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Functional and evolutionary significance of 
unknown genes from uncultivated taxa

Álvaro Rodríguez del Río1, Joaquín Giner-Lamia1,2,9, Carlos P. Cantalapiedra1, Jorge Botas1, 
Ziqi Deng1, Ana Hernández-Plaza1, Martí Munar-Palmer1, Saray Santamaría-Hernando1, 
José J. Rodríguez-Herva1,2, Hans-Joachim Ruscheweyh3, Lucas Paoli3, Thomas S. B. Schmidt4, 
Shinichi Sunagawa3, Peer Bork4,5,6, Emilia López-Solanilla1,2, Luis Pedro Coelho7,8,10 & 
Jaime Huerta-Cepas1 ✉

Many of the Earth’s microbes remain uncultured and understudied, limiting our 
understanding of the functional and evolutionary aspects of their genetic material, 
which remain largely overlooked in most metagenomic studies1. Here we analysed 
149,842 environmental genomes from multiple habitats2–6 and compiled a curated 
catalogue of 404,085 functionally and evolutionarily significant novel (FESNov) gene 
families exclusive to uncultivated prokaryotic taxa. All FESNov families span multiple 
species, exhibit strong signals of purifying selection and qualify as new orthologous 
groups, thus nearly tripling the number of bacterial and archaeal gene families 
described to date. The FESNov catalogue is enriched in clade-specific traits, including 
1,034 novel families that can distinguish entire uncultivated phyla, classes and  
orders, probably representing synapomorphies that facilitated their evolutionary 
divergence. Using genomic context analysis and structural alignments we predicted 
functional associations for 32.4% of FESNov families, including 4,349 high-confidence 
associations with important biological processes. These predictions provide a 
valuable hypothesis-driven framework that we used for experimental validatation  
of a new gene family involved in cell motility and a novel set of antimicrobial peptides. 
We also demonstrate that the relative abundance profiles of novel families can 
discriminate between environments and clinical conditions, leading to the discovery 
of potentially new biomarkers associated with colorectal cancer. We expect this work 
to enhance future metagenomics studies and expand our knowledge of the genetic 
repertory of uncultivated organisms.

Over the past few decades, metagenomics and metabarcoding studies 
have revolutionized microbial genomics, not only discovering numer-
ous new bacterial and archaeal lineages7,8 but also unveiling their unique 
genetic repertoire9–11. The fraction of environmental genes lacking 
homologues in cultured organisms, hereafter referred to as ‘unknown’, 
varies from approximately 25% (ref. 6) to nearly 50% (ref. 3) depend-
ing on the methodology and specific environment. This translates to 
millions of novel genes whose functional aspects and ecological and 
evolutionary significance remain unknown.

This uncharted microbial sequence space can harbour new genes of 
great biological significance10,12,13, including those that may have facili-
tated the emergence and diversification of major lineages14 and func-
tional innovations such as novel enzymes15, antibiotics16, versatile small 

peptides17 and metabolic pathways4. However, the systematic curation 
and analysis of unknown genes at a large scale remains challenging. The 
genetic pool of uncultivated taxa is currently unrepresented in refer-
ence databases of gene functions, protein domains and orthologous 
groups, limiting our analyses and intercommunity comparisons to 
known genes derived from cultured organisms.

To date, this shortcoming has primarily been due to technical con-
straints that have been overcome only recently. First, the task of clus-
tering genes into families and conducting homology searches on a 
metagenomics scale, a crucial initial step for any comparative analy-
sis, has been rendered achievable only by recent breakthroughs18,19.  
Second, many comparative genomic analyses depend on the availability 
of complete genomic assemblies and have become feasible only with 
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the recent publication of hundreds of thousands of environmental 
genomes2,3,6.

Several studies have leveraged these advances to successfully harness 
the concept of gene families for the identification and quantification 
of genetic novelty on a broad metagenomic scale3,6,17. This has enabled 
the annotation of distant homologues20, the functional prediction of 
unknown genes based on coexpression patterns21 and the identification 
of lineage-specific novel gene families defining entire new lineages22. 
However, recent work has shown that most genes within the global 
microbiome can be clustered into a limited number of gene families 
primarily composed of neutral (or nearly neutral) gene variants2 (that 
is, lacking strong positive selection pressures). Additionally, various 
studies have indicated that both known and unknown gene families are 
largely dominated by species-specific sequence clusters (orphans) of 
narrow ecological scope2,20.

In this study we systematically analysed the genetic repertoire of 
uncultured bacteria and archaea using a global-scale comparative 
genomics approach, aiming to identify novel gene families with clear 
signs of biological significance.

A curated catalogue of novel gene families
Employing a comparative genomics approach, we analysed a large 
multihabitat dataset comprising 149,842 medium- and high-quality 
metagenome-assembled genomes (MAGs) and single-amplified 
genomes (SAGs), alongside 19,642 reference genomes, from isolated 
and fully sequenced species. This set includes nearly 400 million gene 
predictions and was assembled by unification of five data sources 
representing 82 habitats (Supplementary Table 1): two MAG collec-
tions spanning thousands of samples of various origins (GEM3 and 
GMGC2), a comprehensive human gut catalogue (UHGG)6, an extensive 
repository of global oceanic data (OMD)4 and the GTDB-r95 reference 
database5.

To group sequences into gene families we employed a deep- 
homology-clustering strategy operating at the amino acid level  
(30% minimum identity, coverage over 50%, expected value (E-value) 
under 0.001). The chosen approach was tailored to maximize the  
grouping of distantly related genes and has been successfully emplo
yed in previous work2,20,21. Of the 12,132,456 clusters generated, 58% 
(7,052,473 clusters) lacked discernible homologues in the databases 

Pfam-A/B23, eggNOG v5 (ref. 24) and RefSeq25—that is, they represent 
gene families that are exclusive to uncultivated taxa.

To identify unknown gene family clusters of maximal evolutionary 
and functional significance (Fig. 1a), we started by selecting clusters 
that encompassed a minimum of three complete genes from at least 
two distinct uncultivated species, thereby excluding orphan gene fami-
lies from our final catalogue. Furthermore, we required gene family 
members to exhibit a conserved aligned region spanning more than 
20 contiguous amino acids. These criteria were important in regard 
to discarding clusters inferred from fragmented genes and to infer a 
distinct genomic signature (putative new protein domain) for each 
novel gene family.

To ensure the exclusion of pseudogene-based and viral-specific gene 
families, we eliminated clusters that matched either the AntiFam26 or 
pVOG27 databases. In addition, we required the selected novel gene 
families to exhibit signs of purifying selection (non-synonymous to 
synonymous substitutions ratio (dN/dS) below 0.5; Fig. 1b), consistent 
with expectations for functional coding sequences28. Moreover, we 
ascertained their expressibility through either in silico predictions 
using the software RNAcode29 or empirical evidence, identifying sig-
nificant hits against recent metatranscriptome surveys21,30.

From an evolutionary perspective these novel gene families are 
conserved, with an average amino acid identity of 62.7% (Fig. 1c). 
Phylogeny-based orthology prediction31 suggests that none of the 
families were involved in gene duplication events at basal taxonomic 
ranks, probably representing novel orthologous groups at the bacte-
rial or archaeal level. In total, our analysis led to the identification of 
404,085 clusters that potentially represent FESNov gene families exclu-
sively from uncultivated taxa. These families exhibit distributions of 
family size, sequence length and species content comparable to those 
observed in the eggNOG database (Fig. 1d,e).

In relative terms, the FESNov catalogue constitutes a small (5.7%) 
subset of the initial total of inferred unknown gene clusters, highlight-
ing the strong impact of quality filters on the analysis of the uncharted 
sequence space. However, our curated catalogue represents a roughly 
threefold increase in the total number of prokaryotic orthologous 
groups known to date (namely, 219,934 bacterial and archaeal egg-
NOG orthologous groups; Fig. 1d). This underscores the importance of 
incorporating the genetic repertory of uncultivated taxa into publicly 
accessible functional genomics repositories.
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Functional predictions
For exploration of the putative functional roles of FESNov families we 
used genomic context reconstruction, synteny conservation analysis, 
structural prediction and detection of intrinsic sequence signals.

Historically, the preservation of gene order across species provided 
valuable insights into functional interactions—an approach often 
referred to as the ‘guilty-by-association’ strategy. Although this tech-
nique has proved particularly effective for the accurate prediction 
of prokaryotic gene functions32, its efficacy varies across functional 
categories33 and may be affected by the quality and completeness of 
environmental genomes. To account for these issues, we first con-
ducted a benchmarking exercise based on functionally annotated 
genes to establish a baseline for the minimum level of genomic con-
text conservation required to generate dependable predictions for 
different Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
ways34. To this end we implemented two scores: (1) ‘syntenic conser-
vation’, to reflect the conservation of gene order across species and 
(2) ‘functional relatedness of neighbouring genes’, measured as the 
number of contiguous genes belonging to the same KEGG pathway. 
Results indicate that genomic context analysis has the capacity to 

predict accurately (confidence equal to or greater than 0.9) func-
tional associations between genes spanning 55 KEGG pathways. How-
ever, the level of support needed in terms of synteny and functional 
relatedness scores varied among different functional categories  
(Supplementary Table 2).

Insights from the benchmarking exercise were used to predict KEGG 
pathway associations for all novel gene families in our catalogue, 
fine-tuning the thresholds for both synteny and functional relatedness 
based on the requirements for each pathway. This resulted in a total of 
52,793 gene families successfully mapped to at least one specific KEGG 
pathway with confidence scores exceeding 50%. Of these gene families, 
4,349 attained a confidence score of 90% or above. Notably, the highest 
confidence scores were associated with conserved operon-like regions 
related to key cellular processes including central metabolism, chemo-
taxis and degradation pathways (Fig. 2a and Supplementary Table 3). 
In addition, we identified 17,717 FESNov gene families located in the 
vicinity of various antibiotic-resistance genes, indicating a possible 
role in cell defence systems.

Next, we functionally annotated the FESNov catalogue based on 
each family’s predicted structural similarity to functionally known 
genes. To this end we performed de novo protein structure prediction 
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Fig. 2 | Distribution of FESNov gene families confidently linked to KEGG 
pathways. a, Presence/absence matrix of FESNov families associated with 
KEGG34 pathways (columns) across the bacterial and archaeal GTDB phylogeny 
collapsed at the order level (rows) with confidence equal to or greater than 0.9. 
Taxonomic orders without detections are not shown. The total number of 
FESNov families per pathway (no. of FESNovs) is shown on a logarithmic scale. 
FESNov gene families associated with each KEGG pathway can be explored at 
http://novelfams.cgmlab.org. b, Examples of FESNov gene families tightly 
coupled with genes related to nitrogen cycling. Gene names correspond to: 
nifH (K02588), nitrogenase iron protein; nifI1 (K02589), nitrogen regulatory 
protein PII 1; nifI2 (K02590), nitrogen regulatory protein PII 2; nifD (K02586), 

nitrogenase molybdenum–iron protein alpha chain; nifk (K02591), nitrogenase 
molybdenum–iron protein beta chain; nosZ (K00376), nitrous oxide reductase; 
petC (K03886), menaquinol-cytochrome c reductase iron–sulfur subunit; petB 
(K03887), menaquinol-cytochrome c reductase cytochrome b subunit; pcmF/
norC (K02305), nitric oxide reductase subunit C; nirK (K00368), nitrite reductase 
(NO forming); hcp (K05601), hydroxylamine reductase. Respective protein 
lengths of represented FESNov gene families are 52, 144, 48, 80 and 165.  
c, Genomic context of experimentally validated FESNov gene families 
NOV3845Y (cell motility) and NOVOQR9B (antimicrobial peptide). Scale bars, 
500 base pairs.
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for the entire FESNov catalogue using ColabFold35, which yielded 
389,638 protein structures, 226,991 with high-confidence scores (pre-
dicted local distance difference test (PLDDT) score equal to or greater 
than 70). A total of 56,609 FESNov families showed significant struc-
tural similarities to known genes in the databases PDB36 or Uniprot37. 
Interestingly, the same KEGG pathway annotation was predicted for 
38.8% of FESNov gene families with both structural homologues and 
high-confidence (equal to or greater than 90%) genomic context predic-
tions. In addition, 8,804 families had structural similarities to various 
antibiotic-resistance genes, 3,637 of which had antibiotic-resistance 
genomic neighbours in their context (Supplementary Table 4).

We also screened FESNov families for inherent sequence features not 
captured by structural or homology-based searches, including signal 
peptides, transmembrane regions and potential antimicrobial signals. 
It was found that 32.9 and 23.7% of FESNov gene families encoded for 
transmembrane and signal peptide-containing proteins, respectively, 
suggesting that a significant fraction may play a role in environmental 
interactions. Additionally, we found 240 short (below 50 amino acid 
(aa)) FESNov families with antimicrobial signatures (Supplementary 
Table 5), 17 of which were located in conserved antibiotic-related 
genomic contexts.

Finally we mapped the FESNov catalogue against several databases 
that could provide indirect functional hints. Searching through a col-
lection of biosynthetic clusters recently reported from marine metage-
nomes4, we found 1,864 matches that may be actively involved in the 
biosynthesis of natural products (Supplementary Table 6). Mapping 
FESNov gene families against a set of 11,779 unknown genes recently 
characterized using genome-wide mutant fitness experiments38, we 
found 68 matches to genes associated with specific growth conditions 
(Supplementary Table 7). Similarly, we found 476 significant hits against 
a catalogue of potentially functional small peptides17.

All functional predictions, along with their confidence scores and 
supporting materials, are available in the online FESNov database 
(https://novelfams.cgmlab.org). In addition, the FESNov catalogue 
has been integrated into the eggNOG-mapper tool39 to facilitate the 
detection and annotation of novel gene families in any metagenome.

Hypothesis-driven functional validations
To further validate our functional annotation approach we experi-
mentally tested the functional predictions of two novel gene families, 
NOV3845Y and NOVOQR9B (Fig. 2c).

NOV3845Y was found in at least two Gram-negative species from the 
unknown genus UBA8309 within the class Alphaproteobacteria, and 
it was predicted to be involved in bacterial chemotaxis (confidence 
score of 0.8). A low-support protein structure was predicted for this 
family, and no structural similarity was found to any known gene in 
PDB or Uniprot. However, given its position in the che operon, a gene 
cluster canonically responsible for chemotaxis, we hypothesized that 
NOV3845Y played a role in cell motility in response to environmental 
changes. To test our hypothesis we performed swimming chemot-
axis assays on an Escherichia coli strain heterologously expressing 
NOV3845Y and compared it against another E. coli strain transformed 
with the empty vector (pBSK). Results showed that the strain express-
ing NOV3845Y exhibited a larger swimming halo than the pBSK con-
trol strain (Extended Data Fig. 1), confirming the role of NOV3845Y in 
chemotaxis signalling and cell motility.

NOVOQR9B, a gene family of short peptides found in 39 Faecali-
bacillus genomes, is systematically conserved in a genomic region 
predicted to be associated with antibiotic resistance (three conserved 
resistance neighbours within the CARD database). In addition, NOVO-
QR9B contains antimicrobial signal motifs (antimicrobial probability 
by Macrel40, 0.545). We synthesized the 36-amino-acid-long peptide and 
tested, in vitro, its potential antimicrobial activity against Paenibacillus 
polymyxa, Bacillus subtilis, Lactobacillus sp., E. coli and Pseudomonas 

putida (three Gram-positive and two Gram-negative bacterial species). 
NOVOQR9B effectively inhibited growth of all three Gram-positive 
bacterial species but had no inhibitory effect on Gram-negative species 
(Extended Data Fig. 2).

We also found five FESNov families adjacent to known genes related 
to nitrogen metabolism, covering operonic regions associated with 
three major pathways of the nitrogen cycle (Fig. 2b). Among these, 
NOV5WD8W appeared particularly intriguing because of its direct 
proximity to a NosZ-encoding gene, which is responsible for the reduc-
tion of nitrous oxide (N2O) to molecular nitrogen (N2) in the final step of 
bacterial denitrification. The maturation of NosZ requires several acces-
sory proteins, including a copper metal chaperone (NosL) involved 
in copper supply to NosZ41. Interestingly, NOV5WD8W folds similarly 
(PLDDT, 82.3; alignment score, 263) to the E. coli copper metallochaper-
one CusF (Extended Data Fig. 3), suggesting that this novel gene family 
could replace NosL in the transfer of copper to NosZ.

Density of novel families per genome
Taxonomically, FESNov families are distributed across the entire micro-
bial phylogeny (Fig. 3a) and comprise an important fraction of the 
genetic repertoire of uncultivated taxa. On average, archaeal genomes 
encode a larger fraction of FESNov families than bacterial (3.4 versus 
1.7%), reflecting the historical delay in characterization of the archaeal 
domain.

Despite the known widespread phylogenetic distribution of micro-
bial dark matter20,42 and lineages with a high content of functionally 
unknown gene families22, we further interrogated our data to identify 
potential novelty hubs—that is, lineages with a high number of FESNov 
families per genome (Supplementary Table 8). At the phylum level, 
Riflebacteria, known for their high proportion of unidentified genes43, 
exhibit the highest co-occurrence of FESNov families per genome 
(431 ± 171), along with the unknown phylum UBP17 (470 ± 106). Asgard-
archaeota, the prokaryotic phylum closest to eukaryotes, also stands 
out with 228 ± 167 novel gene families per genome (ranked third among 
phyla). The Patescibacteria phylum, previously reported to contain a 
high number of unknown genes20,22,42, exhibits a low novelty density per 
genome compared with other clades (62 ± 30, 62nd-ranked phylum), 
although FESNov families represent a significant proportion of their 
gene set when normalizing by genome size (7.7% ± 2.9 s.d., 13th ranked 
phylum). Notably, Patescibacteria genomes show a higher propor-
tion (53%) of novel transmembrane and signal peptide proteins than 
other genomes (33%, two-sided Wilcoxon test P < 1 × 10−15). Transmem-
brane proteins have been shown to be important for this phylum22 and, 
together with secreted proteins involved in cell–cell interactions, they 
may be relevant because of their probable episymbiotic lifestyle22,43. 
Among these we found several FESNov families in genomic contexts 
related to both cell wall disruption and DNA degradation and incor-
poration, indicating that they may indeed play a role in microbe host 
parasitization44 (Extended Data Fig. 4).

Synapomorphies in uncultivated taxa
To identify FESNov families with the greatest evolutionary significance 
we searched the catalogue for potential synapomorphic traits, an 
approach previously applied to find evolutionarily relevant unknown 
genes in specific lineages14,22,45. A gene family is considered synapomor-
phic if it is nearly ubiquitous within a certain clade (high coverage) but 
mostly absent in other clades (high specificity), therefore indicating 
common unique derived traits (Methods).

To identify the most prominent synapomorphies in uncultivated line-
ages we scanned the entire set of 12,132,456 clusters originally inferred 
with a minimum of 90% clade coverage and 100% clade specificity. 
Although these thresholds offer very little tolerance for the potential 
incompleteness of environmental genomes used, and/or horizontal 

https://novelfams.cgmlab.org
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gene transfers, we found 2,210 clusters that could be considered syna-
pomorphic at the phylum, class or order level (Supplementary Table 9). 
Interestingly, almost half of these high-level synapomorphic clusters 
(1,034 families) were included in our final FESNov catalogue, support-
ing the idea that our set is greatly enriched in evolutionarily relevant 
families.

FESNov synapomorphic gene families allow precise distinction of 
18 uncultivated phyla, 20 classes and 90 orders, corresponding to 
181, 128 and 725 synapomorphic novel gene families, respectively. We 
propose that these newly identified synapomorphic proteins are prob-
ably functional innovations that fostered the ancestral divergence and 
selection of the underlying lineages. This hypothesis is supported by 
the fact that these synapomorphic gene families exhibit stronger signs 
of purifying selection (indicated by a lower dN/dS ratio) and a higher 
genomic context conservation than other gene families in the FESNov 
catalogue (Fig. 4b,c). Similarly, the number of unknown synapomor-
phic gene families was particularly high in uncultivated lineages with 
poorly understood biology. Examples include the recently proposed 
Riflebacteria phylum, with 26 putative synapomorphic detections, or 
the Thorarchaeia and Lokiarchaeia classes, in which 14 detected puta-
tive synapomorphic families may provide insight into their divergence 
from other Asgard members.

For instance, the Thorarchaeia synapomorphic family NOV4IF0P 
is embedded within a highly conserved genomic region containing 
eukaryotic-like genes associated with protein translation (rpl35a and 
elp3; Fig. 4a). Similarly, we found all genomes within the HRBIN17 class 
to contain what we believe to be a highly divergent version of ccmD, 
a small protein involved in cytochrome biosynthesis (prediction sup-
ported by genomic context analysis). We also found synapomorphic 
FESNov families in the UBP6 phylum potentially involved in DNA repair 
(priA and dksA), or in the Riflebacteria phylum involved in chemotaxis 
(mcp and dgt) (Fig. 4a).

 
Habitat distribution of novel families
For estimation of the ecological range of FESNov families we mapped 
their genetic signatures to a larger and standardized set of 63,410 pub-
licly accessible metagenomic samples covering 157 habitats (Supple-
mentary Table 10). Most FESNov gene families (59.4%) were detected 
in more than ten samples originating from at least two distinct habi-
tats (Supplementary Table 11). The same pattern was found even after 
consolidation of habitat annotations into ten less detailed ecological 
groups. For example, we identified various extreme cases in which 243, 
16 and two FESNov gene families, respectively, appeared in over half 
of all marine (3,441 total samples), soil (4,418) and human gut (32,544) 
samples (Supplementary Table 12).

This result stands in stark contrast to the habitat- and sample-specific 
patterns seen in most individual species-level genes2 and functionally 
unknown gene clusters20. This is remarkable considering that none of 
our original filters used to identify FESNov families included ecologi-
cal parameters. It also suggests that FESNov families may represent 
unknown molecular functions from uncultivated microbial lineages 
spread over geographically and/or ecologically diverse habitats. Alter-
natively, they may derive from mobile elements.

In an attempt to quantify the contribution of each scenario we 
identified protein clusters that contained at least one member in 
a plasmid or viral-like contig. Findings indicated a strong correla-
tion between mobility and the ecological breadth of gene families 
across different habitats (blue and red lines in Fig. 3b and Extended 
Data Fig. 5). Similarly, we found that the proportion of mobile ele-
ments was correlated with the taxonomic breadth of gene families 
(Fig. 3c and Extended Data Fig. 6). Nevertheless, the vast majority of 
families (90.4%) appear detached from obvious events of horizon-
tal gene transfer, suggesting a more constitutive role in their host  
genomes.
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Furthermore, the relative abundance profiles of FESNov families alone 
were sufficient to differentiate among environments and conditions, 
highlighting their ecological significance. Specifically, FESNov profiles 
across samples had a predictive power similar to those based on KEGG 
orthologous groups when comparing metagenomic samples from differ-
ent environments using t-distributed stochastic neighbour-embedding 
(tSNE) multidimensional analysis (Extended Data Fig. 7).

Discovery of new biomarkers
For assessment of the potential benefits of integration of the FESNov 
catalogue into biomarker discovery pipelines, we investigated its capac-
ity to differentiate between metagenomic samples drawn from differ-
ent conditions within the same environment, a common procedure in 
clinical studies. As a case study we revisited a recent microbiome inves-
tigation that assessed the predictive capability of functional modules 
for colorectal cancer (CRC) detection, based on a cohort of 575 human 
gut samples from five populations46.

By inclusion of the FESNov catalogue in the analysis we were able to 
identify 69 novel gene families that were significantly overabundant 
in CRC samples compared with controls (false discovery rate (FDR) 
q < 0.01; Fig. 5 and Supplementary Table 13). Twenty-five of these over
abundant gene families belong to the Acutalibacteraceae family, pre-
viously associated with CRC47. A further nine families are present in 
seven different species enriched in the gut of CRC patients46. Moreover, 
our functional predictions suggest that six of these families might 
be involved in motility, adhesion and invasion, processes potentially 
linked to colonization48 (Extended Data Fig. 8).

The overall estimated accuracy of a CRC versus control diagnostic- 
oriented predictor, based solely on FESNov family abundance profiles, 
reached an area under the curve of 0.74. Predictors built on relative 
abundance matrices of both FESNov and known gene families (for 
example, KEGG orthologous groups) showed a slight but significant 

increase of around 1.2% compared with those using known gene families 
only (Extended Data Fig. 9a). Overall, these results underscore the high 
utility of novel gene families for uncovering new functional biomarkers 
and their probable association with molecular mechanisms underpin-
ning the observed differences.

Discussion
With the genetic material of most of our planet’s microbes remaining 
poorly studied, a wealth of genetic material with unknown potential 
for critical functional innovations remains largely overlooked and 
untapped by most metagenomic studies. In an effort to narrow this 
knowledge gap, we focused on identification of a highly curated 
set of previously uncharacterized microbial gene families of major 
evolutionary and functional significance. To this end we systemati-
cally addressed common problems such as sequencing artefacts, 
contaminations, gene fragments, false orphans, pseudogenes or 
sequences of insufficient quality or evidence—typical issues that con-
tinue to hamper the comparative analysis of the so-called microbial  
dark matter1,49.

Despite nearly tripling the number of known prokaryotic ortholo-
gous groups described to date, our work has certain limitations that 
should be taken into account in future studies. For instance, the FESNov 
catalogue accounts for only a relatively small portion of all unknown 
sequences from the original dataset. Considering that many sequences 
and clusters were discarded due to quality filters and limited sampling 
depth, the catalogue probably represents only the proverbial tip of the 
iceberg, leaving many discoveries still to be made.

We also demonstrated that the FESNov catalogue can serve as a 
framework for the hypothesis-driven identification and experimen-
tal characterization of unknown but functionally important genes. 
However, functional associations based on genomic context analysis are 
usually broad and do not allow for precise predictions of new molecular 
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functions. Whereas structural alignments can facilitate additional and 
more specific functional predictions, only 14% of FESNov gene families 
showed significant hits against known protein structures. This suggests 
that the majority of the unknown gene families encode for novel pro-
tein folds rather than undetectable distant homologues in the known 
functional landscape, posing new challenges for in silico functional 
predictions. Similarly, we identified many novel gene families that 
could be of great evolutionary significance for entire basal clades of 
uncultivated taxa; however, the taxonomic level at which these families 
were found to be synapomorphic may change with the discovery and 
sequencing of new species.

Finally we showed that, by integration of the FESNov catalogue into 
functional profiling tools such as the eggNOG-mapper tool, new eco-
logical and clinical biomarkers can be detected. It is therefore crucial 
that the unique genetic repertoire of hitherto uncultivated species is 
regularly incorporated into reference databases and bioinformatic 
workflows, particularly as we advance in the exploration of under-
studied microbial ecosystems, micro-eukaryotic communities and 
low-abundance species.
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Methods

Data collection
We retrieved medium- and high-quality MAGs, SAGs and reference 
genomes from five different studies: (1) 51,624 medium- and high- 
quality MAGs (at least 50% complete, contamination 5% or less) from 
a planetary multihabitat catalogue including 10,450 samples and  
covering diverse habitats (GEM)3; (2) 46,655 high-quality MAGs (at least 
90% complete, contamination 5% or less) released by another multi-
habitat catalogue spanning 13,174 samples and 14 habitats (GMGC)2;  
(3) 13,975 MAGs and SAGs and 17,935 reference genomes from the 
GTDB-r95 database5; (4) 26,975 medium- and high-quality MAGs  
(at least 50% complete, less than 10% contamination), 5,969 SAGs 
and 1,707 reference genomes obtained from ocean samples4,50–52; and  
(5) 4,644 medium- and high-quality reference human gut MAGs (at least 
50% complete, less than 5% contamination) from the UHGG human gut 
catalogue6. Overall, the mean completeness and contamination of the 
collection of genomes were 86.15 and 1.13%, respectively (median 93 
and 0.77%, respectively; Supplementary Table 14).

Recalling ORFs
We noticed that some MAG collections contained genes predicted 
under an incorrect codon table (for instance, those from the Gracili-
bacteria or Mycoplasma lineages were predicted under the standard 
codon table), which could lead to incorrect conclusions53. We therefore 
recomputed ORF predictions for all MAGs in the GEM, GMGC and GTDB 
catalogues. For each MAG we used PROKKA54, selecting the correct 
genetic table for each genome based on its taxonomic annotation. 
We further verified that the corrected Gracilibacteria and Myco-
plasma ORFs were indeed longer than the original ones. We obtained 
116,208,548, 110,913,525 and 106,052,079 genes for GEM, GMGC and 
GTDB, respectively. Following their combinion with the 56,637,438 and 
10,002,521 genes in the oceanic and UHGG genomes, MAGs and SAGs 
we obtained a final catalogue of 399,814,111 genes.

Taxonomic annotations
For normalizitaion of taxonomic annotations of all genomes in our 
collection, we reannotated all of them using GTDB-Tk v.1.6.0 (GTDB 
rev202 version)55.

Deep-homology clustering and phylogenetic tree 
reconstruction
For computation of gene family clusters we used MMseqs2 (ref. 19) with 
relaxed thresholds: minimum percentage of amino acids identity 30, 
E-value 0.001 or less and minimum sequence coverage 50%. The param-
eters used were --min-seq-id 0.3 -c 0.5 --cov-mode 1 --cluster-mode 2 
-e 0.001. Clusters with fewer than three sequences were discarded.  
We computed multiple-sequence alignments for each gene family 
with Clustal Omega56 using the translated version of the genes and 
subsequently reconstructed their phylogeny with FastTree2 (ref. 57) 
with default parameters. We calculated alignment statistics (mean 
identity, most unrelated pair, most distant sequence) on each gene 
family alignment using Alistat58.

Detection of protein clusters specifically from uncultivated taxa
For identification of genes/proteins without homologues in current 
genomic databases we mapped the members of each gene family cluster 
against (1) EggNOG v.5 (ref. 24) using eggNOG-mapper v.2 (ref. 39) and 
all protein sequences in each family as a query. Hits with an E-value 
below 0.001 were considered significant. (2) Pfam-A59, using HMMER60 
hmmsearch against all protein sequences of each family. Hits with an 
E-value below 1 × 10−5 were considered significant. (3) Pfam-B23, using 
HMMER60 hmmsearch searches against the representative protein 
sequence (longest sequence) of each family. Hits with an E-value below 
1 × 10−5 were considered significant. (4) Refseq61, using DIAMOND62 

blastx (with the --sensitive flag) searches against the coding sequence 
(CDS) of all tmembers of the family. Hits with an E-value below 0.001 
and query coverage above 50% were considered significant. All gene 
family clusters with a significant hit in any of the above databases were 
considered non-novel and discarded from the study. Additionally we 
mapped FESNov gene families against Eukprot63, finding only 1,127 dis-
tant hits (Supplementary Table 15).

Detection of spurious domains in gene families
To discard potential sequencing errors and pseudogenes we mapped 
our catalogue against the AntiFAM26 database (HMMER search with 
the --cut_ga parameter, as recommended) and discarded families with 
E-value 1 × 10−5 or less. We also discarded families with significant hits 
in the viral pVOG database27 using HMMER, an E-value threshold of 
below 1 × 10−5 and minimum coverage of 50%. Searches were performed 
at the amino acid level.

Detection of conserved domains
We reconstructed protein-based, multiple-sequence alignments for 
each gene family with Clustal Omega. For each gene family the most 
conserved domain was considered the longest aligned region in which 
80% of amino acid residues were not gaps. Gene families whose most 
conserved domain was shorter than 20 amino acid residues were  
discarded.

Calculation of dN/dS
Multiple-sequence alignments from each gene family were back- 
translated into codon alignments to reconstruct phylogenetic trees 
using FastTree2 with default parameters. The entire workflow was exe-
cuted using ETE3 (ref. 64) with options ete3 build --nt-switch-threshold 
0.0 --noimg --clearall --nochecks -w clustalo_default-none-none-none 
--no-seq-rename. For calculation of selective pressure per family we ran 
HyPhy using the BUSTED model65 with default parameters, codon-based 
nucleotide alignment and the phylogenetic tree generated previously, 
retrieving the dN/dS ratio under the full codon model. We discarded 
gene families with dN/dS values higher than 0.5.

Detection of protein-coding families
We used back-translated, codon-based multiple-sequence alignments 
to run RNAcode29. Because the software calculates statistics on the long-
est sequence, we rearranged alignments so that the longest sequence 
was the first to appear. We ran RNAcode with default options and the 
--stop-early flag. Gene families yielding RNAcode P values lower than 
0.05 were considered coding and retained in our catalogue. Gene fami-
lies without significant P values were discarded from the study unless 
they were detected in metatranscriptomics datasets (see following 
section).

Mapping to metatranscriptomic datasets
To obtain additional evidence of gene expression we mapped our gene 
families against (1) the TARA oceanic metatranscriptomic catalogue21 
and (2) 756 human gut metatranscriptomic samples66. For mapping 
the sequences of the novel families against TARA protein sequences 
we used DIAMOND blastp with the --sensitive flag. We considered any 
hit with an E-value below 0.001 and query coverage above 50% as sig-
nificant. For mapping of reads from the human gut metatranscriptome 
samples against the sequences of novel families we used DIAMOND 
blastx sensitive mode. We considered any hit with an E-value below 
0.001 as significant. Families were considered expressible if at least 
one member had a significant match against the metatranscriptomic 
catalogues.

Orthology calling
All FESNov gene family clusters were analysed to determine whether 
they represented basal orthologous groups at the bacterial or archaeal 
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level or, by contrast, contained duplication events leading to several 
orthologous groups within the same family. To do so we rooted the 
phylogenetic tree of each family at midpoint and taxonomically anno-
tated leaf nodes using GTDB v.202. Then, we used ETE64 to identify 
duplication events on each phylogenetic tree with the ‘get_descend-
ant_evol_events’ function and dated them according to their predicted 
common ancestry. Gene families without duplication events at basal 
taxonomic ranks were considered as representing orthologous groups 
at the bacterial or archaeal level.

Comparison of gene family length distributions
We compared the distribution of protein lengths in eggNOG v.5 ortholo-
gous groups24 and the small peptides catalogue described in ref. 17 with 
the length of the FESNov gene family clusters. The length of each gene 
family or orthologous group was set to the longest sequence within 
each cluster at the protein level.

Sequence-based functional predictions
We ran SignalP-5.0 (ref. 67) with Gram-positive and Gram-negative 
modes on FESNov gene families. Genes predicted to encode for a 
signal peptide by either Gram-positive, Gram-negative or both were 
considered as secreted proteins. We also ran TMHMM68 with default 
parameters to calculate transmembrane domains on the sequences. 
Similarly to the methods used in Sberro et al17, a gene family was con-
sidered to encode for transmembrane/secreted proteins if at least 80% 
of its members were predicted to be so.

Small peptide analyses
We considered FESNov gene families whose longest sequence was 
shorter than 50 residues to be small peptides. Our set of small peptides 
was mapped against those described by Sberro et al.17 using DIAMOND 
(--sensitive flag), and considered as significant those with an E-value 
below 0.001 and coverage above 50%. We ran antimicrobial predictions 
on our small peptide FESNov gene families using Macrel40.

Detection of mobile elements
For the detection of families potentially included in plasmids we ran 
PlasFlow69 with the --threshold 0.95 flag on all contigs from all MAGs, 
SAGs and genomes. For the detection of gene families with potential 
viral origin we ran Seeker70 on all contigs from all MAGs, SAGs and 
genomes, using a threshold of 0.9 for considering a sequence as viral. 
For the results shown in Fig. 3 we considered gene families as mobile 
or viral if at least one member of the family was predicted to be so. The 
reported correlations were also found under more restrictive thresh-
olds at which at least 30% of gene family members were predicted as 
mobile or viral sequences (Extended Data Fig. 6a).

Ecological distribution of gene families
For expansion of the ecological profile of FESNov gene families we 
mapped the representative sequence of each family (longest) against 
63,410 public metagenomic samples using DIAMOND (-sensitive flag). 
In total, 303,515 hits with an E-value below 0.001 and target coverage of 
at least 50% were considered significant. We grouped habitats into the 
following general groups: ‘Human gut’, ‘Human oral’, ‘Marine’, ‘Human 
skin’, ‘Non-marine aquatic’, ‘Animal gut’, ‘Soil’, ‘Plant associated’ and 
‘Anthropogenic’. Remaining samples were not included (that is, labelled 
as ‘Other).

For building tSNE plots we mapped a representative sequence 
member of each family against the GMGC catalogue using DIAMOND 
(--sensitive flag). Hits with an E-value below 0.001 and target cover-
age of at least 50% were considered significant. For calculation of the 
abundance of each family on each sample we added the relative abun-
dance of each gene family homologue. We restricted the tSNE analysis 
to families detected in more than 1,000 samples and to a maximum 
of 150 samples per habitat/human population. tSNE was computed 

with the python scikit-learn manifold package following logarithmic 
transformation of the data.

Taxonomic breadth of gene families
For estimation of the taxonomic breadth of each FESNov gene fam-
ily we calculated the last common ancestor (LCA) of their members 
using GTDB v.202 taxonomic predictions as the most lineage-specific 
annotation shared by all members of the family. To ensure that our LCA 
predictions were not artefacts caused by a small proportion of misan-
notated genes masking lineage-specific families to very basal levels 
we repeated the analysis, requiring the LCA lineage to be supported 
by 80% (Extended Data Fig. 6b) of the members of the family, thereby 
obtaining comparable patterns.

Taxonomic distribution of FESNov gene families
To assess the distribution of novelty across the prokaryotic phylog-
eny we estimated the number of FESNov gene families observed per 
clade. Figure 3a shows the GTDB phylogenetic trees bac120_r202 and 
ar122_r202 collapsed to the order level (each tree leaf represents a 
taxonomic order). For represention of the percentage of uncultivated 
genomes per branch in Fig. 3a, we divided the number of uncultivated 
genomes per lineage by the total number of genomes under that line-
age. The final tree image was generated using Interactive Tree Of Life71.

Synapomorphic gene families
For identification of synapomorphic gene families at different taxo-
nomic levels we calculated the clade specificity and coverage of each 
gene family across all GTDB v.202 lineages. For each gene family and 
clade, coverage was calculated as the number of genomes containing a 
specific gene family over the total number of genomes under the target 
clade. Specificity was estimated as the percentage of protein members 
within a family that belonged to the target clade.

Under such criteria, very few synapomorphic gene family clusters 
would be expected at basal taxonomic levels, typically indicating 
lineage-specific functional traits. Preceding our analysis, and to verify 
that our detection method was correct, we computed synapomorphic 
gene families out of the complete set of clusters obtained in the first 
step of the pipeline using a cutoff of 70% coverage and 90% specificity. 
As expected, we detected a very low number (34,370) of synapomor-
phic clusters at high-level taxonomic ranks (phylum, class or order; 
Supplementary Table 16), which included both known and unknown 
gene families. Among functionally known synapomorphies we found 
previously described examples of synapomorphies, such as the pho-
tosystem P840 reaction centre protein (pscD) and the chlorosome 
envelope protein C (csmC), which are known to be synapomorphic at 
the Chlorobium bacterial class72,73. Similarly, photosystem I subunits 
psaD and psaF, photosystem II oxygen-evolving enhancer protein 
psbO and the NHD1 complex subunit (ndhN) were also detected as 
synapomorphic for the entire Cyanobacteria phylum. In addition, we 
validated our method for location of synapomorphic gene families by 
calculation of coverage and specificity within each lineage for each 
KEGG orthologous group and compared the conservation values 
obtained with those in a recent study74, finding a correlation coefficient  
of 0.71 (P < 1 × 10−15).

To obtain the final set of synapomorphic gene families in the FESNov 
catalogue (see above), and to focus only on the most prominent exam-
ples, we used the same validated method but with stricter specific-
ity and coverage thresholds, requiring also a minimum number of 
members per family. Thus we considered FESNov gene families as 
synapomorphic if they contained more than ten members (that is, 
protein sequences) and had a coverage higher than 90% and specificity 
of 100% for a given lineage. We provide the coverage and specificity 
values of all families from every lineage in the downloads section of 
https://novelfams.cgmlab.org/. Moreover, to further ensure that our 
final set of synapomorphic predictions is highly specific, we mapped 

https://novelfams.cgmlab.org/


them back against the whole catalogue using a more sensitive map-
ping strategy based on HMMER searches60, excluding families with 
distant hits to genomes that might compromise our specificity and 
coverage thresholds.

For comparison of the degree of genomic context conservation 
between synapomorphic and non-synapomorphic FESNov gene 
families shown in Fig. 4c, we computed the syntenic conservation of 
adjacent neighbour genes (+1 and −1 positions).

Functional predictions
To infer the functional annotation of the neighbouring genes of FESNov 
gene families we ran eggNOG-mapper v.2 (ref. 39) with default param-
eters on the 400 million proteins in our catalogue of MAGs, SAGs and 
reference genomes. We also mapped them against the CARD75 database 
using DIAMOND blastp, with E-value and coverage threshold of 0.001 
and over 50%, respectively. We next built a database with all the genomic 
locations of genes in their respective contigs and the annotated func-
tion of every gene.

We then established an association between a KEGG pathway (P) and 
a FESNov family if 30, 50, 80 or 90% of FESNov neighbour genes in a 
genomic window of plus or minus three genes of all FESNov members 
were annotated to pathway P (synteny conservation), calculating also 
the proportion of neighbour genes annotated to pathway P over the 
total number of neighbours within the same window (functional relat-
edness) and measuring the frequency of neighbour genes annotated 
to pathway P that are (1) on the same orientation as FESNov family 
members (strand conservation) and (2) with no intergenic regions 
longer than 100 nucleotides (distance conservation).

To determine an approximate confidence level for all such asso-
ciations we computed the same calculations for 108,823 gene family 
clusters with known and consistent KEGG pathway annotations. We 
then estimated the minimum synteny conservation, functional relat-
edness, strand conservation and distance conservation necessary to 
successfully recover the function (KEGG pathway) of at least 50 or 90% 
of all families (confidence scores) assigned to that KEGG pathway. The 
implementation of this method and benchmark is available at https://
github.com/AlvaroRodriguezDelRio/nov-fams-pipeline.

Using a confidence score of 90%, we were able to functionally anno-
tate 1.2% of the FESNov gene families detected in host-associated 
samples but only 0.9% of pure free-environmental samples. For com-
putation of FESNov gene families in resistance islands we identified 
the number of positions in which the family had CARD genes within 
https://github.com/arpcard/aro with different evolutionary conser-
vation values. To generate Fig. 2a we joined the bacterial and archaeal 
GTDB phylogenetic trees, collapsed to the order level, using the ETE 
toolkit software. We then represented the presence/absence matrix 
of novel gene family predictions associated with KEGG pathways with 
confidence larger than 0.9 across the different taxonomic orders. For 
readability, orders and KEGG pathways with no predictions are not 
shown in the figure.

We also mapped the representative sequence of each novel family 
against the collection of functionally annotated genes in Miller et al.33 
with DIAMOND blastp (sensitive flag). Hits with an E-value below 0.001 
and coverage above 50% on the FESNov family were considered signifi-
cant. We then compared our predictions with theirs, and used them 
to extend our functional predictions. Both approaches reached 81% 
agreement for functional predictions tagged as high confidence. Map-
pings against Miller et al.33 provided genome context-based functional 
predictions to 22,898 FESNov gene families.

We also mapped FESNov gene family sequences against Fitness 
Browser38 genes (https://fit.genomics.lbl.gov/cgi_data/aaseqs) using 
DIAMOND blastp with maximum E-value and minimum coverage 
thresholds of 0.001 and 50%, respectively. We considered hits with 
strong fitness changes (t-score above 4 or below −4; see original pub-
lication) to be potentially associated with certain conditions.

For location of FESNov gene families in biosynthetic clusters we 
screened the Antismash76 predictions presented in Paoli et al.4, whose 
genes are included in this catalogue.

Structural predictions
As an initial attempt, we first queried all FESNov gene families against 
a large database of protein structural models of environmental 
sequences77. To do so we mapped the longest member of each novel 
gene family against the sequences of High Confidence MGnify30  
(ref. 78) using DIAMOND with E-value below 0.001 and coverage  
above 50% significance thresholds. However, we found matches for 
only about one-third (33.6%) of our FESNov families.

Given the low number of matches obtained, we decided to run 
de novo structural predictions for all FESNov families by means of 
ColabFold35 using the representative sequence of each family as input. 
In total we computed structural predictions for 389,638 FESNov gene 
families. For the remainder, ColabFold was not able to finish com-
putations. For the FESNov gene families for which we could obtain 
structures, we ran Foldseek79 against PDB36 (https://rcsb.org) and  
Uniprot37 (-e E-value, 0.001 -s sensitivity, 9.5 options). Structures were 
considered reliable if the PLDDT score was at least 70, as suggested  
in the literature80.

Motility assays
The coding sequence of a representative member of the NOV3845Y 
gene family (nov3845y) was manually codon optimized for expres-
sion in E. coli W3110 strain and subsequently cloned into pBlue-
Script II SK(+) using BamHI and KpnI sites. This plasmid contains 
an isopropyl-β-d-thiogalactoside (IPTG) inducible lac promoter.  
A Shine–Dalgarno consensus sequence (AGGAGG) was inserted at the 
beginning of the sequence to ensure ribosome binding and translation 
of the transcript. The plasmid was synthesized by BioCat. The repre-
sentative sequence from the NOV3845Y gene family was: GTGGAC 
GATCTGTTCATAATAGCCAGATGGAATGCGCAATATTTTGCCTGTGCGG 
AAGCAGACACGAAAGAAATTCTTGGTGGGCTGAATCAGGGCAGTCAA 
AGTCGAGGTGAAGAGGATGCCAGAGACGTTCAAAAGCATCATTTGTTT 
GCAGATCATGCGCTGGTGGAGTGCAACTTCGGTATCCTTCTAAACGAC 
AATCAAATAGTGCCAAGTGACGATATTCCATCGCGGGTTTCGGCGACA 
TTTTTGCCGCTGGACCCATATGGCGGTACGATCCTGAAAGACATCACC 
GGTATTATCCAGATTGACGAGGGTACATTCGCCCTTGTGCTGGCGCCT 
TCAAAAAACGATGCCAGAGGGGGATCGCTTGGAACAGGCCTTGATTAA, 
which was codon optimized to ATGGACGATCTGTTCATCATCGCCC 
GCTGGAATGCGCAGTATTTCGCCTGCGCGGAAGCAGACACGAAAGAAA 
TCCTTGGTGGGCTGAATCAGGGCAGCCAGAGCCGCGGTGAAGAGGA 
TGCCCGCGACGTGCAGAAGCATCATCTGTTCGCAGATCATGCGCTGGT 
GGAGTGCAACTTCGGTATCCTTCTGAACGACAATCAGATCGTGCCGA 
GCGACGATATCCCGTCGCGGGTGTCGGCGACCTTCCTGCCGCTGGAC 
CCGTATGGCGGTACGATCCTGAAAGACATCACCGGTATCATCCAGATC 
GACGAGGGTACGTTCGCCCTTGTGCTGGCGCCGAGCAAAAACGATGC 
CCGCGGGGGATCGCTTGGAACCGGCCTTGATTAA.

A plasmid containing the selected sequence nov3845y and the empty 
vector were transferred into E. coli W3110 strain by electroporation. 
Strains that successfully incorporated plasmids were selected for 
based on their resistance to ampicillin and checked by PCR with M13 
universal primers.

For swimming motility experiments, an E. coli strain overexpress-
ing NOV3845Y was first streaked on solid lysogeny broth medium 
supplemented with ampicillin 100 µg ml−1 (Ap100). To prepare the 
swimming plates, 50 ml of semisolid lysogeny broth Ap100 contain-
ing 0.3% agar and IPTG at concentrations of 0 µM, 10 µM, 100 µM 
and 1 mM was poured onto squared plates and left open to dry for 
10 min in the biosafety laminar flow cabin. Isolated colonies were 
then inoculated with a toothpick by perforation of the medium, 
avoiding reaching the bottom of the plate. Swimming area was quan-
tified for each inoculated colony by measuring the diameter of the 
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bacterial ring following overnight growth (roughly 16 h) in a humid  
environment.

Antimicrobial activity assay
The candidate antimicrobial peptide NOVOQR9B (sequence: MQT-
VNEPNVTGATPRGGCFVKTGCGKYKGSCTIHLA) was chemically syn-
thesized by BioCat. For analysis of the putative antibacterial activity 
of the peptide, three Gram-positive bacterial strains (P. polymyxa,  
B. subtilis and Lactobacillus sp.) and two Gram-negative bacterial strains 
(E. coli K12 and Ps. putida KT2440) were selected. Bacterial strains were 
grown overnight at 28 °C in lysogeny broth agar plates. Cells were then 
scraped from the plates, resuspended in 1/3-diluted NB medium (1 g of 
yeast extract, 2 g of beef extract, 5 g of NaCl and 5 g of Bacto Peptone 
(per litre)) and centrifuged at 5,000g for 5 min. The resulting pellet was 
washed twice with 1/3-diluted NB medium and adjusted to an optical 
density at 600 nm (OD600) of 1.

Antimicrobial activity assays were performed in flat-bottomed, 
96-well plates. The NOVOQR9B peptide was initially dissolved in 
1/3-diluted NB medium to a concentration of 2 mM and then serially 
diluted in the same medium to reach final concentrations ranging from 
0.137 to 300 µM. Bacterial suspensions were then added to wells con-
taining the peptide (final OD600 of 0.1). Plates were incubated at 28 °C 
with shaking at 200 rpm, and the OD600 values of each well were meas-
ured following culture for 24 h using a SPECTROstar Nano microplate 
reader (BMG LABTECH). The assay was carried out in triplicate.

Functional profiling and biomarker discovery
We calculated the relative abundance of FESNov gene families on 
575 human gut samples from a clinical study involving 285 CRC patients 
and 290 controls from five different populations46. For this we mapped 
the longest representative of each FESNov gene family against this 
dataset with DIAMOND blastp and the --sensitive flag. Hits with E-value 
below 0.001 and coverage on the novel family sequence of over 50% 
were considered significant. For estimation of the relative abundance 
of a FESNov family in a given sample we summed the relative abundance 
of all significant hits in that sample. We computed KEGG ortholog abun-
dance by summing the relative abundances of all genes annotated with 
a particular KEGG ortholog; KEGG ortholog annotations were obtained 
with eggNOG-mapper v.2.

Differentially abundant FESNov gene families between CRC and con-
trol samples were estimated, per gene family, using a blocked Wilcoxon 
test as implemented in the ‘coin’ R package, correcting study effects 
by blocking for ‘study’ and ‘colonoscopy’. We corrected P values by 
the FDR method to adjust for multiple-hypothesis testing to obtain 
q-values. A FESNov gene family was considered significantly over- or 
underabundant in CRC samples compared with control samples if 
q-values were below 0.01.

For comparison of the predictive power of the relative abundance 
profiles built on FESNov gene families versus KEGG orthologies, and the 
combination of the two (FESNov + KEGG orthologies), we ran logistic 
regression models as implemented in the ‘gmlnet’ R package (Extended 
Data Fig. 9a) and random forest algorithms as implemented in the ‘caret’ 
R package (Extended Data Fig. 9b). We ran the models independently 
for the relative abundance tables of FESNov, KEGG orthologies and 
FESNov + KEGG orthologies, training the models with 70% of the sam-
ples and testing the prediction performance on the remaining 30%. For 
the random forest analysis, 1,000 random gene families were selected. 
Following iteration of the analysis on different train and test data, we 
compared area under the curve values obtained when considering the 
relative abundance of FESNov gene families, KEGG orthologies and the 
combination of the two.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All genomic data used in this study were downloaded from public 
sources as follows: UGHH MAGs from https://www.ebi.ac.uk/ena/
browser/view/PRJEB33885, Ocean MAGs and SAGs from https://www.
ebi.ac.uk/ena/browser/view/PRJEB45951 and https://microbiomics.
io/ocean/, GMGC MAGs from https://gmgc.embl.de, GEM MAGs from 
https://genome.jgi.doe.gov/GEMs and GTDB reference genomes and 
MAGs from https://data.gtdb.ecogenomic.org/releases/release95/95.0. 
All the results derived from this study, including FESNov gene family 
fasta files, phylogenetic trees and alignments, FESNov gene family 
statistics and evolutionary information, mobile element detections, 
taxonomic annotations, functional prediction summaries and protein 
structure predictions, are available at https://zenodo.org/doi/10.5281/
zenodo.10219528. Computer-generated structural models are also 
available at https://modelarchive.org/doi/10.5452/ma-fesnov. In 
addition, large intermediate files from some analyses are provided 
at https://novelfams.cgmlab.org/downloads/, including: all stand-
ardized genomes, MAGs and SAGs downloaded from public sources, 
consolidated FASTA files with predicted genes and proteins, functional 
annotations of all proteins by eggNOG-mapper v.2.1 and raw clustering 
results. Source data are provided with this paper.

Code availability
Custom code was developed for some of the analyses included in 
the manuscript and is available at https://zenodo.org/doi/10.5281/
zenodo.10209798. In addition, this code is also available as GitHub 
repositories at https://github.com/AlvaroRodriguezDelRio/NovFami-
lies and https://github.com/AlvaroRodriguezDelRio/nov-fams-pipeline, 
including a description on how to apply different-quality filters, pre-
dict pathways based on genomic context conservation analysis and 
calculate taxonomic conservation values. Implementation of the 
FESNov-based eggNOG-mapper functional profiler is available at 
https://github.com/eggnogdb/eggnog-mapper and can be used in 
the software from v.2.1.12 onwards and via the online service at http://
eggnog-mapper.embl.de/.
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Extended Data Fig. 1 | Swimming chemotaxis assay of Escherichia coli 
W3110 strain expressing NOV3845Y. (a) Representative image of a swimming 
chemotaxis assay of Escherichia coli W3110 strains containing either pBSK or 
pNOV3845Y. (b) Quantification of the swimming area (measured as diameter in 
cm) of Escherichia coli W3110 strains harboring pBSK (n = 36, with 3 biological 
replicates, each containing 12 technical replicates) and pNOV3845Y (n = 36, 
with 3 biological replicates, each containing 12 technical replicates). Data are 
represented as mean values ± SEM. p-value by two-tailed Mann-Whitney U test 
is indicated.



Extended Data Fig. 2 | Antimicrobial activity of NOVOQR9B peptide. 
Growth of 3 Gram-positive (a) and 2 Gram-negative (b) bacterial strains in 1/3 
diluted NB medium with peptide concentration as indicated. Control bars 
represent bacterial culture growth in the absence of the peptide. Only the 

results for the two highest peptide concentrations are shown. Data from 3 
technical replicates for all bacterial strains tested are represented as mean 
values ± SEM. p-values by One-way ANOVA test are indicated (* p < 0.05; ** p < 0.01; 
*** p < 0.001).
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Extended Data Fig. 3 | Structural similarity of NOV5WD8W with the copper 
metallochaperone CusF. (a) Superposition of the structures of FESNov 
protein sequence NOV5WD8W (blue) and CusF (yellow) from Escherichia coli. 

(b) Zoom-in on the high-confidence structural homology domain in superposed 
structure of the FESNov protein sequence NOV5WD8W (blue) and CusF (yellow) 
from Escherichia coli.



Extended Data Fig. 4 | Schematic representation of the genomic context of 
four transmembrane FESNov gene families in Patescibacteria genomes. 
Gene names correspond to comEA (K02237): competence protein ComEA, 
comEC (K02238) competence protein ComEC; hsdM (K03427): type I restriction 
enzyme M protein, hsdS (K01154): type I restriction enzyme, S subunit, 
recombinase B; pilB (K02652): type IV pilus assembly protein PilB, pilC 
(K02653): type IV pilus assembly protein PilC, pilM (K02662): type IV pilus 
assembly protein PilM; virB6 (K03201: type IV secretion system protein VirB6).

https://www.genome.jp/entry/K02237
https://www.genome.jp/entry/K02238
https://www.genome.jp/entry/K03427
https://www.genome.jp/entry/K01154
https://www.genome.jp/entry/K02652
https://www.genome.jp/entry/K02653
https://www.genome.jp/entry/K02662
https://www.genome.jp/entry/K03201
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Extended Data Fig. 5 | Correlation between FESNov gene families mobility 
and ecological dispersion. Proportion of FESNov gene families linked to 
plasmids or viral contigs in relation to the number of habitats they were 
detected in. R indicates the Spearman correlation coefficient.



Extended Data Fig. 6 | Number of FESNov gene families confined to each 
taxonomic rank. Number of FESNov gene families confined to each taxonomic 
rank attending to the last common ancestor (LCA) of their family members. The 
lines indicate the proportion of gene families detected in plasmids (red) or viral 

(blue) contigs. This figure is equivalent to Fig. 3c with the following differences 
(a) requiring 30% of the members to be present in plasmids/viral contigs for 
considering the family as mobile and (b) calculating LCAs as the most basal 
taxonomic group gathering 80% of the members of the family.
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Extended Data Fig. 7 | Separation of habitats and human gut populations 
with FESNov families and KO relative abundances. tSNE representation of 
the log-transformed abundances of FESNov gene families and KOs detected in 
more than 1,000 samples within the GMGC catalog. To correct for differences 
in the number of samples available per habitat and human gut sample available 

per country, we included a maximum of 150 random samples per habitat/
country. (a) tSNE representation of FESNov gene families per country; (b) tSNE 
representation of KOs per country; (c) tSNE representation of FESNov gene 
families per habitat: (d) tSNE representation of KOs per habitat.



Extended Data Fig. 8 | Examples of the genomic context of FESNov families 
over-abundant in CRC samples. Schematic overview of the genomic context 
of NOVYGMIL, NOV3ON7R, and NOVJ3S2O; FESNov gene families significantly 
more abundant in CRC samples with conserved genomic context related to  
cell adhesion, motility, and cell invasion. Gene names correspond to: yerB 
(COG1470), cell adhesion and biofilm formation; ksgA (K02528), 16S rRNA  
(adenine1518-N6)-dimethyltransferase; FliD (K02407), flagellar hook- 
associated protein, fliS (K02422), flagellar secretion chaperone; bglA (K01223), 
6-phospho-beta-glucosidase, ROK, sugar kinase protein (regulatory protein).

https://www.genome.jp/entry/K02528
https://www.genome.jp/entry/K02407
https://www.genome.jp/entry/K02422
https://www.genome.jp/entry/K01223
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Extended Data Fig. 9 | Performance of predictors built upon the relative 
abundance matrices of both FESNov gene families and KEGG Orthologs 
(KOs) families. (a) Area Under the Curve (AUC) values obtained from 50 
iterations of a logistic regression model built on KEGG Orthologs (KOs), 
FESNov gene families, and the combination of both (b) AUC values obtained 
from 30 iterations of a random forest model built on KOs, FESNov gene families 
and the combination of both, Data are represented as boxplots where the 
middle line is the median, the lower and upper hinges correspond to the first 
and third quartiles, the upper whisker extends from the hinge to the largest 
value no further than 1.5 × IQR from the hinge (where IQR is the interquartile 
range) and the lower whisker extends from the hinge to the smallest value at 
most 1.5 × IQR of the hinge, while data beyond the end of the whiskers are 
outlying points that are plotted individually. p-values by two-sided 
Wilcoxon-test are indicated.
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