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Supplementary Figure 1 | Developmental zebrafish dataset (related to Fig. 1).

a-c) UMAP plot of the developmental zebrafish dataset, indicating hours post fertilization (hpf) (a), 

germ layer (b), and progenitor and mature cells at 5.3hpf and 12hpf of Ectoderm and 

Mesoderm/Endoderm germ layers (c). 

d) URD of the same dataset, indicating transcriptome-based inferred lineage splits. URD is the 

diffusion-based computational trajectory reconstruction method that was used in the original 

publication to analyze this dataset. Reproduced from original publication7.

Data from Farrell et al., 20187, GEO accession GSE106587.
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Supplementary Figure 2 | Training convergence of neural network models 
(related to Fig. 1).

a) Schematic of the DeepCellPredictor (DCP) model. 

b-c) Total loss over epochs for regular variational autoencoder (left) and DCP model (right) trained 

on mesoderm/endoderm (b) and ectoderm data (c). 

Data from Farrell et al., 20187, GEO accession GSE106587.
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Supplementary Figure 3 | Disentangling the effects of vector arithmetic and 
normalizing flows in DCP (related to Fig. 1).

To visualize the information transferred, we decoded latent space predictions after vector 

arithmetic and after normalizing flows and performed PCA for visualization. The predicted 

distribution of cells already starts resembling the target distribution after vector arithmetic due to 

our regularization approach, in contrast to the vector arithmetic performed in scGen (Fig. 1c).  The 

normalizing flows allow us to further approximate the target distribution.

Data from Farrell et al., 20187, GEO accession GSE106587.
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Supplementary Figure 4 | Comparison of prediction algorithms (vector 
arithmetic (VA), variational autoencoders with vector arithmetic (VAE+VA), and 
mmd-variational autoencoders with flows (mVAE+flows)) in the developing 
zebrafish (related to Fig. 2).

a-b) Correlation between real and predicted mean expression and expression variability. Error bars 

were determined by considering one standard deviation of uncertainty from the mean after 50 

repeats.

c-d) Zoom-in box plots highlighting variance between repeats.

Data from Farrell et al., 20187, GEO accession GSE106587. 
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Supplementary Figure 5 | Comparison of prediction algorithms (vector 
arithmetic (VA), variational autoencoders with vector arithmetic (VAE+VA), and 
mmd-variational autoencoders with flows (mVAE+flows)) in the developing 
zebrafish (related to Fig. 2).

a-b) Scatter plots of predicted mean gene expression and expression variability across all genes in 

log(x + 1) scale with prediction algorithms in the developing zebrafish. 

Data from Farrell et al., 20187, GEO accession GSE106587. 
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Supplementary Figure 6 | Normalizing flows increase predictive value at high 
temporal gain of gene variance (related to Fig. 2).

a) Comparison of predicted gene expression variance with and without normalizing flows. 

b) Comparison of predicted variance with and without normalizing flows to real variance. 

c) Change of expression variance in real and predicted data compared to the training data (in log 

scale). a-c): predicting to 12hpf ectoderm (left) and 12hp mesoderm/endoderm (right).

d) Change of expression variance in real and predicted data compared to the training data for 

selected genes with high variance gain (in log scale). 

e) UMAP of test and training data. 

f) Expression of genes selected in d) on the UMAP shown in e). 

Data from Farrell et al., 20187, GEO accession GSE106587.
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Supplementary Figure 7 | DCP generates realistic single-cell transcriptomes 
but does not accurately predict cell type clusters at 12 hpf (related to Fig. 2).

a-b) UMAP of integrated real and predicted data of zebrafish ectoderm and mesendoderm at 5.3 

hpf and 12 hpf. 

Data from Farrell et al., 20187, GEO accession GSE106587.
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Supplementary Figure 8 | DCP prediction of pooled and single cell types in 
zebrafish development (related to Fig. 2).

a-b) Mean gene expression and variability were estimated for single cell types and compared to 

pooled cell types. For this analysis we upsampled the number of cells for three ectodermal cell 

types (spinal cord, hindbrain, placode epibranchial) and three mesendodermal cell types (tailbud, 

endo.pharyngeal, heart primordium) to 500 cells. We trained and tested each set of paired 

ectoderm-mesendoderm cells in both pooled and single type dataset format.

Data from Farrell et al., 20187, GEO accession GSE106587.
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Supplementary Figure 9 | Mouse gastrulation dataset (related to Fig. 2).

a) UMAP representation of the mouse gastrulation dataset, indicating embryonic day (E). 

Reproduced from original publication after excluding blood and extraembryonic cells10.

b) Transcriptome-based tree of same dataset constructed using URD. Similar to our analysis of the 

zebrafish development dataset, we selected five ectodermal  and five mesodermal cell types for the 

analysis (forward and backward predictions).

c) Mutual information of log2 fold changes between ectoderm and mesoderm for mean and 

standard deviation of gene expression. 

d) Correlation between real and predicted data for mean gene expression. 

e) Correlation between real and predicted data for standard deviation of gene expression.

Data from Pijuan-Sala et al., 201910 (ArrayExpress accession E-MTAB-6967).





Supplementary Figure 10 | Mouse hematopoiesis dataset (related to Fig. 3).

a) t-SNE of dataset. 

b) URD of dataset showing branching lineage structure. 

c) Subset used in our study: monocytes and neutrophils in a continuum between progenitor and 

mature states. 

d) Representation of selected marker genes to validate that the URD analysis correctly separates 

mature and progenitor states of monocytes and neutrophils. Color scale represents gene expression 

in log scale. 

Data from Weinreb et al., 202018 (GEO accession GSE140802).



Supplementary Figure 11 | Uncertainty in DCP prediction of mature and 
progenitor cell states of monocyte and neutrophil cell lineages of mouse 
hematopiesis   (related to Fig. 3).

a-b) Box plots representing distribution of correlation values of predicted mean gene expression 

and expression variability with all genes and without dominant genes.

Data from Weinreb et al., 202018 (GEO accession GSE140802).
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Supplementary Figure 12 | DCP prediction of mature and progenitor cell states 
of monocyte and neutrophil cell lineages of mouse hematopoiesis (related to 
Fig. 3).

a-d) Scatter plots of predicted mean gene expression and expression variability across all genes, 

a,b) normalized scale, c,d) log(x + 1) scale.

R2 and R2
wdg

 are correlation coefficients calculated with all genes and without dominant genes, 

respectively. Dominant genes are colored black, other genes are colored blue. Fit lines are lineage 

regressions with zero intercept. Data from Weinreb et al., 202018 (GEO accession GSE140802).
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Supplementary Figure 13 | Successive predictions assess the information 
content of the latent space (related to Fig. 3).

a) To generate a double prediction, we first predict B2’ from A1, A3 and B1. We then generate a 

new prediction for A2, A2’’, from A1, B2 and B2’. 

b-c) Zebrafish (left) and mouse hematopoiesis (right) comparison of double predictions with ground 

truth on mean gene expression (b) and expression standard deviation (c). 

Data from Farrell et al., 20187, GEO accession GSE106587 and Weinreb et al., 202018 (GEO 

accession GSE140802).
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Supplementary Figure 14 | Hydra stem cell differentiation dataset (related to 
Fig. 3).

a) UMAP representation of ectodermal and endodermal cells from the Hydra dataset30.

b) Transcriptome-based tree of same dataset constructed using URD. 

c) Mutual information of log2 fold changes between ectoderm and endoderm for mean and 

standard deviation of gene expression. 

d) Correlation between real and predicted data for mean gene expression. 

e) Correlation between real and predicted data for standard deviation of gene expression. 

Data from Siebert et al., 201930 (GEO accession GSE121617).
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