 

(0.47–––1.61)  
Necrosis (low = 1)   0.608   0.413   0.712   0.277 
high 0.86 (0.48–––1.54)  0.79 (0.44–––1.40)  0.89 (0.50–––1.59)  0.72 

(0.40–––1.30)  
Inflammation (high = 1)   0.505   0.566   0.525   0.862 
low 0.81 (0.43–––1.52)  0.83 (0.45–––1.55)  0.82 (0.44–––1.54)  0.94 

(0.50–––1.76)  
Lymphovascular invasion (absent =

1)   
0.476   0.571   0.065   0.449 

present 0.73 (0.31–––1.74)  1.25 (0.58–––2.71)  0.47 (0.21–––1.06)  0.75 
(0.35–––1.57)  

Perineural invasion (absent = 1)   0.767   0.674   0.431   0.682 
present 0.83 (0.25–––2.75)  1.28 (0.40–––4.17)  1.61 (0.49–––5.35)  1.27 

(0.39–––4.12)   
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