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Single-cell time series analysis reveals the dynamics of
HSPC response to inflammation
Brigitte J Bouman1,2,*, Yasmin Demerdash3,4,5,*, Shubhankar Sood3,4,5, Florian Grünschläger4,5,6, Franziska Pilz3,4,
Abdul R Itani3,4,5 , Andrea Kuck3,4, Valérie Marot-Lassauzaie1,11 , Simon Haas1,4,7,8,9,10,11, Laleh Haghverdi1 ,
Marieke AG Essers3,4,12

Hematopoietic stem and progenitor cells (HSPCs) are known to
respond to acute inflammation; however, little is understood
about the dynamics and heterogeneity of these stress responses
in HSPCs. Here, we performed single-cell sequencing during the
sensing, response, and recovery phases of the inflammatory
response of HSPCs to treatment (a total of 10,046 cells from four
time points spanning the first 72 h of response) with the pro-
inflammatory cytokine IFNα to investigate the HSPCs’ dynamic
changes during acute inflammation. We developed the essential
novel computational approaches to process and analyze the
resulting single-cell time series dataset. This includes an unbi-
ased cell type annotation and abundance analysis post inflam-
mation, tools for identification of global and cell type-specific
responding genes, and a semi-supervised linear regression ap-
proach for response pseudotime reconstruction. We discovered a
variety of different gene responses of the HSPCs to the treatment.
Interestingly, we were able to associate a global reduced myeloid
differentiation program and a locally enhanced pyroptosis ac-
tivity with reduced myeloid progenitor and differentiated cells
after IFNα treatment. Altogether, the single-cell time series an-
alyses have allowed us to unbiasedly study the heterogeneous
and dynamic impact of IFNα on the HSPCs.
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Introduction

Inflammation is the body’s evolutionarily selected immune response
to infection or tissue damage. It not only results in the activation and
consumption of immune cells but is also accompanied by significant

alterations in the function and output of hematopoietic stem and
progenitor cells (HSPCs). Identifying how inflammatory stress regu-
lates the fate of HSPCs and affects their function has become the
subject of thorough scientific investigation in recent years (Caiado
et al, 2021). This started with our work and the work of others showing
that pro-inflammatory cytokines such as IFNs (Essers et al, 2009;
Baldridge et al, 2010), TNFα (Pronk et al, 2011) or IL-1 (Pietras et al,
2016) are able to induce proliferation of normally quiescent he-
matopoietic stem cells (HSCs). Further investigations on, for example,
the mechanisms involved in stress-induced HSC activation or the
response of progenitors have faced a significant challenge. In-
flammation does not only impact the proliferation of hematopoietic
cells, but it also induces extensive alterations in the expression of
cell–surface proteins that are used as markers to distinguish dif-
ferent HSPC populations, with a strong increase in Sca-1 (Kanayama
et al, 2020). This thus questions the reliability of using these surface
markers in flow cytometry to identify and distinguish the different
HSPC populations under inflammatory conditions. The recent de-
velopment in single-cell expression profiling has advanced our
understanding of HSPC heterogeneity (Watcham et al, 2019). Single-
cell transcriptional profiles of HSPCs from these studies can now be
used as reference datasets to identify individual HSPCs upon in-
flammation based on their transcriptional profiles, thus independent
of cell–surface marker expression.

Whereas previous single-cell studies have examined the re-
sponse of HSPCs to inflammation, these have been limited to single
time points, providing only a snapshot of the response (Giladi et al,
2018). In contrast, we aimed to investigate the temporal dynamics of
the HSPC compartment in response to inflammation, using a single-
cell time series that spans the first 72 h of the acute inflammatory
response in vivo. Analyzing such time series data is challenging
because of the added temporal dimension and the recovering
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nature of the studied process. In addition, there are currently
limited computational tools or pipelines available for processing,
analyzing, and visualizing single-cell response time series data. To
address this, we developed several novel computational ap-
proaches including unbiased cell type annotation for poststimu-
lation time points, characterization of the change in gene
expression in each cluster across time points, and a semi-
supervised (i.e., using the cells’ actual time labels as input) solu-
tion to recover the gene expression dynamics over response
pseudotime. The set of methods we used in these analyses is
bundled in a computational pipeline that helped us identify global
and cluster-specific gene expression dynamics associated with
different biological responses in HSPCs after IFNα treatment, with
HSCs being themain and strongest responders to IFNα. Importantly,
we also uncovered a reduction of myeloid progenitor cells asso-
ciated with changes in transcriptional programs in multiple clus-
ters. Thus, our single-cell time series analyses have helped us
better understand how different cell types, genes, and processes
change, whereas the HSPC compartment progresses through the
inflammatory response. In addition, our novel pipeline designed for
posttreatment single-cell time series data will be a useful tool for
future analysis of response time series datasets.

Results

A single-cell time series dataset capturing the dynamic
inflammatory response of HPSCs

Biological responses such as acute inflammation are dynamic
processes in which cells, tissues, and organisms undergo different
phases of sensing differences, responding to these changes, and
recovering upon successful response. Yet, often only single time
points of these responses are investigated. Quiescent HSCs respond
to inflammation by increased proliferation, which can be mimicked
by treating mice with single pro-inflammatory cytokines, such as
IFNα. To gain a better understanding of the dynamics of the HSCs
response to acute inflammation, we performed a time series ex-
periment to cover the sensing, response, and recovery phases of the
inflammatory response of HSCs to treatment with IFNα. Whereas at
3 h post-treatment, HSCs showed the first signs of sensing IFNα by
increasing expression of interferon-stimulated genes (ISGs) (Fig 1A),
only at 24 h posttreatment, HSCs reached a peak in increased
proliferation (Fig 1B) (Essers et al, 2009; Pietras et al, 2014). 72 h
posttreatment, ISG expression was back to baseline (Fig 1A) andmost
of the HSCs returned to quiescence (Fig 1B). Unfortunately, inflam-
mation does not only lead to increased proliferation of HSCs but is
also accompanied by increased expression of several cell surface
protein markers used to identify different cell types within the HSPC
compartment. The most well-known example is the increase in the
stem cell marker Sca-1 (Essers et al, 2009; Pietras et al, 2014;
Kanayama et al, 2020). Using conventional marker-based flow
cytometry including Sca-1, an increase in themore stem-like LSK (Lin−

Sca-1+ cKit+) cells and a decrease in the more committed LS−K (Lin−

Sca-1− cKit+) progenitors is observed in response to inflammation (Fig
1C–E). However, because of the increase in protein expression of Sca-

1 (Fig 1F and G) it is hard to predict whether these changes in fre-
quency reflect an actual increase/decrease in cell frequency or are
the result of contamination because of changes in protein expres-
sion of the cell markers in a given population or even both.

To overcome these limitations, we adopted a single-cell RNA
sequencing (RNA-seq) approach to investigate the dynamics and
heterogeneity of the stress response of stem and progenitor cells to
IFNα treatment. Bone marrow cells were collected from IFNα-
treated mice 3, 24, and 72 h after treatment. Cells from PBS-treated
mice were included as a control. LK (Lin− and cKit+) cells were sorted
to capture a wide spectrum of the HSPC transcriptional landscape.
Because HSCs are much less frequent than the other populations in
the LK gate, we enriched the sorted LK samples with LK CD150+ CD48−

CD34− cells at a fixed ratio to the number of LK cells to guarantee
sufficient numbers of stem cells for analysis (Fig S1A). Inter-animal
heterogeneity of the inflammatory stress response was addressed
by performing cell hashing, for which cells from each biological
replicate and time point were labeled with a unique hashtag an-
tibody (Fig 1H and the Materials and Methods section). The cells
from all four experimental time points (control, 3, 24, and 72 h) were
sequenced simultaneously. The resulting dataset was processed
using a computational pipeline that we designed specifically for
poststimulation single-cell time series (Fig 1I). First, the cells that
did not meet the quality control standards (e.g., doublets, dying
cells) were removed, resulting in a total count of 1,600–3,500 cells
per time point (see the Materials and Methods section). Next,
clustering of the cells identified 14 different clusters in the control
subset (Fig S1B). Using known marker genes for HSPC types, a
scoring for stemness and a comparison with a previously published
dataset (Nestorowa et al, 2016), eight different cell types could be
distinguished in the control subset (Figs 1J and K and S1C–E). To
compare the identified cell with to their equivalents in the treat-
ment subsets, the cell type labels were transferred from the control
subset to the other three treatment time points (Fig 1I and the
Materials and Methods section). To do this without the treatment
affecting cell type labels, data from all four time points were “batch-
corrected.” In the batch-corrected datasets, cells in posttreatment
timepoints were labeled based on their nearest neighbors in the
control dataset. In addition, the batch-corrected data were used to
produce a UMAP where cells are located based on their cell type
identity, rather than their experimental timepoint (see difference
between the two bottom UMAPs in Fig 1I). It is important to point out
that the batch-corrected data were only used for label transfer and
visualization purposes, but for all downstream analyses, the
original data were used. Marker gene expression confirmed the cell
type labels in the response time points (Fig S1F). Analysis of the
hashtags showed that the biological replicates in each time point
had comparable abundances of each cell type label (Fig S1G). In
addition, expression analysis of the IFN α/β receptor (Ifnar1 and
Ifnar2) confirmed that all clusters expressed the IFN α/β receptor
and thus were able to directly respond to IFNα (Fig S1H–K). As a first
measure of the inflammatory response, the expression of ISGs was
scored (Fig 1L andM). At 3 h, all clusters underwent a change in their
ISG expression, indicating that the whole HSPC compartment
sensed the IFNα treatment (Fig 1L). However, the data also indicate
great heterogeneity in the ISG response between and within
clusters with HSC clusters showing the biggest change (Fig 1M).
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Figure 1. A single-cell time series RNA-seq dataset to characterize the response of HSPCs to IFNα treatment.
(A) Gene expression levels of interferon-response genes in HSCs (Lin− Sca-1+ cKit+ CD150+ CD48− CD34−) from control (PBS) or IFNα-treated WT mice (50,000 IU/20g
mouse; 3, 6, and 72 h) were quantified using qPCR. Three biological replicates were used in the analysis. (B) Cell proliferation measured by 14 h BrdU (18 mg/kg) uptake of
HSCs (Lin− Sca-1+ cKit+ CD150+ CD48− CD34−) from control (PBS) or IFNα-treated WTmice (50,000 IU/20gmouse; 3, 24, and 72 h). n = 3 biological replicates. (C) Representative
FACS plots of Sca-1 and cKit expression on Lin− BM cells after control or 3, 24, and 72 h time course IFN⍺ treatment. (D, E) Cell counts of Lin− Sca-1+ cKit+ (LSK) (D) and Lin−

Sca-1− cKit+(LS−K) (E) cells in BM after control or 3, 24, and 72 h time course IFN-α treatment. n = 8 biological replicates. (F, G) quantification (F) and statistical analysis (G) of
Sca-1 median fluorescence intensity on Lin− cKit+ cells. (H) Scheme illustrating the experimental steps to acquire the single-cell time series RNA-sequencing dataset.
(I) Scheme of the computational pipeline used to process the time series dataset. (J) Two-dimensional UMAP embedding of cells from all time points, colored for the
different identified clusters as indicated in the legend. (K) Expression of marker genes in the different clusters in the control dataset. Erythroid (Ery.); myeloid (My.);
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Inflammation response is defined by global and cluster-specific
changes in gene expression

To gain a comprehensive understanding of all genes that
characterize the IFNα response, we next performed differential
gene expression analysis. Differentially expressed genes (DEGs)
were selected between the control subset and every treatment
time point individually to get a set of response genes from any
stage of the response (see the Materials and Methods section).
The analysis identified a total of 2,501 significant response
genes. Expression profiles of the response genes showed that
the expression of some genes changed globally (e.g., Cox7c),
whereas the expression of others was more specifically changed
in few or one cluster (e.g., Sec61g and Mnda) (Fig 2A). To in-
vestigate in which cluster(s) genes were changing the most, the
top 500 most significant response genes were scored for the
total expression change in each cluster (change score; see
the Materials and Methods section). After calculating the total
change for each cluster, the response genes were categorized
into 14 different groups using hierarchical clustering (Fig 2B),
confirming a wide variety of globally responding genes (groups
1–5), and cluster-specific responding genes (groups 6–14). To
exclude that the differences between clusters were a result of
completely different expression profiles, the similarity between
a cluster’s expression profile and the expression profile in the
whole dataset was calculated (Fig S2A). The results indicate that
most expression profiles follow similar patterns in all clusters.

Gene ontology (GO) enrichment analysis of the global re-
sponse gene signatures in groups 1–4 revealed an overrepre-
sentation of terms associated with translation and metabolism
(Figs 2C–E and S2B–D). This is in line with reports of HSPCs
undergoing massive changes in the metabolism under inflam-
matory stress (Karigane & Takubo, 2017). In addition, global
response genes from group 5 (Fig S2E) showed enrichment for
categories associated with immune response and response to
type-I IFN, further supporting the ISG expression data (Fig 1K),
indicating that all cells sense the changes in IFNα levels. The GO
enrichment terms for other gene groups are shown in Fig S2F–L.
Interestingly, expression changes in the HSC-enriched groups 12
and 14 were also associated with immune response and re-
sponse to type-I IFN (Figs 2E and S2K). However, these changes
were different from the changes in group 5, suggesting an HSC-
specific immune response, which is different from the immune
response in progenitors. HSC-enriched groups 12 and 14 also
included GO terms such as regulation of T cell activation and
antigen processing and presentation (Figs 2E and S2K), which
correspond to the newly identified role of HSCs as immuno-
modulators (Hernández-Malmierca et al, 2022), which would be
strengthened under inflammation. Besides global and HSC-
specific response genes related to immune response, change

score analysis also identified groups of response genes enriched
in committed progenitors related to progenitor-specific pro-
cesses. For example, erythroid and basophil/mast cell/eosinophil
progenitor-enriched groups 9 and 11 showed an overrepresen-
tation of processes related to erythrocyte differentiation terms
andmyeloid development (Fig S2H and J). Change scores in groups
8 and 10 were largest for myeloid progenitors and connected with
biological processes such as phagocytosis, myeloid leukocyte-
mediated immunity, and stem cell differentiation, which are
characteristic functions of this cell type (Figs 2D and S2I). Thus,
with the change score analysis both global and cluster-specific
signatures were identified. The analysis highlights that HSCs are
the major responders to inflammation in the HSPC compartment
and both global and HSC-specific inflammation signatures are
present, indicating heterogeneity in the inflammatory response
between the clusters.

The pseudotemporal ordering of cells enhances the resolution of
gene dynamics

The change score analysis gave an overview of all response genes
without taking into account the detailed dynamics of the response.
Therefore, in the next step, the expression dynamics of the re-
sponse genes were explored. When zooming into the expression of
individual genes in time, different expression patterns were ob-
served for genes within the same group. For example, the responses
of Aldh1b1 and F13a1 were both assigned to group 8. However, the
temporal expression dynamics differed between those genes;
whereas Aldh1b1 was up-regulated with a peak at 3 h and a full
recovery to original (control) expression levels at 24 h (Fig 2F), F13a1
expression steadily went down (Fig 2G). To improve the charac-
terization of the expression patterns, we wanted to leverage the
single-cell resolution of our dataset. Therefore, we aimed to
construct a pseudotime axis in the gene expression space to de-
scribe the inflammatory response. In datasets covering a devel-
opmental process or disease progression, the asynchrony of cells
can be leveraged to infer a pseudotemporal ordering of cells (using
methods such as diffusion pseudotime [Haghverdi et al, 2016],
Monocle [Qiu et al, 2017], etc.). These methods are generally based
on cell neighborhood relations, with the assumption that the
further apart (in Euclidean, diffusion space, etc.) two cell states are,
the longer the typical transition time between them, hence longer
pseudotime (Fig 3A). However, this assumption is violated for the
type of post-drug treatment time series data we have here, where
the largest transcriptional change is observed shortly after stim-
ulation but (presumably) diminishes as cells relax to a more
control-like state over a longer time (Fig 3A). In our datasets, cells
from different experimental time points generally appear either
completely intermingled or completely disconnected from one

basophils, mast cells and eosinophils, (Ba/MC/Eo.); universal (U.). (L, M) UMAP embeddings (L) and violin plot (M) of the interferon response gene score (see the
Materials and Methods section) in the different clusters in the four different time points. Statistical significance in (A, B, D, E, G) was determined by an ordinary one-way
ANOVA using Holm-Šı́dák’smultiple comparisons test. (A, D, E, G) At least three independent experiments were performed (data in (A) shows a representative experiment,
data in (D, E) are representative of two independent experiments, and data in (G) shows a representative experiment); *P ≤ 0.05, ***P ≤ 0.001, ****P < 0.0001. Statistical
significance in (L) was determined by a one-sided Wilcoxon rank-sum test between control and each treatment time point for each cluster.
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Figure 2. Inter-cluster analysis of response genes shows both global and cluster-specific responding genes.
(A) UMAP embeddings with the expression of response genes Cd74, Mnda, and Cox7c in control and 3, 24, and 72 h post IFN⍺ treatment. (B) Change score (see the
Materials and Methods section) in each cluster for the top 500 response genes, grouped using hierarchical clustering. UMAPs on the right show the expression change for
each cell cluster averaged over all response genes in the corresponding group. On the left are terms summarizing the functional annotation of the response genes
associated with the groups. (C, D, E) GO terms associated with groups 2 (C), 8 (D), and 14 (E). The length of each bar represents the statistical significance of each term.
(F, G) Mean expression of Aldh1b1 (F), and F13a1 (G) in each cluster over time.
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another when viewed over the first principal components (Fig S3A).
This renders the unsupervised, distance-based pseudotime
methods unsuitable for detecting the temporal order of response
dynamics. Thus, to get a higher temporal resolution of the response
progression from the four time points, we used a semi-supervised

(using the experimental time labels) approach that finds a pseu-
dotime axis that best correlates with the cells experimental time
labels. We find a transformation of the cells’ expression matrix that
reconstructs the experimental time labels plus an error term that
we try to minimize (Fig S3B and the Materials and Methods section).

Figure 3. Implementing response pseudotime to characterize the dynamics of gene expression in response to IFN⍺ treatment.
(A) Illustration of the difference between time series that capture continuously diverging processes (such as development), and recovering processes (such as acute
stimulation). (B) Three-dimensional embedding of the HSPC dataset with experimental timepoints (left) or pseudotemporal ordering (right) on the z-axis (x- and y-axis:
UMAP). (C) (smoothed) Expression of the top 500 response genes, with cells ordered by pseudotime and genes grouped by pattern using hierarchical clustering. A graphical
representation of the mean pattern in each pattern group is shown on the right. (D, E, F, G) GO terms associated with gene patterns 1 (D), 3 (E), 7 (F), and 14 (G). The length
of each bar represents the statistical significance of each term.
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In essence, this approach assigns a positive/negative weight to
each gene (depending on its correlation or anticorrelation_
across all cell types_ with the experimental time labels), in such
a way that the resulting weighted sum of the gene expression
profile of a cell approximates its experimental time labels up to
an error term, which we interpret as the asynchrony of treatment
response among different cells captured at the same experi-
mental time point. Using this approach implies that there are at
least a few genes in the data, a linear combination of which can
be used to differentiate the different time points. Interestingly,
the genes given highest positive weights by the model turn out to
be often among the global changing ones, and associated with
the immune response, whereas the genes assigned negative
weights display enrichment in processes such as translation (Fig
S3C–G). In Fig S3H, we see the non-smoothed counterpart, thus
sparser expression matrix of the same genes as that of Fig S3C,
which confirms the robustness of the inferred patterns. We
further confirm the agreement of actual time series dynamics
with that of the reconstructed pseudotime pattern for a few
show-case genes (Fig S4A–G). In addition, we introduce a sim-
ulation dataset on which we demonstrate the properties of the
inferred pseudotime order, and use it for evaluation of the
method’s performance (the Materials and Methods section and
Fig S5A–M).

Using the response pseudotemporal order of the cells, we
moved from the four time points’ discreet view of the data to a
continuous axis (Fig 3B) over which the different expression dy-
namic patterns that follow IFN⍺ treatment were explored. Re-
sponse genes were categorized into 16 patterns based on their
pseudotemporal dynamics using hierarchical clustering (Figs 3C
and S3H). Each pattern represents a cluster of genes with similar
expression dynamics after IFN⍺ injection, which can be roughly
subdivided in up-regulation (patterns 1–9 and 16) and down-
regulation (pattern 10–15) patterns. The GO enrichments for the
gene patterns are shown in Fig 3D–G. The patterns showed a broad
diversity in the speed of sensing, response, and recovery. Whereas
most patterns reach a steady-state plateau towards the end of the
pseudotime axis, a few (patterns 5, 8, and 12) do not, and imply an
ongoing trend of changes beyond the covered 72 h posttreatment
genes in patterns 6, 7, and 9 show quick sensing, response, and
recovery associated with immune, IFN, and viral processes (Fig 3F).
Other patterns resembled a similar fast increase but with slower
recovery, as seen for pattern 3, which is enriched for metabolic
processes (Fig 3E). In addition, the heatmap in Fig 3C showcases a
variety of gene dynamics that were different from the rapid re-
sponse and recovery IFN-response (patterns 6, 7, and 9), such as a
sustained up-regulation in pattern 1, which was associated
with translation and other biosynthetic processes (Fig 3D). In
contrast, several gene patterns encompassed genes that were
down-regulated (gene patterns 10–14). After the initial decrease in
expression, many of these genes failed to recover to initial ex-
pression levels. Most of these genes were linked to myeloid
development and differentiation (Fig 3G). This would suggest
alterations in myeloid differentiation upon the IFN⍺ treatment, an
observation described for many other pro-inflammatory cytokines
(Matatall et al, 2014; Pietras et al, 2016; Yamashita & Passegué,
2019) but IFN⍺.

Response pseudotime reveals a landscape of gene dynamics in
HSPCs after IFN⍺ treatment

To decipher the dynamic changes in the inflammatory response in
the different clusters, we combined the information on how
response genes changed their expression (Fig 3C) with whether
these changes were global or cluster-specific (Fig 2B). The result
condenses the plenitude of information in the complete single-cell
time series into a single visualization, which considerably eases the
search for (groups of) biologically relevant genes (Fig 4A).

The most commonly found patterns among the groups are
patterns 1, 2, 7, and 9, showing a fast up-regulation combined with
a partial (patterns 1 and 2) or full (patterns 7 and 9) recovery.
Genes from these patterns are mainly related to immune re-
sponses, highlighting that the sensing and response to IFN⍺ is fast
and present in all groups and clusters. The full recovery in the
most common patterns 7 and 9 revealed by our single-cell ex-
periment indicates that the general immune response does fully
recover within 72 h, a fact that bulk experiments had not captured
before.

Interestingly, other patterns of fast sensing and response fol-
lowed by sustained up-regulation (patterns 1 and 3) were enriched
in the groups with a global signature (groups 1, 2, 3, and 4). Several
of these genes were ribosomal (e.g., Rpl35 and Rps27; Fig 4B),
suggesting that biosynthetic activity increased in most HSPCs early
in the treatment and remained active even in the recovering phase,
when proliferation levels are back to homeostasis again (72 h; Fig
1B). In addition, several genes after the sustained up-regulation
pattern were metabolic. Oxidative phosphorylation (OXPHOS)
genes and mitochondrial enzymes (e.g., Atp5e and Cox7c; Fig 4C)
showed these patterns of prolonged up-regulation. On the other
hand, glycolytic genes Hk2 and Pgk1 showed a quick response and
recovery (Fig 4D). Thus, in contrast to previous reports suggesting a
binary (on/off) switch between glycolysis and OXPHOS (Suda et al,
2011), our data suggest that an initial up-regulation of glycolytic and
a sustained up-regulation of OXPHOS genes go hand in hand in
inflammation responding HSPCs.

In contrast to the heterogeneity in dynamics observed globally,
HSC-enriched groups (groups 5, 12, and 14) are mainly enriched with
gene patterns that increase very early after treatment and quickly
return to homeostatic levels (patterns 6, 7, and 9). Examples of such
genes are Irf7 and Irf9 in group 5 (Fig 4E) or Ifit2 and Sca-1 in groups
12 and 14 (Fig 4F and G). Thus, most of the HSC-enriched groups
follow rapid sensing, responding, and recovery dynamics, with most
of the gene changes preceding the peak in proliferation response in
these cells. In addition, most of the HSC-enriched dynamic changes
are within gene groups linked to IFN and immune response, again
highlighting the specific, fast HSC-specific immune response.

In contrast to HSC-specific groups, committed progenitor-
specific groups (8, 9, 10, and 11) were strongly enriched in genes
that exhibited persistent down-regulation (patterns 10, 11, 12, and
14). In the myeloid progenitor-specific groups 8 and 10, many of
these genes were associated with myeloid cell differentiation and
functional programs, e.g., Csf1r; Irf8 (Fig 4H and I), suggesting re-
duced myeloid differentiation in the myeloid progenitor clusters.

In summary, response pseudotime has shed light on the
heterogeneity in gene dynamics in the HSPC compartment
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during the induction of inflammation. Whereas global groups
encompass diversity in gene patterns, cluster-enriched gene
groups show far less variation and more specificity, with HSCs

being the fast responders and recovers, whereas committed
myeloid progenitors showing sustained down-regulation of
genes.

Figure 4. Response pseudotime reveals a landscape of gene dynamics in HSPCs following IFN⍺ treatment.
(A) Visual summary of the HSPC time series showing the breakdown of the response gene patterns in each change score group. The numbers in each cell represent the
absolute number of genes (e.g., five response genes in change score group 1 display pattern 1). The colors represent the number of genes scaled for each change score
group. (B, C, D, E) Examples of gene expression in pseudotime for translation (Rpl35, Rps27) (B), metabolism (Atp5e, Cox7c, Hk2, Pgk1) (C, D), and inflammation (Irf7, Irf9) (E)
specific genes. (F, G, H, I) Pseudotemporal expression of HSC-specific genes Ifit2 (F) and Sca-1 (G) and myeloid-specific genes Csf1r (H) and Irf8 (I) in the different
clusters.
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Single-cell abundance analysis shows myeloid depletion and HSC
enrichment after IFNα treatment

To investigate whether reduced transcriptional programs for myeloid
differentiation and function upon IFN⍺ treatment also impacted the
size of the progenitor compartment, we performed a differential
abundance analysis on the level of clusters and neighborhoods of
cells. We applied the Milo algorithm (Dann et al, 2022) which models
cellular states as overlapping neighborhoods on a KNN graph rather
than relying on clustering cells into discrete groups (see the Ma-
terials and Methods section). At a false discovery rate of 10%, we
could observe multiple neighborhoods that were differentially
abundant (Fig 5A). Neighborhoods received a cell-type label based
on the most predominant cluster in the neighborhood. Even though
most progenitor-enriched clusters showed a reduction at 3 h, most
returned to normal by 24 or 72 h, except for the most differentiated
myeloid progenitors (Myel. prog. #2 and Myel. prog. #3), which were
significantly reduced, even at 72 h posttreatment (Figs 5B and S6). The

abundance of HSCs increased in HSCs #2 posttreatment, most sig-
nificantly at 3 h (Figs 5B and S6). This can be explained by our strategy
of FACS enrichment of rare cell types (the Materials and Methods
section) and the fact that the total number of cells captured at the
3-h time point was smaller (the Materials and Methods section)
compared with the other time points, giving the enriched HSC
population a higher abundance in the 3-h sample. Our abundance
analysis in the HSPC compartment also showed that acute IFN⍺
treatment resulted in a sustained significant reduction in the most
committed myeloid progenitors over the whole time course of the
response. This is in contrast to the current notion in the field claiming
that the decreased frequency of LS−K (comprising myeloid, erythroid,
and megakaryocytic progenitors) and concurrent increase in LSKs
(comprising HSCs and LMPPs) upon IFNα stimulation (Fig 1B–E) is
mainly the result of contaminating myeloid progenitors that have
reacquired Sca-1 expression (and would fall into the LSK gate)
(Pietras et al, 2014; Kanayama et al, 2020). However, when analyzing
Sca-1 gene expression in our dataset, the absolute gene expression

Figure 5. Abundance analysis reveals a sustained reduction in myeloid progenitors after IFN⍺ treatment.
(A)Neighborhood graphs with the results fromMilo differential abundance testing between the control dataset and post IFNα treatment subsets (3, 24, and 72 h). Nodes
represent neighborhoods, coloured by their log fold change (red: more abundant, blue: less abundant, white: non-differentially abundant). Graph edges represent the
number of cells shared between two neighborhoods. (B) Beeswarm plot of the distribution of log fold changes in each cluster. Neighborhoods are assigned to clusters
based on the most commonly found cluster label in the neighborhood. (C, D) UMAP embeddings (C) and violin plot (D) of Sca-1 expression in the control, 3, 24, and 72 h
timepoints.
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of Sca-1 in the myeloid progenitors never exceeds the gene ex-
pression levels of the HSCs, even though there is a relative change in
each of the clusters (Fig 5C and D). Thus, this unbiased (i.e., transfer of
cell type labels from the control, based on the expression of several
genes) investigation of the different clusters and their abundances
identifies a true change in myeloid population size and not a shift in
populations because of marker change in response to inflammation.

Myeloid depletion coincides with changes in
transcriptional programs

The reduction in the abundance of the myeloid progenitors could
be caused by an increased egress of these cells from the bone
marrow, a loss of these cells because of cell death, or a reduction in
differentiation towards myeloid progenitors. Myeloid progenitors
were not observed in the blood at any time point after IFNα
treatment (Fig S7A). However, the number of myeloid progenitors in
the spleen decreased at 24 h (Fig S7A), in line with the reduction
observed in the bone marrow (Fig 5A and B). This suggests that the
reduced abundance of the myeloid progenitors in the bone marrow
is not because of increased egress into the blood or spleen. To
investigate whether reduced levels of myeloid progenitors in the
bone marrow were the result of increased cell death, gene patterns
of pro-survival genes (Bcl2, Birc2, and Birc5) were analyzed and found
to be decreased after IFNα treatment (Fig 6A). Yet, in Bax−/−Bak−/−

double-knockout mice, in which cells are unable to undergo apoptosis
because of the loss of the pro-apoptotic proteins Bax and Bak, a
similar reduction of myeloid progenitors was observed in the bone
marrow as in wild-typemice (Fig 6B), indicating that apoptosis was not
the reason for the reduction in myeloid progenitors. This does not
exclude the involvement of other forms of cell death, like necroptosis
and pyroptosis. Expression of necroptosis-related genes (Fig 6C) was
not significantly altered in any of the cell types; however, expression of
some pyroptosis-related genes (Fig 6D) such as Casp1 and Casp4 (Figs
6E and S7B–D), was increased in the myeloid progenitor subpopula-
tions. Together, these data suggest an early increase in pyroptosis rate
in the myeloid progenitors compared with the other cell types in
response to the treatment, possibly resulting in a reduced abundance
of these cells.

To investigate whether insufficient production of new cells might
also play a role in the sustained reduction in myeloid progenitors,
the expression of genes involved in myeloid lineage priming was
analyzed. By calculating a gene score for known myeloid tran-
scription factors that have been reported to impact both stem and
progenitor cells, a global down-regulation in the myeloid program
(including priming in HSCs and the more differentiated LMPPs) was
present in the early stages of the IFNα response (Fig 6F). In addition,
a reduction in cell cycle and purine nucleotide synthesis genes was
observed in myeloid progenitors, suggesting that both myeloid
differentiation in HSCs and LMPPs and cell production in myeloid
progenitors, could be affected (Fig S7E–H).

Along with the reduction in myeloid differentiation related
genes, neutrophil, and monocyte transcriptional signatures were
also down-regulated in myeloid progenitors over the pseudotime
axis (neutrophil: myel. prog. #1; monocyte: myel. prog. #3) (Fig 6G and
H), suggesting continuously reduced differentiation of myeloid
progenitors to mature myeloid cells. This was confirmed by a

gradual decrease in the number of neutrophils in the blood over
time (Fig 6I). The number of monocytes in the blood also decreased
in response to treatment, but already recovered at 72 h (Fig 6J).
Similar trends were observed in bone marrow and spleen; however,
no significant changes were detected (Fig S7I–L). Taken together,
these in vivo cell analyses and gene expression data indicate an
increase in pyroptosis signature combined with reduced myeloid
differentiation both at the stem cell level, and in committed pro-
genitors, accompanied with a reduction in the cell production
machinery in progenitors, resulting in reduced myeloid progenitors
in the bone marrow, and lower levels of mature myeloid cells in the
blood (Fig 6K).

Discussion

Analysis of single-cell RNA-seq time series is nontrivial because
of its high complexity, regarding the inclusion of multiple cell types,
a high number of genes, and the extra dimension of (pseudo-)
time. However, these types of experiments allow for marker-
independent, unbiased analysis of dynamic responses of hetero-
geneous cell populations, such as the response of the HSPC
compartment to inflammatory stress. To overcome the challenges
of analyzing such datasets, we designed a computational pipeline
that bundles application of our novel approaches and established
computational tools (e.g., Scanorama, DEseq 2, Milo) for processing
and analyzing single-cell RNA-seq time series. Our pipeline labels
clusters based on the expression of multiple (n = 3,326) genes after
correcting for treatment effects (Fig 6K), thus avoiding relabeling of
the cells undergoing inflammation as separate populations. This
will ensure the study of the same cell type over time. Hence, cell-
type identity is reliably retrieved, even though the conventional
marker genes might be subject to changes, as is the case during
inflammation.

Furthermore, we designed measures that make the temporal
dynamics more comprehensible and provide a (visual) entry point
into all the information in the data. Unsupervised methods that
are merely based on cell-to-cell proximities are unable to capture
the pseudotemporal order of the cells in our data, where the cell
states after relaxation become more similar (but not completely
indistinguishable) to the cell states before treatment. Therefore,
we implemented a semi-supervised method, that is, using the
experimental time label information, for inference of response
pseudotime. Using aminimal linear regressionmodel, our response
pseudotime reconstruction enabled capturing the fine-grained
expression changes and dynamical patterns beyond the four
discrete experimental time points (Fig 6K). Recently, alternative
semi-supervised methods such as psupertime (Macnair et al, 2022)
or approaches suitable for temporal patterns that a linear matrix
transformations cannot capture (e.g., periodic dynamics or other
cases of complete indistinguishability of expression between two
time points) are being investigated. Overall, our methods and
pipeline can be used by researchers studying a posttreatment
(response) process using a single-cell time series.

Although many studies have investigated the role of inflam-
mation on HSC function, changes in marker expression on these
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cells have made it challenging to examine the impact of inflam-
mation on the heterogeneity and molecular changes over time in
the HSPC compartment. Our unbiased cell type annotation ap-
proach and response pseudotime analysis allowed us to highlight
the dynamic nature of HSPCs’ response to IFNαwith global and cell-
type–specific distinct molecular patterns of gene expression and
biological processes (Fig 6K). Whereas global gene expression

groups and patterns were heterogeneous in dynamics and linked to
diverse processes such as metabolism, translation, and inflam-
mation, HSC-specific gene groups and patterns followed rapid
sensing, response, and recovery and were enriched for distinct
inflammation-related genes, suggesting global and stem cell-
specific responses to inflammation. Our response pseudotime
analysis shows that most gene expression patterns reach a steady-

Figure 6. Reduced myeloid differentiation bias and increased cell death signature partially explain myeloid population’s reduction upon inflammation.
(A) Pseudotemporal expression of pro-survival genes (Bcl2, Birc2, Birc5). (B) Flow cytometric analysis of BM frequency of myeloid progenitors (Lin− Sca-1− cKit+ CD34+

CD16/32+) after IFN⍺ treatment in WT and Bax−/−Bak−/− double knockout mice at 3, 24, and 72 h after IFN⍺ or control (PBS) treatment. n = 3 biological replicates. (C, D) Score
of necroptosis gene signature (C) and pyroptosis gene signature (D) in pooled HSCs, LMPPs, myeloid and erythroid progenitors plotted in pseudotime. (E) Pseudotemporal
expression of pyroptosis genes Casp1 in pooled HSCs, LMPPs, myeloid and erythroid progenitors. (F) Score of (murine) myeloid transcription factors in pooled HSCs,
LMPPs, myeloid and erythroid progenitors plotted in pseudotime. (G, H) Score of monocyte (G) and neutrophil (H) differentiation genes in all clusters plotted in
pseudotime. (I, J) Flow cytometric analysis of blood neutrophils (B220− CD4− CD8− Ly6G+ CD11b+) (I) and monocytes (B220− CD4− CD8− Ly6G− CD11b+ CD11c− F4/80−) (J)
normalized to the whole blood leukocyte count as measured by hemavet at 3, 24, and 72 h injection of IFNα or control (PBS) treatment in WT mice. n = 8 biological
replicates. (K) Graphical abstract of the article. (I, J) Statistical significance in (I, J) was determined by an ordinary one-way ANOVA using Holm–Šı́dák’s multiple
comparisons test and at least two independent experiments were performed; *P ≤ 0.05,**P ≤ 0.01, ***P ≤ 0.001, ****P < 0.0001. Data represent mean ± SEM.
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state plateau within 72 h (Fig 3C), implying that we are capturing
most dynamical expression changes of the system upon IFN-α
treatment. However, the few patterns that do not reach such a
plateau (pattern 5, 8, and 12) indicate that there are ongoing dy-
namical changes which extend beyond the time frame studied here
and potential development of further cascades of molecular
changes. Moreover, many gene patterns (patterns 1, 2, 3, 11, 12, etc.)
reached a plateau which is higher or lower than their before-
treatment value. This indicates irreversible changes that leave a
mark in the activated cells (Bogeska et al, 2022). Thus, our data show
that a single inflammation cytokine treatment may already include
irreversible components, something that needs further investiga-
tion by extending the time series analysis to later time points up to
1 wk or even longer.

Emergency myelopoiesis, that is, increased production of
myeloid cells, has been described in response to many pro-
inflammatory cytokines and infections (Manz & Boettcher, 2014).
However, thus far, we have not been able to identify any impact on
myeloid production or differentiation upon IFNα treatment be-
cause of extensive changes in stem cell-specific marker expres-
sion upon inflammation (Demerdash et al, 2021). Others claimed
that decreased frequency of myeloid progenitors and the si-
multaneous increase in LSKs upon in vitro treatment of HSPCs
with IFNα was mainly the result of myeloid progenitors reac-
quiring Sca-1 expression (Pietras et al, 2014; Kanayama et al, 2020).
With our unbiased investigation of the different clusters, defined
solely by their gene expression, we could now show that IFNα-
induced Sca-1 gene expression only occurred in immature HSCs
and LMPPs (Fig 5C and D). Even though CITEseq analysis of HSPCs
should be performed to confirm these results at the Sca-1 protein
level, our data do indicate that the LSK expansion observed in flow
cytometry is mainly because of the enrichment of the HSCs and
multipotent progenitors and not myeloid progenitor populations
shifting into the LSK gate.

Unlike other pro-inflammatory cytokines such as TNFα (Yamashita
& Passegué, 2019) and IL1β (Pietras et al, 2016), we did not find
characteristics typical of emergency myelopoiesis upon IFNα treat-
ment. Instead, abundance analysis showed a decrease in myeloid
progenitor numbers; gene expression related tomyeloid priming was
down-regulated in all clusters from immature HSCs to committed
myeloid progenitors; and myeloid-derived mature neutrophils were
continuously reduced in the blood (Fig 6K). In addition, response
pseudotime analysis revealed changes in the expression of genes
related to pyroptosis, suggesting that reduced levels of myeloid
progenitorsmight be the result of a combination of impairedmyeloid
differentiationwith increasedmyeloids cell death rate via pyroptosis.
Interestingly, upon infection with Mycobacterium tuberculosis, HSCs
are reprogrammed to limit their commitment towards myelopoiesis
via a type I IFN-signaling axis (Khan et al, 2020). In this same study,
they showed that IFNα induces RIPK3-mediated necroptosis in
myeloid progenitors. However, RIPK3 is a component of both
pyroptosis and necroptosis depending on other proteins partici-
pating in these pathways (Shlomovitz et al, 2017). Differentiation
and cell death pathways are not only regulated at the transcriptional
level. Thus posttranslational analysis and additional functional
approaches need to be performed to unravel further the programs
controlling the IFNα-induced reduction in the myeloid progenitors in

the bone marrow. Thus, our time course data suggest an unantici-
pated impact of IFNα on the differentiation, production, and death of
myeloid cells, highlighting the diverse impact of the same pro-
inflammatory agonist on related but distinct cell types at different
time points in the response. This link between IFNα and reduced
production and levels of myeloid cells such as neutrophils not only
helps us to better understand the impact of inflammation on the
whole hematopoietic compartment, but will also help to understand
better the role of IFNα in disease settings such as the autoimmune
disease systemic lupus erythematosus in which neutrophil dys-
function plays an integral role in disease pathogenesis (Kaplan, 2011)
and IFNα is associated with adverse outcomes (Rönnblom &
Leonard, 2019).

Altogether, our pipeline designed for posttreatment single-cell
time series data has shed light on the ways in which different cell
types, genes, and processes in the HSPC compartment are mod-
ulated during the different phases of acute, IFNα-induced, in-
flammation response.

Limitations of the study

By creating this resource, we have established a foundation for
exploring the functional properties of the molecular signatures of
HSPCs under inflammatory stress. Whereas correlations inferred
from expression data offer hypotheses for regulatory mechanisms,
experimental testing is crucial for confirming these hypotheses.
However, inflammation-induced marker changes on HSPCs are still
a limitation to perform cell cluster-specific functional follow-up
studies. Recently developed CITEseq analysis would allow us to
identify better markers to distinguish the different stem cell and
progenitor populations under inflammation to allow better isola-
tion of these populations for future functional analysis. Moreover,
additional layers of regulation at the chromatin and protein level
impact and control cell behavior, which may manifest as unap-
preciated heterogeneity and dynamic properties. Integrating our
time series data with methylation, chromatin accessibility or
proteome analysis will achieve further comprehensive modeling of
the regulatory and signaling networks coordinating the stress
response.

We acknowledge the possibility of changes in cell abundance as
a result of our rare HSC population enrichment. However, we
emphasize that the significant decrease in myeloid progenitors
persisted consistently across all time points, indicating a true bi-
ological change rather than an artifact (Figs 5A and B and S6).
Whereas we recognize the potential influence of our enrichment for
HSCs on cell abundance of other populations, the abundance
reduction was specific to the myeloid population rather than a
uniform reduction across all populations (as would be expected in
compensation for HSC numbers). We further validated the reduc-
tion of myeloid progenitors in both blood and spleen (Fig S7); this
further confirms our HSPC single-cell abundance results.

Our combined abundance and response pseudotime analysis
suggest a link between myeloid progenitor reduction in the bone
marrow and the HSCs reduced myeloid differentiation bias and a
potential enhancement of cell death mechanisms in the myeloid
progenitors, relative to the other HSPC populations.
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Validation of these findings at the transcriptional level is
however not straightforward because of the multitude of post-
transcriptional regulatory mechanisms involved until a specific
biological function (e.g., enhanced cell death) is manifested in the
system. We also sought to check if the post-inflammation decline in
differentiation bias towards myeloid progenitors could be con-
firmed by a comparison of RNA-velocity of the cells at the different
time points. We estimated RNA-velocities of the cells in the control
data set (Marot-Lassauzaie et al, 2022). However, meaningful
comparison with the cell velocities of later time point datasets was
hindered by the yet insufficient robustness of state-of-the-art
velocity parameter inference and the poor quantification of
unspliced versus spliced mRNA, especially when using the 39-end
gene expression short reads captured by the 10X sequencing
platform (Marot-Lassauzaie et al, 2022). Emergence of more reliable
approaches for estimating cell velocities could be a valuable asset
as an orthogonal dynamical analysis approach to time series and
pseudotime analysis, before we (or other researchers) turn to
perform further costly and challenging functional and experi-
mental validations in the future.

Materials and Methods

Mouse models

All animal experiments were approved by the local Animal Care and
Use Committees of the German Regierungspräsidium Karlsruhe für
Tierschutz und Arzneimittelüberwachung. Mice were kept under
specific pathogen-free conditions in ventilated cages (ICV) in the
animal facility of the German Cancer Research Center (DKFZ). Mice
used for experiments were between 10–20 wk old at the beginning
of the respective experiments. SclCreERT bax−/−bak−/−mice were on
a C57BI/6 background (Takeuchi et al, 2005), and treated for 5 d with
2 mg/d tamoxifen. IFNα treatment was started 4 wk post tamoxifen
treatment. C57Bl/6 (WT) mice were bred at the DKFZ animal facility
or bought from JANIVER lab. Mice were euthanized by cervical
dislocation according to German guidelines.

IFNα treatment of mice

Mice were injected subcutaneously with 50,000 international units
(IU) of recombinant mouse IFNα per 20g mouse (Milteny Biotech).
Recombinant mouse IFNαwas diluted in PBS and control mice were
injected with 100 μl PBS.

Isolation of BM, spleen, and blood for flow cytometry analysis

Blood was collected from the vena facialis by sub-mandibular
bleeding into EDTA-coated collection tubes. Blood was either an-
alyzed automatically with a Hemavet cell counter (Drew Scientific)
or stained for flow cytometry after initial RBC lysis by incubation
with ACK lysis buffer for 20 min. Cells were stained for Ter119, CD4,
CD8, CD11b, CD11c, Ly6G, B220, F4/80. BM cells were isolated from the
femur, tibia, hip bone, and spine by bone-crushing. Splenocytes
single-cell suspension was obtained by mashing the spleen

through a 40 μm EASYstrainer (greiner bio-one). After ACK, lysis BM
cells and splenocytes were stained using antibodies for CD117 (cKit),
Sca-1, CD150, CD48, CD34, CD16/32, and lineage antibodies (CD4, CD8,
CD11b, Gr-1, B220, and Ter119). For the BrdU incorporation assay, BrdU
(18 mg/kg; Sigma-Aldrich) was administered i.p. for 14 h before har-
vesting the BM. The BD Pharmingen BrdU Flow Kit protocol was used to
stain for BrdU. For flow cytometry analysis the LSR Fortessa or LSRII
were used (BD Biosciences). Flow data were analyzed using BD FACS
DIVA v8.0.1 and Flowjo (v10).

FACS sorting

For FACS sorting of single cells, BM cells were isolated and RBC lysed
as described above. This was followed by lineage depletion using a
lineage antibody cocktail against CD4, CD8, CD11b, B220, Gr-1, and
Ter119 and incubation with Dynabeads Magnetic Beads (Invitrogen).
Lineage-depleted BM cells were stained with Zombie Yellow via-
bility dye (BioLegend) followed by incubation with the following
antibodies: CD117, Sca1, CD150, CD48, CD34, and lineage antibodies
(B220, CD4, CD8, Ter119, Ly6G, CD11b, CD11c, and F4/80) together with
one of the hash antibodies (TotalSeq-A0301 anti-mouse Hashtag 1
Antibody, TotalSeq-A0302 anti-mouse Hashtag 2 Antibody, TotalSeq-
A0303 anti-mouse Hashtag 3 Antibody, TotalSeq-A0304 anti-mouse
Hashtag 4 Antibody) (TotalseqA antibodies; BioLegend). The four bi-
ological replicates of each time point were stained with one of the four
unique hash antibodies. Cells were sorted using a FACSAria Fusion or
FACSAria II equipped with a 100 μm nozzle (BD Biosciences).

Single-cell RNA library preparation and sequencing

HSPC single-cell RNA-seq was performed using the 10X Genomics
platform. The Chromium Next GEM single cell 39 reagent kits v3.1
were implemented to prepare the libraries, following the official
instruction manual (https://www.10xgenomics.com/support/
single-cell-gene-expression/documentation/steps/library-prep/
chromium-single-cell-3-reagent-kits-user-guide-v-3-1-chemistry).
Briefly, 10,000 Lin− cKit+ cells were sorted and enriched for HSCs by
sorting additional 3,000–4,000 Lin− cKit+ CD150+ CD48− CD34− cells.
Cells were super-loaded according to the manufacturer’s in-
structions up until the cDNA amplification step. 1 μl/sample of HTO
primers was spiked into the cDNA amplification PCR, and cDNA was
amplified according to the 10x Single Cell 39 v3.1 protocol aiming for
a targeted cell recovery of 500–6,000 cells. After PCR, cDNA cleanup
was performed by using SPRI to separate the HTO-derived cDNAs (in
the supernatant) from the mRNA-derived cDNAs (retained on
beads). The cDNA fraction was processed according to the man-
ufacturer’s protocol to generate the transcriptome library. The
quality of the obtained cDNA library upon adapter ligation and
sample index PCR was assessed on an Agilent Bioanalyzer High
sensitivity chip. Library sequencing was performed on the Novaseq
6000 Illumina sequencing platform.

Filtering longitudinal single-cell RNAseq dataset

The cellranger pipeline (version 3.1.0) was used to align all reads to
the mm10 genome and count the coverage of each gene in each
cell. Based on the hashtag barcodes, cells were assigned to their
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corresponding time point (control, 3, 24, or 72 h) and batch (four
batches per time point). Cells withmultiple barcodes (multiplets) or
missing barcodes (negatives) were removed from the dataset. In the
resulting count matrix (cells × genes), cells with a high amount of
mitochondrial genes (>5%) or a low amount of unique genes (<700)
were filtered out. After the filtering steps, the following number of
cells was present in each of the respective time points: con-
trol—2,474, 3 h—1,661, 24 h—3,462, 72 h—2,449 (10,046 cells in total).

Clustering and cell type annotation

The 500 most highly variable genes (HVGs) were identified in the
control subset using analytic Pearson residuals (Lause et al, 2021).
The control subset was subsetted for the 500 HVGs, and the counts
were L2 normalized. Next, a neighborhood graphwas computed using
10 out of 50 principal components and the 15 nearest neighbors. The
Leiden algorithm (resolution = 0.8) identified 14 distinct clusters in
the control subset (Traag et al, 2019). Each cluster was appointed to a
cell type based on (1) DEGs between the cluster of interest and all
other clusters, (2) the expression profiles of the HVGs, (3) known
marker genes, and (4) correlation with cell types in a previously
published dataset of the HSPCs (Nestorowa et al, 2016).

Label transfer and UMAP representation

We identified the top 2,000 HVGs in each subset and subsetted the
complete dataset with the combined list of HVGs. Afterward, the
dataset was L2 normalized, and the different subsets were inte-
grated using Scanorama (Hie et al, 2019). All 100 Scanorama-
reduced dimensions were used to calculate a neighborhood
graph (nearest neighbors = 15). A two-dimensional UMAP repre-
sentation was computed using the neighborhood graph. To transfer
the cell-type labels from the control subset to the response subsets
(3, 24, and 72 h), cells in the response subsets would adopt the cell
type label that wasmost common among their 15 nearest neighbors
(Euclidean distance) in the control subset. The integrated data were
only used for label transfer and visualization purposes. For other
downstream analyses, we use the filtered-only dataset. In this
dataset, we removed the Ba/MC/eos. cells and monocytes because
of the small number of cells assigned to those cell types (10 and 52,
respectively).

Calculating gene set scores

The filtered dataset was L2 normalized and scaled to unit variance
and zero mean. The ISG score was calculated by subtracting the
average expression of a random set of reference genes from the
average expression of about 400 known ISGs (Scanpy function
score_genes). Similarly, the stemness (Giladi et al, 2018), nec-
roptosis (GO:0070266), pyroptosis (GO:0070269), myeloid TF (Kwok
et al, 2020), monocyte and neutrophil differentiation, cell cycle
(Giladi et al, 2018), and purine nucleotide synthesis (Vogel
et al, 2019) score were calculated. Genes for each signature are
available as a .csv file. Necroptosis and pyroptosis gene sets
were retrieved from the Mouse Genome Database, Mouse Ge-
nome Informatics, The Jackson Laboratory. World Wide Web (URL:

http://www.informatics.jax.org). (The data were retrieved in the
year 2022).

Differential abundance analysis

We used the R package Milo to perform an abundance analysis on
the L2 normalized, filtered dataset (Dann et al, 2022). A neighbor-
hood graph was built using 30 out of 100 of the Scanorama-reduced
dimensions (see Label transfer and UMAP representation) and 30
nearest neighbors. Afterward, we followed the steps described in
the accompanying tutorial (Milo example on mouse gastrulation
dataset) for each response subset (3, 24, and 72). In each analysis,
the control subset served as the reference, to which the response
subset would be compared.

Identifying response genes

We used the edgeR-LRT method in the Libra R package to find the
DEGs between the control and any of the response subsets, in each
cluster. We considered only DEGs with an adjusted P-value higher
than 0.05 and a log-fold change higher than 1 in at least one cluster.
For the downstream analyses of the response genes, we consider
only the 500 DEGswith the highest significance. In case a DEG is found
in more than one cluster and/or time point, we take only the lowest
P-value into consideration.

Change score

We L2 normalized the filtered dataset per cell. For each response
gene (i) we took the mean expression (μ) in each cluster (j) per time
point (t). The expression change was calculated as the absolutes
sum of the derivative of the mean expression across all time points
(here m = 3 for control-3, 3–24, 24–72 h). Thus the change score (ci,j)
per cluster for each response gene:

ci;j =�m

t = 1
��μi;j;t+1 −μi;j;t

�� (1)

The result is amatrix with change scores per cluster for each of the
response genes. We applied hierarchical clustering and grouped
the response genes into 14 groups by setting a threshold at the
cophenetic distance of 3 (Scipy function cluster.hierarchy.linkage and
cluster.hierarchy.fcluster).

Similarity score

We define the similarity score between the cluster-specific ex-
pression profiles of gene i and the expression profile of the same
gene in the complete dataset in two steps. First, both the expression
of the cluster and the complete dataset were scaled between 0 and
1 by min–max normalization (with n = 4 indicating the number of
time points in the time series).

x− i;j;t =
μi;j;t −mint μi;j;t

maxt μi;j;t −mint μi;j;t
(2)

Note that maxt μi,j,t and mint μi,j,t indicate the max/min of the
mean expression for gene i cluster j among all time points t. Second,
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we calculate a dissimilarity score between the cluster and the
whole data set for each response gene by subtracting the cluster-
specific expression changes from the expression changes in the
complete dataset. Third, the magnitude of these differences were
summed and normalized by the number of time points. Finally, we
turn the dissimilarity into a similarity score (si,j) by subtracting it
from 1 such that 1 presents complete similarity to the average
behavior of all cells in the dataset.

si;j = 1 −
�n

t = 1
��x− i;j=all;t − x− i;j;t

��

n (3)

The result is a matrix with similarity scores per cluster for each of
the response genes.

Pseudotemporal ordering of cells during response

We opt to find a pseudotime axis that correlates with the actual
arrow of time. Thus, we look for a transformation (W of size [G,1]) of
the expression data from all time points that reconstructs the
experimental time point of each cell with minimal error (ε):

X pW = T + ε (4)

Here, X (of size [N,G]) is the filtered count matrix after per-cell L2
normalization, subsetting for all response genes and per-gene
standardization (i.e., setting the mean to zero and variance to 1).
The per cell L2 normalization is part of our single-cell data pre-
processing routine (also seeHaghverdi et al [2018]) on our preference
of L2 normalization rather than size factor L1 normalization). The per-
gene standardization is for correct calculation of the XT Xmatrix (also
necessary for other methods such as principal component analysis),
such that the different features become comparable; for example,
genes with overall high expression do not artificially seem highly
correlated to other genes. Thus, by data standardization, we ensure
mean- and variance-independent calculation of the weights in the W
matrix. T is a vector (of size [N, 1]) with an (experimental) time as-
signment for each cell, created by taking the experimental time
points (control, 3, 24, and 72 h) and converting those to 0, 1, 2, and 3
values respectively (as an alternative to such equal importance
separation of the time points, one could consider using the actual
time values on a log-scale). By this choice, we imply equal interest in
separating each time point from the subsequent time point, whereas
e.g., using the actual time values (0, 3, 24, and 72) wouldmean a larger
emphasis on finding separation between the last two time points
with the largest distance (i.e., 72−24 = 48).

In this work we have used the regression model (without an
intercept) on standardized expression values and time scale choice
as described above. Nevertheless, one could also consider other
equally well justifiable variations, for example, a regression model
including an intercept term. Note that the notion of pseudotime,
which is generally based on a transformation of cell states’ profiles
(e.g., gene expression), provides only a flexible estimation of the
dynamical progression order of the cells and is not an absolute or
unique quantity (e.g., when using slightly different transformations)
as discussed in supplementary note 6 of Haghverdi et al (2016), and

also demonstrated on simulation data (Fig S5J–M). The least
squares analytical solution forW (which minimizes εT p ε) is given by:

W =
�
XTX

�−1
p XT p T (5)

We used the expression matrix X with the size of 10,046 cells and
2,501 genes and the cells’ corresponding time labels to solve the
above linear regression problem. We note that, to avoid over-
parametrization and to ensure the identifiability of the solution,
the number of cells has to be larger than the number of genes. After
W has been retrieved, a pseudotime coordinate can be calculated
for each cell by the following:

PT = X p W (6)

Where PT (of size [N, 1]) is the vector with the pseudotime coor-
dinate for each cell. For further downstream analyses, the cells
were ordered based on their pseudotemporal assignment. Note,
the genes which the model forms a linear combining of, do not
necessarily need to be linear or monotonic themselves. In fact, on
simulation data, we show the model is able to reconstruct the
pseudotime, (up to an acceptable correlation with the true time
orders), even in a case where all genes are non-monotonic
(complex) in the data (Fig S5I).

To cluster the response genes based on their pseudotemporal
expression pattern, we smoothed the expression of these genes by
taking the mean expression per 100 cells over the pseudotime axis.
The expression values were scaled between 0 and 1 by min–max
normalization. The 500 response genes were then clustered into 16
pseudotemporal expression patterns, using hierarchical clustering
(threshold at cophenetic distance of 5.2).

Simulation of time series

For the discrete time simulation, we sampled 1,000 cells from
four different discrete timepoints: 0, 5, 10, and 20 (250 cells per
timepoint). To model the asynchronous progression of time, we
added a Gaussian noise (SD 1.5) to the discrete sampling time of
each cell, giving us each cell’s hidden pseudotime t. For the con-
tinuous time simulation, we uniformly sampled cells pseudotime t
between 0 and 20. The expression dynamics of 20 different genes
were then simulated using either a single sigmoid function:
Sðtjα;βÞ = 1

1 + eðð−t −αÞ=βÞ with randomly sampled offset α and width β
(monotonic genes) or a sigmoid function deactivated at a switching
time point tswitch : S(t|α,β) - S(t - tswitch|α,β) (complex genes). The
genes are then min–max normalized and Gaussian noise SD of 0.05
is added to each cell’s expression to simulate biological variance
(see also Fig S5).

Gene expression over pseudotime

Expression profiles of individual genes in response pseudotime
(such as Fig 4B) were derived using a combination of bin smoothing
and bootstrapping. To find the expression profile in the complete
dataset, bin smoothing with a 600-cell window size was performed
on a sample of 50% of the cells in the dataset. This was repeated 20
times to find the mean expression, which defines the expression
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profile. The 95% confidence intervals were calculated by multi-
plying the standard error with 1.96 and subtracting or adding to the
mean. For the cluster-specific expression profiles of individual
genes, a 50-cell window size was chosen instead, because of the
smaller number of cells in each cluster.

Gene score in pseudotime

The gene set score profile in response pseudotime was calculated
using a combination of locally weighted least squares regression
(LOESS) smoothing and bootstrapping. For each cluster, LOESS
smoothing with a first-order regression model was applied to 50%
of the cells. This was repeated 30 times. The score profile was
derived by taking themean and 1.96 times the standard error for the
95% confidence intervals.

Data Availability

The single-cell RNA-seq data were deposited in the Gene Ex-
pression Omnibus (GEO) under accession code GSE226824.

Code availability

All scripts used in this study are available on Github: https://
github.com/bjbouman/time_series_analysis.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202302309.
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