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Figure S1: Response to SoC treatment of subcutaneous PDX models. The percentage of
tumor volumes of treated models versus control (T/C) was determined by dividing the mean
tumor volume in the treatment group through the mean volume in the control group at the final
day of treatment for Panc12536 (red), Panc12529 (green) and Panc10953 (blue). **p < 0.01,
***p < 0.001 (ANOVA)
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Figure S2: Ratio of human tumor cells and murine CAFs stained with a-SMA and
collagen | of orthotopic Panc12536 and Panc12529. Paraffin-embedded tissue sections
were stained for murine a-SMA to detect activated fibroblasts. Cryosections were stained for
murine collagen | to detect fibroblasts in general. Immunohistochemical staining was
quantified by using Image J. Five pictures of the same section and in total three replicates of
each s.c and orthotopic tumor (four animals per treatment group) were analyzed.
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Figure S3: The fold gene expression of murine SPARC and FAP in subcutaneous and
orthotopic PDX models treated with SoC drugs. Quantitative real-time PCR (TagMan™)
was used to analyze the gene expression of murine stroma markers SPARC and FAP of
Panc12536 (a), Panc12529 (b) and Panc10953 (c) subcutaneously transplanted (left row) and
orthotopically transplanted (right row) by using the 2-244CT method. Animals were treated with
gemcitabine, gemcitabine plus erlotinib, gemcitabine plus Abraxane® and 5-FU plus
oxaliplatin. Data from the gemcitabine group of orthotopic Panc10953 were not available (N/A)
as tumors were too small..
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Figure S4: Enrichment of gene sets associated with general cancer hallmarks. TPM-
transformed gene counts of 41 PDAC PDX models were analyzed for enriched gene sets of
cancer hallmarks (MsigDB) and resulting scores were hierarchically clustered according to
their similarity in deviation from the group median (z-score).
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Figure S5: Large scale genomic copy number alterations of the PDAC PDX cohort.
Transcriptomic data (raw gene counts, SNVs) for each model was used to estimate copy
number alterations in larger genomic regions. CNV data on chromosome arm level
were calculated with RNAseqCNV (Barinka, et al., Leukemia 36, 2022) [94] with
subsequent estimation of B-allele frequencies via CaSpER (Harmanci, et al., Nat
Comm 11, 2020) [95]. Resulting estimates in CNVs of larger chromosomal regions were
clustered according to their similarity.
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Figure S6: Relevant sequence variations found in DDR pathway related genes in the
PDAC PDX cohort by RNASeq.

Since gene set enrichment analysis of RNAseq data revealed a quite differentiating picture of
the expression of DNA damage repair (DDR) pathways in our pancreatic cancer models we
additionally selected 39 genes playing a major role in 6 DDR pathways for mutational analysis
[60, 61] (see corresponding table S2).



