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CoNIC Challenge: Pushing the frontiers of nuclear
detection, segmentation, classification and counting

SUPPLEMENTARY MATERIAL

S1. Detailed summary of the challenge algorithms

We received 26 and 24 submissions to the final segmenta-
tion and classification and cellular composition leaderboards,
respectively. At the time of submission, we required all partic-
ipants to submit a short paper outlining their approach. These
can be viewed by visiting the final test leaderboards at the
following web page: https://warwick.ac.uk/conic-challenge.
While each technique is described in detail in the provided
manuscripts, we also outline a summary of the submitted
methods below. Here, we give an overview of the model
architecture, the instance segmentation target, the loss function
and whether a strategy was used to overcome the class
imbalance present in the dataset. In the descriptions below,
SC denotes segmentation and classification, while CC denotes
cellular composition.

S1.1 EPFL | StarDist: SC = 1st, CC = 3rd. StarDist [1] is
based on U-Net [2] and it predicts an object probability map
and 64 radial distance maps. The conventional StarDist model
does not perform nuclear classification – therefore for this
challenge, a second upsampling branch was added to perform
semantic segmentation. To deal with the class imbalance,
patches that contained minority classes were oversampled
during training. Geometric and H&E-based augmentations
were used and multiple models were ensembled with test-time
augmentation to obtain the final prediction.

S1.2 MDC Berlin | IFP Bern: SC = 2nd, CC = 9th.
A U-Net style architecture was used with an EfficientNet
[3] backbone and two upsampling branches. The first branch
performed instance segmentation and the second branch per-
formed semantic segmentation. The instance segmentation
branch predicted each pixel to be either: the interior of the
nucleus; the nuclear boundary; or the background. In addition,
regression of the nuclear centroids was performed as an
auxiliary task. For class imbalance, oversampling of patches
containing underrepresented nuclear classes was performed
in combination with utilisation of a weighted focal loss.
Geometric, blur, noise and H&E-based augmentations were
used and multiple models were ensembled.

S1.3 Pathology AI: SC = 3rd, CC = 1st. A HoVer-Net
[4] was used with a SE-ResNeXt101 [5] backbone and heavy
dropout layers [6] in the upsampling branches. Despite de-
scribing the concept of diagonal distance maps in their method
description paper, standard horizontal and vertical distance
maps [4] were used in the final submission. A combination
of dice and weighted cross entropy loss was used to help
overcome the class imbalance. Geometric, blur and colour
augmentations were used during training. The final model was

trained on several splits of the data and the results ensembled
for submission.

S1.4 LSLL000UD: SC = 4th, CC = 6th. A HoVer-Net [4]
with a DenseNet-121 [7] backbone was used for instance seg-
mentation, but without the classification branch for simultane-
ous prediction. Diagonal distance maps were used to improve
the performance. A second lightweight U-Net [2] was used to
perform boundary refinement, which takes probability maps
cropped at each nucleus as input. Then, a devoted network
for pixel-wise nuclear classification was used with the same
base architecture as the HoVer-Net for instance segmentation.
A combination of standard cross entropy and dice loss were
used to deal with the class imbalance. Geometric, blur, noise
and colour augmentations were performed during training and
test-time augmentations were used to obtain the final result.

S1.5 AI medical: SC = 5th, CC = 2nd. A HoVer-Net
[4] was utilised with an SE-ResNeXt50 [5] backbone and a
Coordinate Attention module [8] in the decoder. Conventional
horizontal and vertical distance maps were used to perform
instance segmentation. To counter the class imbalance, the sub-
mission utilised a both dice and weighted cross entropy loss in
the classification branch. Geometric and colour augmentations
were used during optimisation. For the final submission several
models were ensembled and test-time augmentation were used.

S1.6 Arontier: SC = 6th, CC = 7th. A HoVer-Net [4]
was used, with skip connections inspired by U-Net++ [9] and
an EfficientNet [3] backbone. An interesting approach was
used for dealing with the class imbalance, consisting of copy
and paste augmentation [10]. Geometric, blur, noise, Cutout
[11], Cutmix [12] and colour augmentations were used and
an ensemble of 5 models trained on different data splits was
considered for the final submission.

S1.7 CIA Group: SC = 7th, CC = 4th. An ensemble of
a conventional HoVer-Net [4] and a Cascaded Mask-RCNN
[13], both with ResNeXt-152 [14] backbones, was used for
the challenge. However, despite this strategy being used during
the preliminary submission phase, it exceeded the maximum
60-minute allotted time during the final submission phase.
Therefore, the final submission comprised of the Cascaded
Mask-RCNN by itself. No method was documented for dealing
with the class imbalance in the dataset. Geometric, blur and
noise augmentations were used during training and model
ensembling was performed when making the submission.

S1.8 MAIIA: SC = 8th, CC = 17th. A StarDist [1] model
with a U-Net [2] architecture was implemented but using
more convolutional filters than the standard approach. Here,
the off-the-shelf StarDist repository was used to see how it
performed with minimal modification. The model predicted
the star convex polygons for each nucleus by outputting an
object probability map, along with 32 radial distance maps.

https://warwick.ac.uk/conic-challenge
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Fairly conventional augmentations, consisting of geometric
transformations and additive noise were used. No specific
strategy was utilised for dealing with the class imbalance and
no form of ensembling was performed.

S1.9 ciscNet: SC = 9th, CC = 11th. A regular U-Net
[2] was used, but with group normalisation [15] and mish
activation [16]. The normalised Euclidean distance maps of
nuclear pixels to their nearest boundary was predicted to
enable instance segmentation. For this, a separate distance
map was considered per nuclear type to enable simultaneous
classification. To counter the class imbalance, a weighted
summation of the per-class regression losses was utilised,
where more weight was given to minority classes. Geometric,
blur, noise and colour augmentations were used during training
and test-time augmentation was performed to yield the final
result.

S1.10 MBZUAI CoNIC: SC = 10th, CC = 8th. A HoVer-
Net [4] with a ConvNeXt-Small [17] backbone was used
with standard horizontal and vertical distance maps as the
instance segmentation target. With an aim of learning more
discriminative features, each image was converted to various
colour spaces and concatenated with the original RGB image
before input to the network. A unified focal loss [18] was used
during training, which aimed to counter the class imbalance.
Geometric, noise and blur augmentations were used during
training.

S1.11 Denominator: SC = 11th, CC = 10th. Similar to
above, HoVer-Net [4] with a ConvNeXt-Tiny [17] backbone
was used. Separation of the Haematoxylin and eosin stains
was performed before input to the network. A combination of
focal [19] and dice loss was used to help combat the imbalance
of classes in the data. No model ensembling was used during
submission of the algorithm.

S1.12 Softsensor Group: SC = 12th, CC = 5th. A fusion of
HoVer-Net [4] and Triple U-Net [20] was used that considered
both the original RGB image and the Haematoxylin stain
channel as input. Each input was processed by a separate
encoder, which were then fused using a progressive dense
feature aggregation block. Following HoVer-Net, the model
predicted the horizontal and vertical maps, binary nuclear
segmentation map, and the multi-class semantic segmentation
map. All RGB input patches used Reinhard normalisation [21]
to combat differences in the stain appearance and geometric
augmentations were introduced during training.

S1.13 BMS LAB: SC = 13th, CC = 12th. A Swin-
Transformer [22] with a Hybrid Task Cascade model [23]
was used. The model did not use a strategy to deal with
the class imbalance. Geometric augmentations were performed
and Macenko stain normalisation [24] was used to help reduce
the variability of the image appearance across the dataset. For
submission, input images were resized to five different scales
before processing and the results were then merged together.

S1.14 GDPH HC: SC = 14th, CC = 13th. HoVer-Net [4]
was used without any modification to the original architec-
ture. To enhance the available data for training, a generative
adversarial network [25] was used to create synthetic images
as an augmentation strategy. In addition, a self-supervised
technique called RestainNet [26] was used to perform stain

normalisation and geometric transformations were applied to
all input images. To help train with the presence imbalanced
data, a class-weighted loss function was incorporated at the
output of the classification branch.

S1.15 conic-challenge-inescteam: SC = 15th. CenterNet
[27] was used, which is a probabilistic two-stage object
detection model. This model allows the reduction of proposals
from the Region Proposal Network (RPN), which could be im-
portant in this application where each image has many objects.
Like Mask-RCNN [28], the original CenterNet approach was
extended so that is also produced a segmentation mask for
each nucleus. No specific method was used to deal with class
imbalance and geometric augmentation was used during model
training.

S1.16 Aman: SC = 16th. A subtly modified HoVer-Net [4]
model was used for the challenge, where major focus given to
the data preprocessing step. Copy and paste augmentation [10]
of neutrophil and eosinophil nuclei was utilised in addition
to performing geometric augmentation of the images. Also, a
transformation of the colour space of images was applied to
increase the variability of the stain appearance in the training
set. Following this, weighted cross entropy and weighted Dice
loss functions were used to help counter the class imbalance
in the dataset.

S1.17 Bin: SC = 17th, CC = 19th. A HoVer-Net [4]
approach was used, but each convolution was swapped with a
multiple filter block. Here, multiple filter sizes were utilised
in parallel during each operation and the results were merged.
This was repeated throughout the network. A combination of
cross entropy and Dice loss were used, like in the original
HoVer-Net implementation and no augmentation was per-
formed.

S1.18 DH-Goods: SC = 18th, CC = 16th. Two separate
HoVer-Nets [4] with the same architecture were used that
aimed to tackle the class imbalance present in the dataset
– one that considered epithelial, lymphocyte and connective
tissue cell classes, and the other that considered plasma cell,
neutrophil and eosinophil classes. The intuition was that sepa-
rating out the minority classes may lead to better performance.
Each HoVer-Net used a HR-Net backbone [29] with an Atrous
Spatial Pyramid Pooling (ASPP) unit [30] after the encoder. In
addition, a YOLOv5 [31] was trained for nuclear detection and
classification, where a U-Net model was used to generate the
segmentation masks within the bounding boxes. For tackling
the class imbalance, equalised focal loss was used during
optimisation of YOLOv5 and mosaic augmentation was used
as a way of introducing underrepresented classes into input
images. HoVer-Net and YOLOv5 results were then merged
using a custom strategy. Geometric transformations of input
images were performed and test-time augmentation used to
generate the final submission.

S1.19 VNIT: SC = 19th, CC = 22nd. A hybrid approach
was implemented incorporating handcrafted features, such as
local binary patterns and histogram of oriented gradients,
into a HoVer-Net [4] model. Specifically, handcrafted features
were combined with the deep features after passing input
images through the encoder and are then upsampled via three
separate upsampling branches, in the same way as the original
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HoVer-Net approach. The same loss strategy as the original
implementation was used and so no proposed technique was
used to deal with the class imbalance. Blur augmentation and
colour jitter was used during training.

S1.20 Sk: SC = 20th, CC = 8th. An Eff-UNet [32] was
used, which combines the effectiveness of EfficientNet [3] as
the encoder with U-Net [2] as the decoder. The approach
outputs two prediction maps: 1) direction map for instance
segmentation and 2) semantic segmentation map for classifica-
tion. The direction map divides each nucleus into N segments
around the centroid. For this submission, N was set to be
4 and therefore divided each nucleus into quadrants. Each
quadrant was then treated as a separate class to predict and in-
stance segmentation was performed using a purpose-built post-
processing pipeline. Colour, geometric and blur augmentation
was used during training. A combination of cross entropy
and dice loss was used for the semantic segmentation map,
which may partly help alleviate the difficulty in dealing with
the class imbalance. Rather than using the segmentation and
classification output to predict cellular composition, a separate
branch was added to the encoder that directly regressed the
nuclear counts.

S1.21 Jiffy Labs and CET CV Lab: SC = 22nd, CC =
15th. A HoVer-Net [4] with a ConvNeXt [17] backbone was
used for the challenge submission. To help deal with the class
imbalance, a combination of Dice and focal loss [19] was used.

S1.22 TIA Warwick: SC = 23rd, CC = 14th. ALBRT [33]
with an Xception [34] backbone was used for directly pre-
dicting the cellular composition from the input image, without
performing nuclear segmentation. As opposed to the original
approach that used a ranking loss, a Huber loss was used, that
aimed to directly maximise the R2 score. Due to the difficulty
in predicting underrepresented classes, a separate network
was trained for predicting the counts of eosinophils. Then,
each network was trained multiple times and the per-class
nuclear counts averaged for the final submission. A standard
HoVer-Net [4] model was trained for the segmentation and
classification task on a single split of the data.

S1.23 QuIIL: CC = 23rd. A YOLOv5 [31] with a Cross
Stage Partial Network [35] backbone was used to perform the
task of nuclear detection and classification, where the results
were then utilised to perform cellular composition. Geometric,
colour and mosaic augmentations were used during training.

S2. Hyperparameter search for downstream tasks

We performed a random search over the XGBoost hyperpa-
rameters for each downstream clinical task to select the best
model. This search space is defined as in Table S1.

S3. Downstream results

The details are provided in Tables S2 to S8.

S4. Complete feature description for downstream tasks

The details are provided in Table S9.
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Class Distribution
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Epithelial Cell Lymphocyte Plasma Cell Neutrophil Eosinophil Connective Tissue Cell

Fig. S1. Summary of the datasets used in the challenge. a, Information regarding the data source, specimen type, scanner manufacturer
and number of labelled nuclei. b, Distribution of data in the development and evaluation sets. c, Distribution of nuclear classes across the
different data subsets.
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Fig. S2. Segmentation and classification results on the final test set. These results are the same as provided in Fig. 3 of the main
manuscript, but are shown as a point plot as an alternative form of visualisation.
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Fig. S3. Cellular composition results on the final test set. These results are the same as provided in Fig. 4 of the main manuscript, but
are shown as a point plot as an alternative form of visualisation
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a d

b e

c f

Fig. S4. Additional results for each task using alternative metrics. We computed these results using the algorithms that were sent by the
participants, which explains slight differences in the results compared to the original standings. The left side (a, b, c) show segmentation and
classification results. a, mPQ+, b, mDQ+ and c, mSQ+. The right side (d, e, f) show cellular composition results. d, mR2, e, mMAE
and f, mMAAPE.
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a b

Fig. S5. Difference in results of original submission compared to those obtained using the models trained on a single split of the
data and without ensembling. a, Segmenation and classification results, in terms of mPQ+ and b, cellular composition results, in terms
of mR2.
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Fig. S6. Kaplan–Meier curves and statistical tests for survival analysis on TCGA. Risk scores on the testing portions from each model
were aggregated and utilised to stratify patients into high-risk group and low-risk groups. The threshold criteria is the median value of risk
scores obtained from the validation portion. Log-rank tests were conducted and reported to evaluate the degree of separation between two
populations. a, Disease Specific Survival and b Overall Survival.
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Fig. S7. Summary of which features (out of a possible 222) were utilised for subsequent analyses on grading, disease specific survival
or overall survival tasks. a, b and c show the selected features for dysplasia grading, disease specific survival analysis and overall survival
analysis, respectively.
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Fig. S8. Summary of the overall importance of each selected feature in Fig. S7 from each team for each task. The importance is
measured by a permutation test and combined across all data splits. A feature is important if the changes in its value heavily impact the
evaluation results (C-Index for survival tasks and QWK for grading). Features that are important to the final XGBoost model performance
are coloured in red. On the other hand, a feature being blue indicates a gain in performance when its value becomes more noisy (undesirable
or significantly less important). Grey cells show features not selected by this team, but are selected by others.
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Fig. S9. Contribution of the top 16 features from Pathology AI (taken from Fig. S8) for the grading task on IMP Diagnostics dataset.
The first column reports the permutation importance of the feature on the evaluation results (QWK). On the other hand, other columns
(SHAP) reflect how the changes in the feature value affect the model predictions (the predicted probabilities of each class by XGBoost).
The reported importances are combined across all data splits.
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Fig. S10. Contribution of the top 16 features from MDC Berlin | IFP Bern (taken from Fig. S8) for the grading task on IMP
Diagnostics dataset. The first column reports the permutation importance of the feature on the evaluation results (QWK). On the other
hand, other columns (SHAP) reflect how the changes in the feature value affect the model predictions (the predicted probabilities of each
class by XGBoost). The reported importances are combined across all data splits.
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Fig. S11. Contribution of the top 16 features from EPFL | StarDist (taken from Fig. S8) for the grading task on IMP Diagnostics
dataset. The first column reports the permutation importance of the feature on the evaluation results (QWK). On the other hand, other
columns (SHAP) reflect how the changes in the feature value affect the model predictions (the predicted probabilities of each class by
XGBoost). The reported importances are combined across all data splits.
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Fig. S12. Contribution of the top 16 features from Pathology AI (taken from Fig. S8) for the survival analyses on TCGA dataset.
Within each Validation and Testing subset, the first column reports the permutation importance of the feature on the evaluation results
(C-Index). On the other hand, other columns (SHAP) reflect how the changes in the feature value affect the model predictions (the predicted
risk scores by XGBoost). The reported importances are combined across all data splits.
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Fig. S13. Contribution of the top 16 features from MDC Berlin | IFP Bern (taken from Fig. S8) for the survival analyses on TCGA
dataset. Within each Validation and Testing subset, the first column reports the permutation importance of the feature on the evaluation
results (C-Index). On the other hand, other columns (SHAP) reflect how the changes in the feature value affect the model predictions (the
predicted risk scores by XGBoost). The reported importances are combined across all data splits.
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Fig. S14. Contribution of the top 16 features from EPFL | StarDist (taken from Fig. S8) for the survival analyses on TCGA dataset.
Within each Validation and Testing subset, the first column reports the permutation importance of the feature on the evaluation results
(C-Index). On the other hand, other columns (SHAP) reflect how the changes in the feature value affect the model predictions (the predicted
risk scores by XGBoost). The reported importances are combined across all data splits.
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Fig. S15. Summary of the top 15 participant algorithms. The figure is split into various segments to better understand the differences
between each team. We identify the network architecture of each submission, including the encoder and decoder design. We determine the
augmentation strategy, distinguishing between morphology-based and colour-based augmentation. We indicate the training strategy, consisting
of the input type, the output type and whether a technique was used to deal with the class imbalance. We also identified the inference strategy,
denoting whether ensembling was used and the post-processing technique. The colour within each box (grey or black) is insignificant – it
is used to help distinguish between teams on each row.
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TABLE S1. Hyperparameter space when performing Random Search. We provide the name of the parameter, as used in the Python
implementation (https://xgboost.readthedocs.io/en/stable/parameter.html), along with the range of values that we randomly sample from.

Parameter Name Value Ranges
num boost round 8 to 256

learning rate 0.001 to 0.1
max depth 1 to 16
subsample One of [0.3, 0.4, 0.5, 0.6, 0.7, 0.8]

colsample bytree One of [0.3, 0.4, 0.5, 0.6, 0.7, 0.8]
colsample bylevel One of [0.3, 0.4, 0.5, 0.6, 0.7, 0.8]
colsample bynode One of [0.3, 0.4, 0.5, 0.6, 0.7, 0.8]
min child weight 0.01 to 3.0

reg lambda 0.1 to 2.0
reg alpha 0.1 to 2.0
booster “booster” or “dart”

rate drop 0.1 to 0.7

TABLE S2. Performance of the XGBoost on TCGA dataset for the DSS (disease specific survival) task when using a feature set
obtained from different nuclear recognition methods. The reported values are mean ± std of C-index. C denotes, clinical features, Dd

denotes density-based features, Dm denotes morphology-based features and Dc denotes colocalisation features. D refers to the combination
of all types of features (excluding clinical) and D is a subset of D after feature selection.

C Dd Dm Dc D D

N/A 0.7665±0.0600 - - - - -
Baseline - 0.6270±0.0631 0.6018±0.0511 0.5922±0.0690 0.5981±0.0464 0.6228±0.0601

Pathology AI - 0.6437±0.0648 0.5879±0.0683 0.6443±0.0492 0.6366±0.0650 0.6672±0.0583
MDC Berlin | IFP Bern - 0.6333±0.0482 0.6242±0.0732 0.6346±0.0591 0.6413±0.0604 0.6686±0.0443

EPFL | StarDist - 0.6418±0.0543 0.6087±0.0676 0.6334±0.0526 0.6354±0.0561 0.6685±0.0628

C Dd Dm Dc D D

N/A 0.7662±0.0527 - - - - -
Baseline - 0.6320±0.0772 0.5785±0.0747 0.5537±0.0782 0.5781±0.0634 0.5744±0.0738

Pathology AI - 0.6284±0.0734 0.5742±0.0697 0.6263±0.0781 0.6106±0.0671 0.6450±0.0703
MDC Berlin | IFP Bern - 0.6081±0.0792 0.6358±0.0591 0.6088±0.0566 0.6160±0.0571 0.6518±0.0582

EPFL | StarDist - 0.6068±0.0826 0.6144±0.0722 0.5976±0.0978 0.6114±0.0827 0.6554±0.0631

Validation Set

Testing Set

TABLE S3. Performance of the XGBoost on TCGA dataset for the OS (overall survival) task when using a feature set obtained
from different nuclear recognition methods. The reported values are mean ± std of C-index. C denotes, clinical features, Dd denotes
density-based features, Dm denotes morphology-based features and Dc denotes colocalisation features. D refers to the combination of all
types of features (excluding clinical) and D is a subset of D after feature selection.

C Dd Dm Dc D D

N/A 0.7354±0.0481 - - - - -
Baseline - 0.5888±0.0631 0.5478±0.0674 0.5769±0.0768 0.5748±0.0348 0.6015±0.0580

Pathology AI - 0.6291±0.0543 0.5855±0.0623 0.6340±0.0558 0.6399±0.0426 0.6716±0.0526
MDC Berlin | IFP Bern - 0.6160±0.0476 0.6049±0.0727 0.6014±0.0613 0.6156±0.0644 0.6453±0.0533

EPFL | StarDist - 0.6140±0.0685 0.6051±0.0778 0.6275±0.0514 0.6349±0.0617 0.6589±0.0563

C Dd Dm Dc D D

N/A 0.7251±0.0411 - - - - -
Baseline - 0.5641±0.0731 0.5401±0.0757 0.5550±0.0649 0.5586±0.0647 0.5729±0.0650

Pathology AI - 0.6185±0.0685 0.5838±0.0653 0.6218±0.0620 0.6187±0.0639 0.6418±0.0565
MDC Berlin | IFP Bern - 0.6019±0.0640 0.5808±0.0458 0.5876±0.0587 0.6115±0.0797 0.6176±0.0616

EPFL | StarDist - 0.5811±0.0719 0.5930±0.0688 0.5846±0.0755 0.6105±0.0653 0.6456±0.0614

Validation Set

Testing Set

https://xgboost.readthedocs.io/en/stable/parameter.html
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TABLE S4. Performance of the XGBoost on IMP Diagnostic for the grading task when using a feature set obtained from different
nuclear recognition methods. The reported values are mean ± std of mF1. Dd denotes density-based features, Dm denotes morphology-
based features and Dc denotes colocalisation features. D refers to the combination of all types of features (excluding clinical) and D is a
subset of D after feature selection.

Dd Dm Dc D D

Baseline 0.6958±0.0212 0.7564±0.0265 0.7781±0.0230 0.8228±0.0185 0.8307±0.0208
Pathology AI 0.7565±0.0246 0.7702±0.0318 0.8520±0.0204 0.8669±0.0168 0.8720±0.0130

MDC Berlin | IFP Bern 0.7110±0.0265 0.7442±0.0344 0.8545±0.0242 0.8705±0.0220 0.8765±0.0214
EPFL | StarDist 0.7716±0.0234 0.7390±0.0265 0.8461±0.0169 0.8533±0.0186 0.8573±0.0184

Dd Dm Dc D D

Baseline 0.6862±0.0379 0.7402±0.0287 0.7729±0.0255 0.8203±0.0316 0.8227±0.0273
Pathology AI 0.7492±0.0349 0.7618±0.0317 0.8451±0.0296 0.8649±0.0282 0.8664±0.0280

MDC Berlin | IFP Bern 0.6885±0.0297 0.7472±0.0304 0.8520±0.0264 0.8698±0.0256 0.8739±0.0218
EPFL | StarDist 0.7529±0.0299 0.7375±0.0340 0.8367±0.0282 0.8439±0.0340 0.8463±0.0341

Validation Set

Testing Set

TABLE S5. Performance of the XGBoost on IMP Diagnostic for the grading task when using a feature set obtained from different
nuclear recognition methods. The reported values are mean ± std of mAP . Dd denotes density-based features, Dm denotes morphology-
based features and Dc denotes colocalisation features. D refers to the combination of all types of features (excluding clinical) and D is a
subset of D after feature selection.

Dd Dm Dc D D

Baseline 0.7502±0.0263 0.8271±0.0261 0.8574±0.0164 0.8981±0.0183 0.8997±0.0175
Pathology AI 0.8234±0.0310 0.8472±0.0260 0.9209±0.0151 0.9302±0.0149 0.9349±0.0120

MDC Berlin | IFP Bern 0.7770±0.0277 0.8114±0.0330 0.9188±0.0170 0.9357±0.0165 0.9385±0.0146
EPFL | StarDist 0.8261±0.0278 0.8167±0.0253 0.9131±0.0146 0.9186±0.0137 0.9232±0.0134

Dd Dm Dc D D

Baseline 0.7456±0.0314 0.8189±0.0290 0.8547±0.0243 0.8921±0.0237 0.8956±0.0242
Pathology AI 0.8171±0.0328 0.8380±0.0302 0.9141±0.0235 0.9262±0.0227 0.9268±0.0219

MDC Berlin | IFP Bern 0.7624±0.0295 0.8166±0.0322 0.9154±0.0189 0.9324±0.0191 0.9373±0.0179
EPFL | StarDist 0.8175±0.0307 0.8136±0.0355 0.9058±0.0251 0.9142±0.0245 0.9185±0.0243

Validation Set

Testing Set

TABLE S6. Performance of the XGBoost on IMP Diagnostic for the grading task when using a feature set obtained from different
nuclear recognition methods. The reported values are mean ± std of QWK (Quadratic Weighted Kappa). Dm denotes morphology-based
features and Dc denotes colocalisation features. D refers to the combination of all types of features (excluding clinical) and D is a subset
of D after feature selection.

Dd Dm Dc D D

Baseline 0.5892±0.0427 0.6539±0.0496 0.7074±0.0413 0.7600±0.0258 0.7696±0.0300
Pathology AI 0.6829±0.0308 0.7052±0.0445 0.8066±0.0349 0.8333±0.0299 0.8392±0.0243

MDC Berlin | IFP Bern 0.6178±0.0447 0.6689±0.0538 0.8259±0.0361 0.8413±0.0335 0.8501±0.0330
EPFL | StarDist 0.6974±0.0385 0.6786±0.0439 0.8082±0.0287 0.8193±0.0312 0.8248±0.0309

Dd Dm Dc D D

Baseline 0.5720±0.0580 0.6328±0.0551 0.6990±0.0406 0.7506±0.0551 0.7574±0.0492
Pathology AI 0.6696±0.0562 0.6904±0.0468 0.8051±0.0423 0.8302±0.0404 0.8354±0.0367

MDC Berlin | IFP Bern 0.5842±0.0400 0.6685±0.0506 0.8212±0.0361 0.8436±0.0382 0.8463±0.0319
EPFL | StarDist 0.6732±0.0467 0.6744±0.0480 0.7943±0.0383 0.8038±0.0477 0.8051±0.0477

Validation Set

Testing Set
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TABLE S7. Performance of the XGBoost on IMP Diagnostic for the grading task when using a feature set obtained from different
nuclear recognition methods. The reported values are mean ± std of Sensitivity averaged across 3 classes. Dd denotes density-based
features, Dm denotes morphology-based features and Dc denotes colocalisation features. D refers to the combination of all types of features
(excluding clinical) and D is a subset of D after feature selection.

Dd Dm Dc D D

Baseline 0.6882±0.0217 0.7541±0.0276 0.7730±0.0235 0.8189±0.0202 0.8275±0.0213
Pathology AI 0.6829±0.0308 0.7052±0.0445 0.8066±0.0349 0.8333±0.0299 0.8392±0.0243

MDC Berlin | IFP Bern 0.7057±0.0251 0.7357±0.0342 0.8510±0.0248 0.8674±0.0227 0.8732±0.0217
EPFL | StarDist 0.7660±0.0251 0.7290±0.0268 0.8421±0.0165 0.8491±0.0203 0.8535±0.0182

Dd Dm Dc D D

Baseline 0.6789±0.0393 0.7379±0.0287 0.7691±0.0282 0.8174±0.0317 0.8206±0.0280
Pathology AI 0.7416±0.0357 0.7544±0.0316 0.8427±0.0309 0.8608±0.0297 0.8622±0.0296

MDC Berlin | IFP Bern 0.6847±0.0309 0.7402±0.0317 0.8490±0.0282 0.8669±0.0285 0.8711±0.0243
EPFL | StarDist 0.7475±0.0317 0.7272±0.0357 0.8334±0.0305 0.8413±0.0366 0.8432±0.0357

Validation Set

Testing Set

TABLE S8. Performance of the XGBoost on IMP Diagnostic for the grading task when using a feature set obtained from different
nuclear recognition methods. The reported values are mean ± std of Specificity averaged across 3 classes. Dd denotes density-based
features, Dm denotes morphology-based features and Dc denotes colocalisation features. D refers to the combination of all types of features
(excluding clinical) and D is a subset of D after feature selection.

Dd Dm Dc D D

Baseline 0.8423±0.0106 0.8778±0.0130 0.8845±0.0116 0.9091±0.0101 0.9133±0.0109
Pathology AI 0.8734±0.0135 0.8788±0.0166 0.9234±0.0107 0.9302±0.0086 0.9329±0.0071

MDC Berlin | IFP Bern 0.8529±0.0126 0.8658±0.0172 0.9226±0.0127 0.9316±0.0114 0.9346±0.0113
EPFL | StarDist 0.8815±0.0126 0.8600±0.0136 0.9193±0.0087 0.9225±0.0098 0.9248±0.0094

Dd Dm Dc D D

Baseline 0.8377±0.0196 0.8693±0.0137 0.8820±0.0143 0.9084±0.0151 0.9095±0.0134
Pathology AI 0.8697±0.0182 0.8754±0.0156 0.9195±0.0155 0.9291±0.0146 0.9295±0.0149

MDC Berlin | IFP Bern 0.8419±0.0163 0.8680±0.0155 0.9216±0.0141 0.9310±0.0137 0.9334±0.0118
EPFL | StarDist 0.8715±0.0159 0.8592±0.0181 0.9145±0.0153 0.9183±0.0182 0.9195±0.0180

Validation Set

Testing Set
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TABLE S9. Complete list of features considered in the down-
stream pipelines. Here, we give a description of the feature, along
with the category in which it belongs.

ID Feature Names Category
0 Average Connective’s area Morphology
1 Variation in Connective’s area Morphology
2 Average Connective’s eccentricity Morphology
3 Variation in Connective’s eccentricity Morphology
4 Average Connective’s perimeter Morphology
5 Variation in Connective’s perimeter Morphology
6 Average Connective’s minor axis length Morphology
7 Variation in Connective’s minor axis length Morphology
8 Average Connective’s minor axis length Morphology
9 Variation in Connective’s minor axis length Morphology
10 Average Connective’s BAM Morphology
11 Variation in Connective’s BAM Morphology
12 Average Eosinophil’s area Morphology
13 Variation in Eosinophil’s area Morphology
14 Average Eosinophil’s eccentricity Morphology
15 Variation in Eosinophil’s eccentricity Morphology
16 Average Eosinophil’s perimeter Morphology
17 Variation in Eosinophil’s perimeter Morphology
18 Average Eosinophil’s minor axis length Morphology
19 Variation in Eosinophil’s minor axis length Morphology
20 Average Eosinophil’s minor axis length Morphology
21 Variation in Eosinophil’s minor axis length Morphology
22 Average Eosinophil’s BAM Morphology
23 Variation in Eosinophil’s BAM Morphology
24 Average Epithelial’s area Morphology
25 Variation in Epithelial’s area Morphology
26 Average Epithelial’s eccentricity Morphology
27 Variation in Epithelial’s eccentricity Morphology
28 Average Epithelial’s perimeter Morphology
29 Variation in Epithelial’s perimeter Morphology
30 Average Epithelial’s minor axis length Morphology
31 Variation in Epithelial’s minor axis length Morphology
32 Average Epithelial’s minor axis length Morphology
33 Variation in Epithelial’s minor axis length Morphology
34 Average Epithelial’s BAM Morphology
35 Variation in Epithelial’s BAM Morphology
36 Average Lymphocyte’s area Morphology
37 Variation in Lymphocyte’s area Morphology
38 Average Lymphocyte’s eccentricity Morphology
39 Variation in Lymphocyte’s eccentricity Morphology
40 Average Lymphocyte’s perimeter Morphology
41 Variation in Lymphocyte’s perimeter Morphology
42 Average Lymphocyte’s minor axis length Morphology
43 Variation in Lymphocyte’s minor axis length Morphology
44 Average Lymphocyte’s minor axis length Morphology
45 Variation in Lymphocyte’s minor axis length Morphology
46 Average Lymphocyte’s BAM Morphology
47 Variation in Lymphocyte’s BAM Morphology
48 Average Neutrophil’s area Morphology
49 Variation in Neutrophil’s area Morphology
50 Average Neutrophil’s eccentricity Morphology
51 Variation in Neutrophil’s eccentricity Morphology
52 Average Neutrophil’s perimeter Morphology
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53 Variation in Neutrophil’s perimeter Morphology
54 Average Neutrophil’s minor axis length Morphology
55 Variation in Neutrophil’s minor axis length Morphology
56 Average Neutrophil’s minor axis length Morphology
57 Variation in Neutrophil’s minor axis length Morphology
58 Average Neutrophil’s BAM Morphology
59 Variation in Neutrophil’s BAM Morphology
60 Average Plasma’s area Morphology
61 Variation in Plasma’s area Morphology
62 Average Plasma’s eccentricity Morphology
63 Variation in Plasma’s eccentricity Morphology
64 Average Plasma’s perimeter Morphology
65 Variation in Plasma’s perimeter Morphology
66 Average Plasma’s minor axis length Morphology
67 Variation in Plasma’s minor axis length Morphology
68 Average Plasma’s minor axis length Morphology
69 Variation in Plasma’s minor axis length Morphology
70 Average Plasma’s BAM Morphology
71 Variation in Plasma’s BAM Morphology
72 Average # Neutrophil within 200um radius of a Connective nucleus Colocalisation
73 Variation in # Neutrophil within 200um radius of a Connective nucleus Colocalisation
74 Average # Epithelial within 200um radius of a Connective nucleus Colocalisation
75 Variation in # Epithelial within 200um radius of a Connective nucleus Colocalisation
76 Average # Lymphocyte within 200um radius of a Connective nucleus Colocalisation
77 Variation in # Lymphocyte within 200um radius of a Connective nucleus Colocalisation
78 Average # Plasma within 200um radius of a Connective nucleus Colocalisation
79 Variation in # Plasma within 200um radius of a Connective nucleus Colocalisation
80 Average # Eosinophil within 200um radius of a Connective nucleus Colocalisation
81 Variation in # Eosinophil within 200um radius of a Connective nucleus Colocalisation
82 Average # Connective within 200um radius of a Connective nucleus Colocalisation
83 Variation in # Connective within 200um radius of a Connective nucleus Colocalisation
84 Average # Neutrophil within 200um radius of an Eosinophil nucleus Colocalisation
85 Variation in # Neutrophil within 200um radius of an Eosinophil nucleus Colocalisation
86 Average # Epithelial within 200um radius of an Eosinophil nucleus Colocalisation
87 Variation in # Epithelial within 200um radius of an Eosinophil nucleus Colocalisation
88 Average # Lymphocyte within 200um radius of an Eosinophil nucleus Colocalisation
89 Variation in # Lymphocyte within 200um radius of an Eosinophil nucleus Colocalisation
90 Average # Plasma within 200um radius of an Eosinophil nucleus Colocalisation
91 Variation in # Plasma within 200um radius of an Eosinophil nucleus Colocalisation
92 Average # Eosinophil within 200um radius of an Eosinophil nucleus Colocalisation
93 Variation in # Eosinophil within 200um radius of an Eosinophil nucleus Colocalisation
94 Average # Connective within 200um radius of an Eosinophil nucleus Colocalisation
95 Variation in # Connective within 200um radius of an Eosinophil nucleus Colocalisation
96 Average # Neutrophil within 200um radius of an Epithelial nucleus Colocalisation
97 Variation in # Neutrophil within 200um radius of an Epithelial nucleus Colocalisation
98 Average # Epithelial within 200um radius of an Epithelial nucleus Colocalisation
99 Variation in # Epithelial within 200um radius of an Epithelial nucleus Colocalisation

100 Average # Lymphocyte within 200um radius of an Epithelial nucleus Colocalisation
101 Variation in # Lymphocyte within 200um radius of an Epithelial nucleus Colocalisation
102 Average # Plasma within 200um radius of an Epithelial nucleus Colocalisation
103 Variation in # Plasma within 200um radius of an Epithelial nucleus Colocalisation
104 Average # Eosinophil within 200um radius of an Epithelial nucleus Colocalisation
105 Variation in # Eosinophil within 200um radius of an Epithelial nucleus Colocalisation
106 Average # Connective within 200um radius of an Epithelial nucleus Colocalisation
107 Variation in # Connective within 200um radius of an Epithelial nucleus Colocalisation
108 Average # Neutrophil within 200um radius of a Lymphocyte nucleus Colocalisation
109 Variation in # Neutrophil within 200um radius of a Lymphocyte nucleus Colocalisation
110 Average # Epithelial within 200um radius of a Lymphocyte nucleus Colocalisation
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111 Variation in # Epithelial within 200um radius of a Lymphocyte nucleus Colocalisation
112 Average # Lymphocyte within 200um radius of a Lymphocyte nucleus Colocalisation
113 Variation in # Lymphocyte within 200um radius of a Lymphocyte nucleus Colocalisation
114 Average # Plasma within 200um radius of a Lymphocyte nucleus Colocalisation
115 Variation in # Plasma within 200um radius of a Lymphocyte nucleus Colocalisation
116 Average # Eosinophil within 200um radius of a Lymphocyte nucleus Colocalisation
117 Variation in # Eosinophil within 200um radius of a Lymphocyte nucleus Colocalisation
118 Average # Connective within 200um radius of a Lymphocyte nucleus Colocalisation
119 Variation in # Connective within 200um radius of a Lymphocyte nucleus Colocalisation
120 Average # Neutrophil within 200um radius of a Neutrophil nucleus Colocalisation
121 Variation in # Neutrophil within 200um radius of a Neutrophil nucleus Colocalisation
122 Average # Epithelial within 200um radius of a Neutrophil nucleus Colocalisation
123 Variation in # Epithelial within 200um radius of a Neutrophil nucleus Colocalisation
124 Average # Lymphocyte within 200um radius of a Neutrophil nucleus Colocalisation
125 Variation in # Lymphocyte within 200um radius of a Neutrophil nucleus Colocalisation
126 Average # Plasma within 200um radius of a Neutrophil nucleus Colocalisation
127 Variation in # Plasma within 200um radius of a Neutrophil nucleus Colocalisation
128 Average # Eosinophil within 200um radius of a Neutrophil nucleus Colocalisation
129 Variation in # Eosinophil within 200um radius of a Neutrophil nucleus Colocalisation
130 Average # Connective within 200um radius of a Neutrophil nucleus Colocalisation
131 Variation in # Connective within 200um radius of a Neutrophil nucleus Colocalisation
132 Average # Neutrophil within 200um radius of a Plasma nucleus Colocalisation
133 Variation in # Neutrophil within 200um radius of a Plasma nucleus Colocalisation
134 Average # Epithelial within 200um radius of a Plasma nucleus Colocalisation
135 Variation in # Epithelial within 200um radius of a Plasma nucleus Colocalisation
136 Average # Lymphocyte within 200um radius of a Plasma nucleus Colocalisation
137 Variation in # Lymphocyte within 200um radius of a Plasma nucleus Colocalisation
138 Average # Plasma within 200um radius of a Plasma nucleus Colocalisation
139 Variation in # Plasma within 200um radius of a Plasma nucleus Colocalisation
140 Average # Eosinophil within 200um radius of a Plasma nucleus Colocalisation
141 Variation in # Eosinophil within 200um radius of a Plasma nucleus Colocalisation
142 Average # Connective within 200um radius of a Plasma nucleus Colocalisation
143 Variation in # Connective within 200um radius of a Plasma nucleus Colocalisation
144 Average # Neutrophil within 400um radius of a Connective nucleus Colocalisation
145 Variation in # Neutrophil within 400um radius of a Connective nucleus Colocalisation
146 Average # Epithelial within 400um radius of a Connective nucleus Colocalisation
147 Variation in # Epithelial within 400um radius of a Connective nucleus Colocalisation
148 Average # Lymphocyte within 400um radius of a Connective nucleus Colocalisation
149 Variation in # Lymphocyte within 400um radius of a Connective nucleus Colocalisation
150 Average # Plasma within 400um radius of a Connective nucleus Colocalisation
151 Variation in # Plasma within 400um radius of a Connective nucleus Colocalisation
152 Average # Eosinophil within 400um radius of a Connective nucleus Colocalisation
153 Variation in # Eosinophil within 400um radius of a Connective nucleus Colocalisation
154 Average # Connective within 400um radius of a Connective nucleus Colocalisation
155 Variation in # Connective within 400um radius of a Connective nucleus Colocalisation
156 Average # Neutrophil within 400um radius of an Eosinophil nucleus Colocalisation
157 Variation in # Neutrophil within 400um radius of an Eosinophil nucleus Colocalisation
158 Average # Epithelial within 400um radius of an Eosinophil nucleus Colocalisation
159 Variation in # Epithelial within 400um radius of an Eosinophil nucleus Colocalisation
160 Average # Lymphocyte within 400um radius of an Eosinophil nucleus Colocalisation
161 Variation in # Lymphocyte within 400um radius of an Eosinophil nucleus Colocalisation
162 Average # Plasma within 400um radius of an Eosinophil nucleus Colocalisation
163 Variation in # Plasma within 400um radius of an Eosinophil nucleus Colocalisation
164 Average # Eosinophil within 400um radius of an Eosinophil nucleus Colocalisation
165 Variation in # Eosinophil within 400um radius of an Eosinophil nucleus Colocalisation
166 Average # Connective within 400um radius of an Eosinophil nucleus Colocalisation
167 Variation in # Connective within 400um radius of an Eosinophil nucleus Colocalisation
168 Average # Neutrophil within 400um radius of an Epithelial nucleus Colocalisation
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169 Variation in # Neutrophil within 400um radius of an Epithelial nucleus Colocalisation
170 Average # Epithelial within 400um radius of an Epithelial nucleus Colocalisation
171 Variation in # Epithelial within 400um radius of an Epithelial nucleus Colocalisation
172 Average # Lymphocyte within 400um radius of an Epithelial nucleus Colocalisation
173 Variation in # Lymphocyte within 400um radius of an Epithelial nucleus Colocalisation
174 Average # Plasma within 400um radius of an Epithelial nucleus Colocalisation
175 Variation in # Plasma within 400um radius of an Epithelial nucleus Colocalisation
176 Average # Eosinophil within 400um radius of an Epithelial nucleus Colocalisation
177 Variation in # Eosinophil within 400um radius of an Epithelial nucleus Colocalisation
178 Average # Connective within 400um radius of an Epithelial nucleus Colocalisation
179 Variation in # Connective within 400um radius of an Epithelial nucleus Colocalisation
180 Average # Neutrophil within 400um radius of a Lymphocyte nucleus Colocalisation
181 Variation in # Neutrophil within 400um radius of a Lymphocyte nucleus Colocalisation
182 Average # Epithelial within 400um radius of a Lymphocyte nucleus Colocalisation
183 Variation in # Epithelial within 400um radius of a Lymphocyte nucleus Colocalisation
184 Average # Lymphocyte within 400um radius of a Lymphocyte nucleus Colocalisation
185 Variation in # Lymphocyte within 400um radius of a Lymphocyte nucleus Colocalisation
186 Average # Plasma within 400um radius of a Lymphocyte nucleus Colocalisation
187 Variation in # Plasma within 400um radius of a Lymphocyte nucleus Colocalisation
188 Average # Eosinophil within 400um radius of a Lymphocyte nucleus Colocalisation
189 Variation in # Eosinophil within 400um radius of a Lymphocyte nucleus Colocalisation
190 Average # Connective within 400um radius of a Lymphocyte nucleus Colocalisation
191 Variation in # Connective within 400um radius of a Lymphocyte nucleus Colocalisation
192 Average # Neutrophil within 400um radius of a Neutrophil nucleus Colocalisation
193 Variation in # Neutrophil within 400um radius of a Neutrophil nucleus Colocalisation
194 Average # Epithelial within 400um radius of a Neutrophil nucleus Colocalisation
195 Variation in # Epithelial within 400um radius of a Neutrophil nucleus Colocalisation
196 Average # Lymphocyte within 400um radius of a Neutrophil nucleus Colocalisation
197 Variation in # Lymphocyte within 400um radius of a Neutrophil nucleus Colocalisation
198 Average # Plasma within 400um radius of a Neutrophil nucleus Colocalisation
199 Variation in # Plasma within 400um radius of a Neutrophil nucleus Colocalisation
200 Average # Eosinophil within 400um radius of a Neutrophil nucleus Colocalisation
201 Variation in # Eosinophil within 400um radius of a Neutrophil nucleus Colocalisation
202 Average # Connective within 400um radius of a Neutrophil nucleus Colocalisation
203 Variation in # Connective within 400um radius of a Neutrophil nucleus Colocalisation
204 Average # Neutrophil within 400um radius of a Plasma nucleus Colocalisation
205 Variation in # Neutrophil within 400um radius of a Plasma nucleus Colocalisation
206 Average # Epithelial within 400um radius of a Plasma nucleus Colocalisation
207 Variation in # Epithelial within 400um radius of a Plasma nucleus Colocalisation
208 Average # Lymphocyte within 400um radius of a Plasma nucleus Colocalisation
209 Variation in # Lymphocyte within 400um radius of a Plasma nucleus Colocalisation
210 Average # Plasma within 400um radius of a Plasma nucleus Colocalisation
211 Variation in # Plasma within 400um radius of a Plasma nucleus Colocalisation
212 Average # Eosinophil within 400um radius of a Plasma nucleus Colocalisation
213 Variation in # Eosinophil within 400um radius of a Plasma nucleus Colocalisation
214 Average # Connective within 400um radius of a Plasma nucleus Colocalisation
215 Variation in # Connective within 400um radius of a Plasma nucleus Colocalisation
216 Connective cellular composition Density
217 Eosinophil cellular composition Density
218 Epithelial cellular composition Density
219 Lymphocyte cellular composition Density
220 Neutrophil cellular composition Density
221 Plasma cellular composition Density
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