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A B S T R A C T

In oncology, Deep Learning has shown great potential to personalise tasks such as tumour type classification,
based on per-patient omics data-sets. Being high dimensional, incorporation of such data in one model is a
challenge, often leading to one-dimensional studies and, therefore, information loss. Instead, we first propose
relying on non-fixed sets of whole genome or whole exome variant-associated sequences, which can be used for
supervised learning of oncology-relevant tasks by our Set Transformer based Deep Neural Network, SetQuence.
We optimise this architecture to improve its efficiency. This allows for exploration of not just coding but also
non-coding variants, from large datasets. Second, we extend the model to incorporate these representations
together with multiple other sources of omics data in a flexible way with SetOmic. Evaluation, using these
representations, shows improved robustness and reduced information loss compared to previous approaches,
while still being computationally tractable. By means of Explainable Artificial Intelligence methods, our models
are able to recapitulate the biological contribution of highly attributed features in the tumours studied. This
validation opens the door to novel directions in multi-faceted genome and exome wide biomarker discovery
and personalised treatment among other presently clinically relevant tasks.
1. Introduction

The 40 trillion cells that constitute human bodies follow precise
instructions coded in their (mostly identical) genomes, focusing on
certain regions in order to meet unique, specific roles (Bianconi et al.,
2013). Multiple factors can alter this information in a specific tis-
sue, leading to a spectrum of cancer diagnoses (Hirata and Sahai,
2017). Deep learning (DL) methods, adopted from Natural Language
Processing (NLP), support a better understanding of biological se-
quences (Elnaggar et al., 2021; Ji et al., 2021). In this work, we explore
genome sequences by applying NLP-inspired DL methods on mutomes
(variants, or genome sequences representing differences between a
patient’s genome and a reference) and transcriptome counts (expres-
sion quantification of RNA-sequencing data), and their corresponding
clinical annotations across 33 tumour types.

The main challenges which hinder the clinical applicability of Deep
Neural Networks (DNN) on omics data-sets are the large amount of
model parameters, their limiting methodology, and lack of model trans-
parency. First, we address the issue of the amount of parameters by
using somatic variants, a subset of sequences from the genome. Second,
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they consider omics as fixed-dimensionality inputs (i.e., messenger RNA
(mRNA) expression matrices, DNA methylation profiles, or Single Nu-
cleotide Polymorphisms (SNP) arrays). If the number of experimentally
measured and quantified loci increases, the new input dimension most
likely does not fit to the model deeming the model unusable without
manual intervention. Moreover, the hidden and output states of such
models are sensitive to input ordering and require adaptation of specific
pre-processing pipelines. We attempt to overcome this issue by allowing
a set representation for input data. Third, to incorporate larger datasets
or non-coding data into our model, the computational complexity of
the model has to be addressed. We do so by making architectural
changes, such as knowledge distillation, to the model with the focus
on robustness and accuracy metrics of the model in mind. Fourth,
the interpretability and transparency of DNNs is scarcely explored in
previous research, regardless of how well the DNNs perform under
controlled testing conditions (Tjoa and Guan, 2021). The need for
explainability and robustness investigations of biomedical AI models
has been highlighted in previous studies, in particular to progress the
newly-introduced model’s usability for it is intended clinical appli-
cation (Tran et al., 2021; Amann et al., 2020). We undertake this
vailable online 6 December 2023
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challenge by exploring Explainable Artificial Intelligence (XAI) method
applications which yield an increase of trust in DNNs. Finally, models
are rarely generalised. We tackle this by linking multiple (qualitative
and quantitative) omic sources into a single, multi-dimensional model
and making the model applicable for use cases such as cancer type,
and therefore cancer sub-type, classification, among other downstream
tasks.

In this feasibility study, we explore the advantages of applying NLP-
based DL methods on multi-omics data as an alternative method to ex-
isting techniques, with a focus on their explainability. We concentrate
on model robustness (minimal changes in input resulting in minimal
changes in output), reproducibility (with other data), immutability
(with increase in data), and interpretability (input explainability). In
this study, we provide a proof of concept, showing that attention-
based approaches accurately extract features from omic datasets. More
specifically, we introduce SetQuence, a DNN built on set representations
of mutomes which encodes variably many, arbitrarily long sequences
in a permutation invariant manner. This is done on a small, publicly
available The Cancer Genome Atlas (TCGA) dataset containing somatic
variants data of only coding regions. We show the biological meaning-
fulness of our model using attribution methods and therefore provide
clinically-relevant, nucleotide-level explanations of applicability of our
models in cancer research.

Furthermore, larger and noisier data which includes unfiltered,
Whole-Genome somatic mutation data provides more detailed insight
into the tumour types being studied than coding-only somatic vari-
ant TCGA data. Therefore, using the Catalogue Of Somatic Mutations
In Cancer (COSMIC) dataset, we are working with more than four
times the patient samples and investigate how the non-coding genome
influences the classification of tumour types. We do so by first architec-
turally optimising the original implementation of SetQuence to reduce
its computational limitations and to improve usability of the model in
comparison to other approaches to answer multiple clinically relevant
questions. This enabled training our model on larger omics datasets,
improving tumour type classification metrics by including non-coding
variants into the analysis and exploring the robustness of the model on
multiple clinical applicabilty tasks.

We further generalise the network and data representation to in-
corporate transcriptome counts in SetOmic, a DNN which can integrate
different patient-wise omics sources. Thanks to set representations and
our architectural approach, our approach allows the incorporation of
more granular data compared to state-of-the-art, the applicability on
multiple downstream tasks, and offers nucleotide-level insights into
cancer-associated motifs, while showing improved robustness and com-
parable model performance to state-of-the-art approaches. We would
expect that with additional datasets, our results would improve even
further, such as via integration of methylation data, see Section 8.

In Section 2, related work is discussed. The background behind our
approach is described in Section 3. In the following Section 4 the meth-
ods detail the construction of the SetQuence model, its optimisation
trategies we have chosen, the SetOmic model, and the explainability
pproaches. Architectural model results are presented in Section 5 and
he clinical applicability results in 6. Both results sections are discussed
n Section 7 and the paper concludes with an overview of possible
uture directions is Section 8.

. Related works

Both supervised and unsupervised Machine Learning (ML) methods
ave been widely used for omics data analysis (Remli et al., 2017; Ming
t al., 2019; Petegrosso et al., 2019; Gal et al., 2020) and integration
f multiple omic sources into a single model has shown improved ac-
uracy in multiple oncology-relevant classification tasks (Picard et al.,
021; Sharifi-Noghabi et al., 2019). More recently, Variational Au-
oencoder (VAE) architectures such as DeepT2Vec (Yuan et al., 2020)
elped to better recapitulate tumour expression patterns compared to
2

previous clustering techniques. Thus, an initial unsupervised training
phase helps to better capture non-linear interactions in omics (Mazlan
et al., 2021), which then are fine-tuned in a supervised manner for
a downstream task. This strategy was successfully implemented by
the VAE-based OmiEmbed architecture (Zhang et al., 2021), a state-
of-the-art multi-omics hybrid method with a tumour type prediction
accuracy ∼96%. However, OmiEmbed’s input format is a gene-level
fixed-dimensionality vector input, where the pipeline is set up for a
specific set of genes and is, therefore, sensitive to input ordering.

Hybrid training of VAEs for multi-omics integration is a reoccurring
strategy in DL for cancer omics (Zhang et al., 2019, 2021; Simidjievski
et al., 2019). However, comparable models such as OmiEmbed (Zhang
et al., 2021), either do not consider sequence-level Whole Exome
and Whole Genome Sequence (WES and WGS respectively) data at
all, or map coding variants to a quantitative representation, such as
CPEM (Lee et al., 2019b). These approaches, firstly, lose the granularity
for the sake of reducing the curse of dimensionality of multi-omics data,
secondly, do not incorporate non-coding data which has been proved to
provide important insights into tumour activity (Ling et al., 2015), and
thirdly, do not consider variant-associated sequences in multi-omics
settings.

As an alternative, learnable feature extractors (e.g., via CNNs, Re-
current Neural Networks (RNN) and Neural Embedding methods Sha-
heen et al., 2016; Young et al., 2018) are being gradually adopted
for omics data, via Language Models (LMs) (Song et al., 2021). In
Natural Language Processing, attention-based networks (i.e., the Trans-
former Vaswani et al., 2017a) are used for pre-training and fine-tuning
LMs (Devlin et al., 2019a; Dai et al., 2019), from large text corpora.
In an omics setting, the attention-based networks (i.e., the Trans-
former Vaswani et al., 2017a) enables a more efficient parallel capture
of long range interactions (Bahdanau et al., 2015) between features.
DNABERT (Ji et al., 2021), a BERT-based LM pre-trained on human
genomes, encodes DNA sequences to predict regulatory motifs and
detect genomic variants (among other tasks) and outperforms previous
baselines such as CNNs, which we therefore choose as our encoder.

Mainly, three types of genome or exome representations have been
explored in the past: (i) per-patient lists of IDs such as a list of
mutated genes, (ii) one-hot disease-associated vector representations,
and (iii) using features appended to the one-hot vectors in ii. In i, the
presence of an ID indicates that a disease associated event, such as a
mutation, was observed at this locus (location within a genome), as
explored in Mut2Vec (Kim et al., 2018) and Genome Impact Transformer
(GIT) (Tao et al., 2019). GIT, as a baseline, is comparable to our
network since it considers the input as a set representation (of gene
IDs), while also being based on multi-head attention. However, multiple
events (e.g., mutations) are left unrepresented if they occur at the
same locus. This challenge is overcome by using (ii) one-hot vector
representations which indicate the presence/absence of 𝑀 number of
events (e.g., mutations), where 𝑀 is the number of all previously
observed events in a database (usually used together with Convolu-
tional Neural Network (CNN) architectures which are mostly limited to
local pattern detection) (Yuan et al., 2016; Chakraborty et al., 2021a).
(iii) uses features, such as mutation rates, appended to the one-hot
vectors (e.g., Cancer Predictor using an Ensemble Model (CPEM) Lee et al.,
2019b), which, similarly to ii, are restricted to mutation events that are
known a priori, precluding generalisation to unobserved events (i.e., to
the largely unexplored non-coding regions of the genome). Also, the
sparsity of vectors in ii-iii might be a major obstacle when training
such models (Evci et al., 2019).

In the past, Marquard et al. (2015) introduced TumorTracer along
with feature extractors 𝛷 that yield, apart from one-hot encoding of
variants, three features from prior knowledge of genomes: (a) non-
synonymous mutations (i.e., point mutation status of annotated genes);
(b) the base substitution frequency (i.e., the frequency of 6 possible
SNPs (C > A, C > G, C > T, T > A, T > C and T > G)); and (c) the

trinucleotide base substitution frequency (i.e., the relative frequency
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Fig. 1. Architecture of SetQuence and SetOmic, where SetQuence, built of set represen-
tations of variant-associated sequences, is part of the architecture of SetOmic, built for
multiple quantitative and non-quantitative omic sources.

of each of the substitutions in b surrounded by a sequence context
(96 possibilities of 3 bp long)). In practice, TumorTracer is Random
Forest (RF) trained on features a–c, able to yield an average ∼70%
prediction accuracy on 10 tumour types from the TCGA pan-cancer
cohort, compared to the < 30% accuracy of using one-hot encoding
using architecturally similar RFs. Later, Lee et al. (2019b) introduced
with Cancer Predictor using an Ensemble Model (CPEM) an additional
feature, namely, (d) mutation rates (i.e., number of SNPs, indels, or mu-
tated genes per genomic region). This, together with the use of Neural
Network (NN) and RF ensembles, improved model quality compared
to TumorTracer and other prior methods. More recently, Chakraborty
et al. (2021b) proposed a Hierarchical Bayesian perspective based on
all these previous features (a–c), plus (e) regional mutational density
(RMD) (i.e., the regional densities of mutations at contiguous regions
along each chromosome – previously introduced by Soh et al. (2017)).
In general, a–e are known as hidden genome features, which together im-
prove classification quality with respect to previous individual features.
In particular, Chakraborty et al. (2021b) showed that each feature had
different importance for tumour type classification from coding and
non-coding genome variants.

3. Background

3.1. Language models

Language Models (LMs) assess the conditional probabilities of words
in a language (e.g., given 𝑛 − 1 previous (and following) words in a
sentence by imposing the 𝑛th order Markov property Shannon, 1948).
Current LMs are built upon NNs which build an embedding space of
the vocabulary, such that words are mapped into a lower-dimensional
latent semantic space containing the statistical properties and semantics
of languages (Wang et al., 2019). In the case of LMs of biological
sequences, semantic refers to the underlying, low-level functional or
physiochemical properties of biological sequences, the so-called lan-
guage of life (Elnaggar et al., 2021). Recent LMs of biological sequences
3

are inspired by their NLP counterparts: LMs are obtained via unsuper-
vised pre-training of a DNN architecture on large amounts of text data,
as in the case of BERT (Devlin et al., 2019b), T5 (Raffel et al., 2020),
or GPT-3 (Brown et al., 2020). In a biological context, this translates
into training upon large collections of biological sequences, at omics
scale. This is the approach followed for DNABERT (Ji et al., 2021) and
ProtTrans (Elnaggar et al., 2021), LMs of DNA and protein sequences,
respectively.

3.2. Attention is all genomes need

Most recent LMs are built on the Transformer (Vaswani et al., 2017b;
Devlin et al., 2019b), thus, centrally based on the idea of the atten-
tion mechanism, to efficiently capture pairwise long-range interactions
between input or latent space vectors (e.g., of word embeddings in a
sentence Bahdanau et al., 2015). Attention maps a query 𝑄 and a set
of key–value pairs 𝐾, 𝑉 , as:

Attention(𝑄,𝐾, 𝑉 ) = softmax
(

𝑄𝐾𝑇
√

𝑑

)

𝑉 (1)

where 𝑄,𝐾,𝐵 ∈ R𝑁×𝑑 (i.e., across 𝑁-many 𝑑-dimensional vectors (in
the case of self-attention, 𝑄 = 𝐾 = 𝑉 )). Attention values are weights for
pairwise interactions, computed via the dot product 𝑄𝐾𝑇 ; thus, higher-
level interactions are captured by stacking attention blocks. In practice,
attention yields more expressive latent spaces for a wide variety of
tasks compared to CNN and RNN counterparts (Vaswani et al., 2017b;
Chaudhari et al., 2021).

3.3. Set neural network

An architecture which can simultaneously integrate multiple omic
sequences as sets is a Set Neural Network (SNN). Invariance, with
respect to input ordering and cardinality, is ensured via a pooling
operation that reduces sets to fixed representations (Lee et al., 2018).
Apart from the practical benefits for input flexibility, SNNs have been
shown to improve model generalisation and robustness (Tang and Ha,
2021). Hence in this paper, we will extend upon SNNs.

4. Methods

4.1. Data and its representation

We refer Appendix A for the detailed description of the data and its
pre-processing together with the way it is represented in our model. A
total of 32 tumour classes were investigated.

4.2. SetQuence : Set representations of sequences

SetQuence is a Neural Network 𝑓𝜃 ∶ N𝑛×𝑙 → R𝑐 , where 𝑛 is the
number of sequences for a patient, 𝑙 is the maximum length of input
sequences represented as integer tokens, and 𝑐 is the number of output
classes (𝑐 = 1 for binary classification; or 𝑐 > 1 for multi-class classi-
fication), defined as Eq. (2). SetQuence constructs fixed-dimensionality
representations from a set {𝑥𝑖,𝑗}

𝑛𝑖
𝑗=1, consisting of as many 𝑛𝑖 sequences

as somatic variants are called for a sample 𝑖 (e.g., a patient’s tumour).

𝑓𝜃(⋅) = 𝑓decoder(𝑓pooler(𝑓encoder(⋅))) (2)

Given a patient’s mutome, SetQuence (Fig. 1) uses DNABERT (Ji
et al., 2021) to encode each of the 𝑛𝑖 variant-associated sequences into as
many 𝑑-dimensional vectors 𝑒𝑖,𝑗 ∈ R𝑑 which correspond to the output
of the [CLS] token.

Subsequently, a pooling operation reduces the set of sequence encod-
ings {𝑒𝑖,𝑗}

𝑛𝑖
𝑗=1 into a single representation, that is, a single 𝑑-dimensional

vector that can be used for any downstream task, independent of 𝑛 .
𝑖
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Fig. 2. Effect of training hyperparameters in model and computational performance. In
(a), per-epoch cross-entropy loss is assessed for different learning rates (𝑙𝑟) and sequence
engths (𝑠) in base-pairs (bp), across 40 training epochs. In (b), the average time per
poch (and 95% confidence interval) are assessed for training distributed across 1 to
GPUs, for different sequence lengths (𝑠). In (c), the average (and 95% confidence

nterval) cross-entropy training loss per epoch are assessed for different 𝑘-mer sizes,
∈ 3, 4, 5, 6.

Lastly, a decoder module then projects the 𝑑-dimensional 𝑒′𝑖 into an
utput space to perform a downstream task (e.g., multi-class or binary
lassification of tumour types).

Learning rates (𝑙𝑟) had the greatest impact on training convergence,
ee Fig. 2(a). Choosing 𝑙𝑟 ∈ [10−5, 2.5 ⋅ 10−5] for SetQuence is shown to
rovide the lowest cross-entropy loss after 40 epochs which we chose
or further study. Changes in sequence length (for 𝑠 ≥ 64), have little
mpact on loss curves during training. Choosing 𝑙𝑟 ≥ 10−4 precluded
earning, possibly due to catastrophic forgetting of DNABERT’s param-
ter space, a commonly reported issue when fine-tuning BERT-based
odels (Xu et al., 2020).

We additionally assessed the average training time per epoch on 1
o 8 GPUs for different learning rates and sequence lengths (𝑠) across 40
raining epochs, see Fig. 2(b). With a 95% confidence interval, sequence
ength 𝑠 = 64 showed the lowest training times for any number of GPUs
n a single node which we chose for further study.

The 𝑘-mer length 𝑘 = 6 was chosen throughout this study, since it
rovided the lowest cross-entropy loss after 40 epochs, see Fig. 2(c).
his agrees with the exponential increase of dictionary size, scaling as
𝑘.

We compared multiple pooling strategies, which are input permu-
ation independent: (maximum, minimum or mean pooling, and pooling
y attention).

In the case of pooling by attention, encodings are subjected to Multi-
ead Self-Attention (SAB) to assess interactions between elements of

he set and are further reduced into a single vector by multi-head
ttention (PMA) (Lee et al., 2018); The SAB operation has a complexity
𝑂(𝑛2𝑖 ), which might be a limitation for large mutomes, therefore we

lso explored Induced Set Attention Block (ISAB) (Lee et al., 2018) of
uch lower time complexity.

Training and test data, were structured upon the hdf5 standard
HDF Group, 1997), and these hdf5 files are asynchronously parsed as
4

GPU-compatible PyTorch Tensor. Patient labels are parsed only once
hen instancing Dataset, into an 8-bit integer tensor with shape (𝑃 ),
here 𝑃 is the number of patients. Therefore, for variant data, a tuple
f torch.tensor structures is generated for the requested sample.

.3. Implementation of optimisation strategies

.3.1. Knowledge distillation
The protocol for model knowledge distillation introduced by Sanh

t al. (2019) was adapted to the DNABERT (Ji et al., 2021) model
teacher). It was performed over 1–11 Transformer Encoder blocks
students), compared to the 12 blocks in the teacher model.

= 𝛼 ⋅ distil + (1 − 𝛼) ⋅ MLM (3)

Student models were trained to minimise the loss function  in
q. (3) with a linear combination parameter 𝛼 = 0.5, temperature
= 2, cross-entropy loss for Masked Language Modelling loss (MLM),

nd Kullback–Leibler divergence for distillation loss (distil) (Cover and
homas, 2005; Hinton et al., 2015). Instead of relying on Python’s
ickle, we used a custom tokenizer that stored the 16-bit integer
-mer genome sub-sequences in a hdf5 format (i.e., as a dataset
ontaining an (𝑁 × 𝑠max) matrix of 𝑁 genomic sequences of maximally
max tokens). Therefore, data loading and random sequence masking
ccur asynchronously to GPU-side compute.

Training was performed on a single GPU worker using the Adam
ptimiser (Kingma and Ba, 2015) with 𝑙𝑟 = 2.5 ⋅ 10−5, 𝛽1 = 0.9,
2 = 0.999, with a batch size of 64 sequences across 115,435 training
teps, after which  reached a plateau. Student model quality was
ompared by fine-tuning the prom-core 2-class classification task – to
redict proximal and core promoter regions, see Ji et al. (2022).

.3.2. Encoder with 𝑞-sequence freezing
Prior to encoding any (ordered) sequence set {𝑥𝑖,𝑗}

𝑛𝑖
𝑗=1, let us ran-

omly reassign the indices 𝑗 to shuffle them, and let us define 𝑞𝑔 ∈ N
uch that 0 ≤ 𝑞𝑔 ≤ 𝑛max. The 𝑞-sequence freezing method (Algorithm
) implies that the first 𝑞𝑔 ≤ 𝑛𝑖 sequences are passed to the encoder,
o yield 𝑒graph

𝑖 . On the other hand, the remaining 𝑛𝑖 − 𝑞𝑔 sequences are
ncoded but not attached to the computational graph, to yield 𝑒no-graph

𝑖 .
dditionally, computation can be performed in chunks of maximally
𝑓 sequences. For the TCGA dataset, 𝑞𝑓 + 𝑞𝑔 is maximally 500. Finally,
ll sequence encodings are collected into a single set 𝑒′𝑖 by concate-
ating 𝑒graph

𝑖 and 𝑒no-graph
𝑖 , such that only 𝑞𝑔 sequences contribute to

he gradient calculation at the encoder. Because PMA is permutation-
nvariant and all sequences are considered (also in its computational
raph), pooling and downstream operations remain unchanged.

.4. SetOmic : Set representations of multi-omics

SetQuence is built to extract features from sequence data. We built
etOmic, (Fig. 1), to incorporate further omic data types. The encoder -
ooler -decoder architecture of SetQuence is generalised for a multi-omics
ata-set, 𝐷multi = {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1, if 𝑥𝑖 = {𝑥𝜔𝑖 }𝜔∈𝛺, where 𝑥𝜔𝑖 ∈ {N𝑛𝑖 ,R𝑚𝑖},
ith ‖𝛺‖ > 1. The processing of sequences takes place through
etQuence; meanwhile, locus-exp token pairs, are embedded via a linear
ayer 𝑓𝑒 ∶ N𝐺 → R𝐺×𝑑 , where 𝐺 is the maximum number of quantified
oci. These embeddings encode, qualitatively, the functional aspects
f the gene 𝑔 ∈ 𝐺 at which expression has been measured, and
uantitatively, the expression level. Formally, a per-patient locus-exp
mbedding 𝑒

𝜔exp
𝑖 is the sum of loci and expression embeddings, as:

𝜔exp
𝑖 = {𝑓𝑒loci (𝑔) + 𝑓𝑒exp (𝑓𝑑 (𝑥

𝜔
𝑖,𝑔))}𝑔∈𝐺 (4)

Analogous to 𝑒𝜔mut
𝑖 , locus-expression embeddings constitute a set rep-

esentation suitable for the previous pooling architecture. For instance,
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in the case of mutomes and transcriptome counts, the encoder part of
SetOmic is defined as (𝑒𝜔mut

𝑖 , 𝑒
𝜔exp
𝑖 ) = SetOmicENC(𝑥𝑖) such that:

𝑒𝜔mut
𝑖 = PMA(𝑆𝜔mut , SAB(DNABERT(𝑥𝜔mut

𝑖 )))

𝑒
𝜔exp
𝑖 = PMA(𝑆𝜔exp ,ENC({𝑓𝑒loci (𝑔)+

𝑓𝑒exp (𝑓𝑑 (𝑥
𝜔
𝑖,𝑔))}𝑔∈𝐺))

where 𝑆 are the 𝑘-seeds for PMA, and ENC is an encoder such as SAB
or ISAB. Then, embeddings 𝑒𝜔𝑖 are summed (sum-pooling) to yield a
multi-omic representation:

𝑒multi-omic
𝑖 =

∑

𝜔∈𝛺
𝑒𝜔𝑖 (5)

4.5. Classification of tumour types

The supervised classification module of tumour types consists of
a Fully Connected (FC) block with dropout (𝑝 = 0.3), consisting of a
Linear layer with a Rectified Linear Unit (ReLU) activation function:

𝑦𝑖 = ReLU(Dropout𝑝(𝑒multi-omic
𝑖 )) ∗ 𝑊 𝑇 + 𝐵 (6)

where 𝑦𝑖 is a vector of predicted class logits for patient 𝑖, 𝑒multi-omic
𝑖 is

an encoding with dimension 𝑑, 𝑊 and 𝐵 are weight and bias matrices,
and the output dimension 𝑐𝑠 is the number of classes to be classified
(i.e., tumour types and healthy controls). The networks were trained
by back-propagation of the cross-entropy loss function:

(𝑦̂, 𝑦) = {𝑙1,… , 𝑙𝑁}𝑇 , 𝑙𝑛 = −𝑤𝑦𝑛 log
exp(𝑦̂𝑛,𝑦𝑛 )

∑𝐶
𝑐=1 exp(𝑦̂𝑛,𝑐 )

(7)

where each 𝑦̂𝑛,𝑐 is the logit of class 𝑐 out of 𝐶 classes, for the instance
𝑛 in a batch. Equivalently, 𝑦 is the one-hot vector of the target class
(label), and 𝑤𝑦𝑛 is the weighting of the loss for class 𝑦𝑛. During
model training, model parameters were updated with the Adam opti-
miser (Kingma and Ba, 2015), parameterised with 𝛽1 = 0.9, 𝛽2 = 0.999,
learning rates in the interval 𝑙𝑟 = [0.001, 10−6], and a linear learning
schedule, with 10% warm-up steps over the total number of training
steps, with a peak learning rate 𝑙max

𝑟 = 𝑙𝑟. We implemented layer
normalisation at the encoder -pooler to provide regularisation effects (Ba
et al., 2016).

Data in the form 𝐷 = {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1 was randomly split into train-
ing and testing sets 𝐷 = 𝐷train

⋃

𝐷test, where ‖𝐷train‖ = ⌈0.8 ∗
‖𝐷‖⌉, ‖𝐷test‖ = ‖𝐷‖ − ‖𝐷train‖, in a stratified manner. We accounted
for class imbalance during training by weighting:

𝑤𝑦𝑛 =
‖{𝑦𝑖 = 𝑦𝑛|∀(𝑥𝑖, 𝑦𝑖) ∈ 𝐷}‖

‖𝐷‖

(8)

4.6. Classification metrics

The final model quality was assessed on the 𝐷test subset using
ive metrics: precision – ratio of classifications that are true positives
cross all positive predictions; recall – ratio of classifications that are
ositives across all ground-truth positives; accuracy – ratio of correct
lassifications; and Area Under the Receiver Operating Characteristic
ROCAUC) or Precision–Recall (PRAUC) curves, – higher values are better

(interval [0, 1]). In multi-class cases, metrics were macro-averaged.
5

Table 1
Comparison of pooling methods in Baseline SetQuence, with and without disabling of
the fine tuning during training.

Pooling strategy Accuracy

Max 0.199
Min 0.045
Mean 0.271
PMA (𝑠 = 1, ℎ = 12) 0.404
SAB + PMA 0.415
ISAB + PMA (𝐼 = 50) 0.413

PMAdis 0.297
PMAdis > epoch 10 0.475

4.7. Explainability through Primary Attribution Methods

We discuss the Primary Attribution Methods together with how they
were used to measure the contribution of each feature in Appendix B.

5. Results: Architecture

In this section, we assess the architectural choices for SetQuence.
Furthermore, we assess the effectiveness of the applied optimisations.
Furthermore, Then we discuss the direction taken with SetOmic. For the
purpose of clarity, we refer to the original implementation of SetQuence,
Sections Section 4.2, as Baseline SetQuence, and when referring to
Optimised SetQuence, we refer to the model that includes all of the
optimisations applied in Section 4.3.

5.1. Baseline SetQuence pooling strategies

We assess the classification performance of three different pooling
strategies: (i) max, min and mean-pooling; (ii) pooling by attention
(PMA); and (iii) self attention, via ISAB or SAB operations, followed by
PMA, as indicated in Table 1. Classification performance is expressed as
the macro-averaged accuracy after 40 epochs, for the validation subset.
Specific combinations of architectural hyperparameters are indicated
(i.e., number of attention heads (ℎ), number of seeds for PMA (𝑠) and
number of inducing elements for ISAB (𝐼)). The accuracy was lowest
for mean, max, min and PMA pooling strategies. SAB and ISAB showed
marginally better classification accuracy than for PMA. Learning was
expected to fail under min-pooling, as the latent space mostly consists
of zeros after the ReLU activation layer at the classifier.

We explored disabling the fine-tuning (PMAdis) during training of
SetQuence to investigate the load balance problem we faced due to the
high memory requirements of DNABERT. Disabling fine-tuning after 10
training epochs (PMAdis > epoch 10) yielded the best overall classifi-
cation performance, even compared to enabled fine-tuning throughout
all training epochs. Showing the best balance between efficiency and
accuracy, we chose PMA pooling and epoch-selective fine-tuning as the

preferred strategy for training SetQuence.
Algorithm 1 Encoding step with 𝑞-sequence freezing
Input: 𝑞𝑔 , 𝑞𝑓 , 𝑆𝑖 ⊳ Sequences in graph; chunk size; sequence set
Output: 𝑒†𝑖 ⊳ Sequence encoding set
𝑆shuffled
𝑖 ← shuffle(𝑆𝑖)

𝑆finetune
𝑖 ← {𝑥𝑖,𝑗 ∈ 𝑆𝑖 ∣ ∀𝑗, 𝑗 ≤ 𝑞𝑔}

𝑒†𝑖 ← DNABERT(𝑆finetune
𝑖 )

for 𝑞𝑖 = 𝑞𝑔 ; 𝑞𝑖 ≤ 𝑛𝑠; 𝑞𝑖 ← 𝑞𝑖 + 𝑞𝑓 do, with freeze(): ⊳ Get chunk of sequences, freeze graph
𝑆non-finetune
𝑖 ← {𝑥𝑖,𝑗 ∈ 𝑆𝑖 ∣ ∀𝑗, 𝑞𝑖 ≤ 𝑗 < min(𝑞𝑖, 𝑛𝑖)}

𝑒non-finetune
𝑖 ← DNABERT(𝑆non-finetune

𝑖 )
𝑒†𝑖 ← 𝑒†𝑖 ∪ 𝑒non-finetune

𝑖
end for
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Fig. 3. Efficiency and benchmark quality after DNABERT distillation, with 1 up to
1 transformer blocks, compared to the model with 12 blocks. In (a), accuracy after

fine-tuning epochs on the prom-core task, as a benchmark used to compare the
ifferent block configurations. In (b), the time needed for forward–backward operations
n DNABERT model with 1, 3 and 12 transformer blocks, as a function of the number
f sequences to encode in a batch.

.2. Analysis of the optimisation strategies

We addressed two efficiency aspects: the memory/time limitations
f the DNABERT encoder and kernel execution sparsity during pool-
ng. More than 100 million parameters of Baseline SetQuence mostly
orrespond (85%) to the DNABERT encoder. Therefore,

the following optimisations were implemented upon the Baseline
etQuence: (1) asynchronous data-loading based on the hdf5 standard,
2) diffusive load balancing, (3) lower number of transformer blocks
t the encoder (after knowledge distillation), (4) JIT execution at the
ooler, and (5) 𝑞-sequence freezing, with 𝑞𝑔 = 256.

.2.1. Knowledge distillation
Knowledge distillation was performed on the original DNABERT

odel (teacher) to yield models (students) with 1–11 transformer blocks
see Section 4.3.1). To achieve this goal, all distillations with 3 or more
ransformer Encoder blocks yield metrics as good as the largest model
ith 12 blocks (e.g., accuracy shown in Fig. 3(a)).

Distillation did not impact average metrics when training end-
o-end SetQuence on TCGA for tumour type classification: precision
0.395), recall (0.361) and accuracy (0.478) remained similar to the
aseline SetQuence model built on with a 12 block model (0.375, 0.362,
nd 0.475, respectively). As expected, forward and backward times and
emory usage were reduced when using fewer transformer blocks.

.2.2. 𝑞-sequence freezing: Reducing computational graph size
Reducing the number of transformer blocks improved the efficiency

f the encoder; however, there is an upper bound on the number of
equences that can be encoded during a training step (see Fig. 3(b)), an
mportant limitation if the number of available data sample sequences
s large (e.g., 𝑛𝑖 > 512 on an encoder with 12 layers).

Training the SetQuence architecture with default hyperparameters
n the TCGA dataset for tumour type classification, different numbers
f 𝑞𝑓 sequences (from 0 to 500, where 𝑞 = 𝑞𝑔

𝑞𝑔+𝑞𝑓
ranges from 0 to 1) led

to changes in test classification metrics (i.e., accuracy shown in Fig. 4).
Specifically, the configuration 𝑞𝑓 = 0 corresponds to not updating

ncoder parameters (complete freezing), whereas 𝑞𝑓 = 500 means that
t most 500 sequences are used in the computational graph; for TCGA,
t corresponds to all sequences available per patient. Among these,
sing a 𝑞𝑓 = 256 shows the highest test accuracy.

.2.3. Memory-efficient attention and JIT execution improve pooling
Distillation and 𝑞-sequence freezing can reduce the space–time com-

lexities of the encoder. Similarly, we aimed to improve the efficiency
f the pooling by attention (PMA) implemented by Lee et al. (2019a).
ndeed, PMA shows low GPU usage with low values of 𝑘 ⋅ 𝑛 , that
6

max
Fig. 4. Maximum model accuracy when training the SetQuence architecture with
default hyperparameters on the TCGA dataset for tumour type classification.

Fig. 5. The final model test accuracy across workers of SetQuence, trained on TCGA
dataset for tumour type classification from variant-associated sequences after all
optimisation strategies have been applied. Metrics for 32 and 64 workers are the same
as training on 4 and 8 nodes with gradient synchronisation only 1 out of 8 steps,
respectively.

is, low number of pooler seeds and sequences Therefore, we alterna-
tively relied on TorchScript JIT for module serialisation instead of the
eager execution at the PMA module in SetQuence. The original vanilla
attention could not be performed on more than 20,000 sequences and
4000 seeds (thus, not shown), owing to GPU memory limitations. This
restricts the applicability of SetQuence to future datasets with large
numbers of sequences, regardless of the efficiency of the encoder, if
the pooler has many 𝑘 seeds. This would be useful (e.g., as increasing
𝑘 is positive for model generalisation), see Section 6.1.2.

To circumvent this, we replaced the vanilla attention module
(nn.MultiHeadAttention) in PyTorch, used for the Baseline
SetQuence implementation, by Top-k attention, a more memory-
efficient, chunked-attention-based mechanism (Gupta et al., 2021).

Chunked attention is preferred whenever 𝑘 ⋅ 𝑛max > 8 ⋅ 107; no other
onfiguration justifies the additional overhead of Gupta’s implemen-
ation. Indeed, vanilla attention was used in Section 6, as no dataset
r model configuration involved >20,000 sequences or required >4000

seeds.

5.3. Optimised SetQuence : All strategies put together

Combining all optimisation strategies (see Fig. 5), training epoch
time on TCGA were reduced from ∼11 min to ∼3 min on 1 GPU, a ∼3.7x
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Table 2
Tumour type classification performance: SetQuence, vs. GIT, a comparable method, and
random classifiers.

Classifier Precision Recall F1-score Accuracy 𝑅𝑂𝐶AUC

SetQuence 0.375 0.362 0.359 0.475 0.910
GIT 0.312 0.248 0.229 0.247 0.740
Strat. Random 0.035 0.034 0.034 0.041 0.500
Prior Random 0.004 0.031 0.007 0.118 0.500

speedup. These optimisations did not affect model quality (test met-
rics for tumour type classification, after 25 epochs) when comparing
against the unoptimised model on same resources. However, increasing
the number of workers affected model metrics – (e.g., test accuracy,
reduced from 0.5 to 0.43 when scaling from 4 to 64 DDP workers).
This was caused by design and was to be expected, since we kept the
number of iterations constant for the purpose of the experiment. This
is a efficiency vs. model quality trade-off, as larger batch sizes lead
to lower final test metrics (e.g., accuracy) after the same number of
training steps. We would expect, with longer training times, especially
with these distributed settings, this can be compensated and the models
could reach or surpass the baseline model quality.

5.4. SetOmic : Integration of other omics data

SetOmic, built on Baseline SetQuence for the feasibility study, sup-
ports sequence and non-sequence inputs via multi-omics late integra-
tion. Specifically, we focused on integrating transcriptome counts with
variant-associated sequences. We trained two models with PMA pooling
for tumour type prediction. The first learnt from transcriptome counts
only (SetOmic-exp), the second with a combination of variant-associated
sequences and transcriptome counts of the pan-cancer TCGA data-set
(SetOmic).

5.5. HPC implementation

Efficiency analysis and model training experiments were carried out
on nodes, interconnected via InfiniBand HDR200, equipped with 2x
AMD EPYC CPU 7352 (24 cores, multi-threading capable), 1 TB of RAM
and 8x NVIDIA A100-SXM4 GPUs (40 GB HBM2 vRAM), in a fully
connected intra-node topology (8 × 8 links, 3rd generation NVLink).
We used PyTorch 1.8.2 and OmniOpt (Winkler et al., 2021) for our
DNN implementations.

6. Results: Applicability

This section covers the clinical applicability of our models and
how the applied optimisations impact their effectiveness (Section 6.1).
Furthermore, we explore how SetOmic (Section 6.2), a generalisation of
Baseline SetQuence, is able to support multiple omics inputs. Then model
explainability was explored in Section 6.3.

6.1. SetQuence

6.1.1. Tumour type classification task
We constructed a confusion matrix (Fig. 6) for 7 out of the 32

tumour types: Lung Adenocarcinoma (LUAD), Lung squamous cell car-
cinoma (LUSC), Esophageal carcinoma (ESCA), Sarcoma (SARC), Breast
invasive carcinoma (BRCA), Colon Adenocarcinoma (COAD) and Stom-
ach Adenocarcinoma (STAD). Predictions for lung tumours, LUAD and
LUSC (53 and 91 respectively) are mostly correctly predicted; mis-
classifications (39 samples) are caused by similarities between the two
types, potentially due to similar sub-types, or same primary site. The
same holds for the digestive tract tumours, COAD and STAD.

We explored how accurate SetQuence is in deciding between all of
the tumour classes (i.e., non-binary classification) and compared it to
7

Fig. 6. SetQuence confusion matrix for the seven selected tumour types.

GIT (Tao et al., 2019), which is described in Section 2. It performed
better than GIT in all four macro-averaged metrics: precision, recall,
F1, accuracy, and also one-vs.-rest ROCAUC Curve, showing improved
generalisation with SetQuence (Table 2). The Stratified Random dummy
classifier returns class labels randomly sampled from a distribution
parameterised by the empirical label distribution. Prior Random returns
the most frequent label in the empirical distribution.

6.1.2. TCGA vs. COSMIC: Somatic, exome-only variants
The TCGA variant dataset mainly provides somatic variants at ex-

ons, where COSMIC Catalogue Of Somatic Mutations In Cancer dataset
is a larger Whole-Genome dataset. We show that Optimised SetQuence is
trainable on such larger dataset, and how model quality compares on
Cosmic respect to TCGA for the same goal and data types (e.g., somatic,
exome-only variants). Furthermore, we show whether the inclusion
of non-coding variation further improves classification quality and
provides additional biological insights. In Section 6.1.4, we show the
impact of alternative DNA-LMs on SetQuence (i.e., pre-trained on other
genome references) to better understand the projection of sequences
into the latent feature space.

Let us compare the TCGA dataset to the larger Cosmic, specifically
to a subset of coding variants across 31,677 patients across 32 tumour
types comparable to TCGA labels, in order to better explore the benefits
of the previous optimisations when training SetQuence for yielding
a single multi-class tumour type classifier. By choice, classification
quality is subsequently shown via macro-averaged metrics: precision,
recall, accuracy, (ROCAUC), and (PRAUC) Curve, see Section 4.6.

Optimisations in Section 5.2 need to be enabled when training
on Cosmic. Otherwise, the model was untrainable due to a lack of
GPU memory. Therefore, we trained Optimised SetQuence on 8 GPUs,
which took ∼220 min when trained on Cosmic until convergence (40
epochs, ∼160 GB of sequences accumulatively encoded), compared to
the around 18 min taken on the TCGA dataset (25 epochs, ∼3 GB of
accumulate sequence data); the higher average amount of sequences
per patient in Cosmic (1000 s vs. 100 s) leads to better saturation of GPU
resources, thus, better training efficiency. Regarding model quality, tu-
mour type classification test metrics on Cosmic were similar when using
an architecture analogous to Baseline SetQuence approach on TCGA, that
is, with one pooling seed, 𝑘 = 1 (Table 3). This configuration led to
similar metrics respect to hidden-genome approaches (e.g., NN and RF
built on non-synonymous mutation frequencies as input Chakraborty
et al., 2021b).

Then, we studied the effect of increasing the number of pooling
seeds (𝑘). This improved all classification metrics on Cosmic, signif-
icantly surpassing the baselines. These improvements correlate with
the converged parameter space being found at flatter and wider local
minima of the loss landscape (Fig. 7). This is an argument in favour
of model generalisation (Hinton and van Camp, 1993; Li et al., 2018),
supporting that large models (proportionally to 𝑘) lead to better
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Fig. 7. Loss landscapes for Optimised SetQuence trained on Cosmic, for the training set, at three different architectural configurations (respect to number of pooling seeds, 𝑘). The
idths of local minima basins are indicated in Arbitrary Units. X,Y axes correspond to parameters 𝛼 and 𝛽, scaling parameters to gradually add i.i.d. Gaussian noise 𝛿, 𝜂 to each
arameter at the analysed model, located at the (0, 0) coordinate.
Table 3
Classification quality of SetQuence (SetQuence) and baseline models trained on all TCGA or Cosmic coding variants
(CV), across 32 tumour types. The NN and RF baselines use non-synonymous mutation frequencies as input data, and
are parameterised as in Chakraborty et al. (2021b). The Stratified baseline is a dummy classifier that returns class
labels sampled from the distribution of training labels. Classification metrics are as macro averages across tumour
types for the test cohort.
Dataset Model Precision Recall Accuracy ROCAUC PRAUC

Top-1 Top-2

TCGA SetQuence (𝑘 = 1) 0.375 0.362 0.475 0.627 0.910 0.376
Stratified random 0.004 0.031 0.118 0.354 0.500 0.031

Cosmic (CV) SetQuence (𝑘 = 1) 0.344 0.312 0.483 0.604 0.878 0.395
SetQuence (𝑘 = 200) 0.381 0.350 0.521 0.636 0.881 0.416
SetQuence (𝑘 = 4000) 0.502 0.402 0.567 0.657 0.891 0.468
NN 0.320 0.274 0.519 0.623 0.838 0.269
RF 0.408 0.263 0.472 0.581 0.852 0.313
Stratified random 0.030 0.030 0.060 0.066 0.499 0.000
Table 4
Classification quality (macro-averaged metrics) of SetQuence and Random Forest (RF), see Chakraborty et al. (2021b).
−CV: coding variants; −NCV: non-coding variants; −GeneID: non-synonymous mutation frequencies; −RMD: Regional
Mutational Density, per 100 kb. Ensemble models represented as ∩. In −CV→NCV, CV were used to predict NCV,
and viceversa.
Model Precision Recall Accuracy ROCAUC PRAUC

Top-1 Top-2

SetQuenceCV+NCV 0.605 0.514 0.709 0.812 0.906 0.603
SetQuenceCV 0.501 0.493 0.682 0.762 0.891 0.529
SetQuenceNCV 0.521 0.456 0.649 0.787 0.883 0.531
RFRMD 0.442 0.522 0.694 0.800 0.908 0.624
RFGeneID 0.451 0.494 0.701 0.816 0.910 0.569

SetQuenceCV→NCV 0.480 0.501 0.609 0.749 0.843 0.478
SetQuenceNCV→CV 0.516 0.435 0.632 0.781 0.877 0.509

SetQuenceCV+NCV ∩ RFRMD 0.552 0.631 0.787 0.868 0.926 0.679
SetQuenceCV ∩ RFRMD 0.556 0.631 0.768 0.867 0.924 0.699
RFGeneID ∩ RFRMD 0.461 0.681 0.719 0.803 0.913 0.613

Stratified random 0.106 0.106 0.134 0.411 0.496 0.061
generalisation, not just memorisation of training data. For this reason,
the number of pooler seeds was set to 𝑘 = 4000 for the following
experiments on the Cosmic dataset.

6.1.3. Including non-coding variation improves tumour classification
A subset of 4314 Cosmic samples was tagged as Whole-Genome

Sequencing, providing both coding (CV) and non-coding variant (NCV)
data – notice that the intersection of these and the TCGA public cohort
is the empty set. More specifically, Optimised SetQuence was trained on
2913 samples belonging to 10 tumour types comparable to analysed
by Chakraborty et al. (2021b), with at least 10 variants per sample
— ranging from 4 cases of ovarian cancer to 865 of breast cancer.
8

In Table 4, Optimised SetQuence models separately trained on CV and
NCV show metrics comparable to baselines respectively trained on non-
synonymous mutation frequencies and RMD signatures. Classification
metrics were higher when simultaneously training on CV and NCV com-
pared to using these separately, although Optimised SetQuence did not
outperform a baseline model ensemble of two RFs, for non-synonymous
variation frequencies and RMD signatures. Also, classification on un-
seen data with NCV only is possible with a model trained on CV only,
and vice-versa. Lastly, a model ensemble of Optimised SetQuence and
a RF for RMD showed the highest test metrics. This ensemble model
yielded good separation of tumour types at two-dimensional embedding
space (Fig. 8(b)). Test metrics were different across individual tumour



BioSystems 235 (2024) 105095N. Jurenaite et al.
Fig. 8. Tumour type classification from coding and non-coding variants. For a Optimised SetQuenceCV+NCV ∩ RFRMD model: (a) Confusion Matrix; (b) 2D t-SNE of pooler outputs,
dot size proportional to 𝑛𝑖 per patient; (c) Precision–Recall curves for Optimised SetQuence (coloured) and RF baseline (grey). Types: Breast, Kidney, Large Intestine, Liver, Lung,
Oesophagus, Ovarian, Pancreas, Prostate, Skin.
types — highest for Breast, Kidney and Skin cancers, and lowest for
Large Intestine and Ovarian cancer (Figs. 8(a) and 8(c)).

6.1.4. Robustness to changes in the language model encoder
The majority of the human genome is non-coding (Piovesan et al.,

2019); for this reason, differences between genome reference assem-
blies and individual’s genomes mostly happen at those regions (Nurk
et al., 2022). To further test the robustness of encoding to pre-
processing, we trained Optimised SetQuence with an alternative sequence
encoder that we pre-trained on the same DNABERT architecture with
3 transformer blocks, using the T2T assembly (Nurk et al., 2022)
instead of the GRCh38 assembly as training data — for the same
number of steps, hyperparameters and objective as specified by Ji
et al. (2021). With this T2T pre-trained encoder, tumour classification
metrics decreased upon non-coding and coding variants, compared to
using the original DNABERT encoder pre-trained on GRCh38 (Table 5).
The classifier with coding variants was the only showing an increase on
test precision, although it had the greatest decrease on accuracy. On
the other hand, the classifier with both coding and non-coding variants
had the best robustness across the three, with same test precision, and
some of the lowest decreases in test recall and accuracy. Moreover,
we tested whether the sequence encodings from GChR38 and T2T LMs
are informed by sequences themselves, or by other aspects such as
GC-content. To explore so, we shuffled the order of the nucleotides of
each variant-associated sequence, before 𝑘-merization. This decreased
classification metrics in both cases (marked as ‘a’ in Table 5), leading to
models with classification properties similar to counterparts based on
one-hot encoding of variants (i.e., the baseline model in Chakraborty
et al., 2021b). These results confirm the essential role of LMs in feature
extraction, as a 𝜙-function, from variant-associated sequences.

6.2. SetOmic

For the purpose of proof of concept, we used the Baseline SetQuence
model together with expression count data from the TCGA dataset to
compare how incorporation of further omics data features impact the
classification metrics. We refer to this model as SetOmic. We constructed
a confusion matrix, Fig. 9, for SetOmic, to compare it to Fig. 6. The
same 7 tumour types are showing a higher proportion of correct
classifications as well as a reduction of confusion between sub-types.

Indeed, the ROC curve graph, where each ROC curve corresponds
to each tumour type in Fig. 10 shows how the use of both expression
and mutation data improved the ability to detect all tumour types
(red for Baseline SetQuence, blue for SetOmic, where bright red and
bright blue lines are average ROC curves across all tumour types for
9

Fig. 9. SetOmic confusion matrix for the seven selected tumour types.

Baseline SetQuence and SetOmic respectively). Uterine Carcinosarcoma
performed worst using Baseline SetQuence, second worst when using
SetOmic, following closely behind Kidney Chromophobe. While the
sample sizes of both were low, clear correlation between ROC and
sample size was not observed.

Table 6 provides a comparison of classification performance be-
tween our models and OmiEmbed, a VAE architecture for multi-omics
integration (Zhang et al., 2021) trained on transcriptomes. Perfor-
mance metrics are macro-averages across all classes, for the test subset.
When trained on transcriptome counts, SetOmic-exp achieves close to
OmiEmbed’s state-of-the-art performance. In the multi-omics scenario
(SetOmic), classification performance significantly improves over our
single-omics model and OmiEmbed.

We assessed the robustness of our models and previous baselines af-
ter randomly excising parts of the available data points per patient, for
transcriptome counts and variant-associated sequences. Classification
performance on SetOmic, compared to OmiEmbed, was affected to a lesser
extent when removing half of the input omics (17% vs. 22% decrease
in accuracy), although with similar robustness in the transcriptome-
only case (24% decrease in accuracy). In the case of variant-associated
sequence data, the sequence encoding approach introduced with Base-
line SetQuence showed a lower penalisation when randomly removing
half of the available mutation events, with a 9.7% drop in accuracy,
compared to using Gene IDs with the GIT method, with a 22.3% drop.

6.3. XAI recapitulates the biological meaningfulness of our models

Explainability was introduced as essential for ML/DL trustworthi-
ness in oncology. Primary attribution methods served us to obtain
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Table 5
Using alternative LMs at the SetQuence encoder. SetQuence with −CV and −NCV with our T2T encoder is compared to
counterparts in Table 4 (with GRCh38 encoder). Macro-averaged test metrics are precision, recall, accuracy, ROCAUC and
PRAUC, for tumour type classification on Cosmic, 10 types.

Model Precision Recall Accuracy ROCAUC PRAUC

SetQuenceCV+NCV 0.607, ↑0.3% 0.482, ↓6.2% 0.585, ↓17.5% 0.881, ↓2.6% 0.555, ↓8.0%
SetQuenceNCV 0.477, ↓8.4% 0.371, ↓18.6% 0.561, ↓13.6% 0.826, ↓6.5% 0.465, ↓12.4%
SetQuenceCV 0.563, ↑56.3% 0.451, ↓8.51% 0.545, ↓20.1% 0.797, ↓10.5% 0.506, ↓4.3%

SetQuenceaCV T2T 0.408, ↓18.6% 0.363, ↓26.4% 0.483, ↓29.2% 0.648, ↓27.3% 0.345, ↓34.8%
SetQuenceaCV Ch38 0.330, ↓34.1% 0.267, ↓45.8% 0.436, ↓36.1% 0.671, ↓24.7% 0.263, ↓50.3%

a The effect of shuffling the position of nucleotides at variant-associated sequences is shown for both encoders.
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Table 6
Tumour type classification performance of SetOmic-exp, expression count data only
model vs. SetOmic, sequence data and expression count data model, to investigate if
expression count data model sufficiently produces well performing metrics. We also
consider a comparable model OmiEmbed and stratified and prior random classifiers.

Classifier Precision Recall F1-score Accuracy 𝑅𝑂𝐶AUC

SetOmic-exp 0.876 0.887 0.880 0.923 0.976
SetOmic 0.945 0.909 0.921 0.950 0.997
OmiEmbed 0.932 0.911 0.914 0.942 0.997
Strat. Random 0.035 0.034 0.034 0.041 0.500
Prior Random 0.004 0.031 0.007 0.118 0.500

attribution scores 𝐴(𝑥𝜔𝑖,𝑗 ), per patient 𝑖 and feature 𝑗, for specific omics
𝜔.

We learn that only a few features are important to determine tumour
type by calculating the attribution scores of each omics using the Input
X Grad attribution method, from Optimised SetQuence and from SetOmic.
Attribution scores followed the power-law distribution.

6.3.1. SetOmic : Expression and mutation attributions
We obtained a sorted collection of variant-associated sequence and

transcriptome count features (for Breast Cancer, BRCA) to evaluate
whether attribution scores are intuitively related to biological func-
tions. In the case of mutation data, all top five genes with highest
attribution scores are known to have a significant influence of cancer
occurrence: PIK3CA is mutated in 35.7% of BRCA patients (Martínez-
Sáez et al., 2020); MYADM regulates the Rac1 targeting and is required
for cell migration (Aranda et al., 2011); CD200 inhibits metastatic
growth of tumour cells (Erin et al., 2014); FABP3 is a tumour suppressor
gene in BRCA (Tang et al., 2016); and XKR6 determines the respon-
siveness to drugs in BRCA (Coyle et al., 2018). Respect to expression
data, all top five genes have been proposed to have implications on
BRCA samples when differentially expressed respect to healthy tissues:
S100A11 is a S100 calcium binding protein A11 and plays a role in
cancer cell growth, associated with poor survival (Zhang et al., 2017);
the differential expression of SLC39A6 is associated with different prog-
nosis (Cui et al., 2015); the low expression of PRKAR1 A is indicative of
poor survival in basal-like and HER2 tumours (Beristain et al., 2014);
RAD21 correlates with resistance to chemotherapy in various BRCA
sub-types (Xu et al., 2011); and COL5A2 is associated with migration
and invasiveness through extracellular matrix (Vargas et al., 2012).
Similarly, the transcriptome features with lowest attribution scores
correspond to pseudo-genes and non-coding RNAs.

More systematically, all attribution methods, except Gradient SHAP,
showed ROCAUC(𝐴+) significantly higher than for a random attribution
method (Table 7). This supports how SetOmic is able to map inputs
to outputs by recapitulating high-level and meaningful biological in-
formation, not exclusively by memorisation. Input X Grad yielded the
best attribution performance, with highest ROCAUC(𝐴+) and lowest
ROCAUC(𝐴−), followed by DeepLIFT and Integrated Gradients. More-
over, Input X Grad and DeepLIFT scores for SetOmic are consistent with
previous XAI implementations for pan-cancer TCGA such as XOmiVAE
(based on a DeepLIFT approximation of SHAP values), with a reported
ROC (𝐴 ) = 0.690 for the TCGA-BRCA cohort (Withnell et al., 2021).
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Table 7
Performance comparison of four attribution methods for tumour type prediction (single
run on the test subset).

Attribution method ROCAUC(𝐴+) ROCAUC(𝐴−)

Input X Grad 0.704 0.247
DeepLIFT 0.698 0.295
Integrated Gradients 0.619 0.376
Gradient SHAP 0.581 0.371
Random attribution 0.500 0.500

Fig. 10. ROC curve plot for each of the 32 TCGA tumour types, where the blue curves
were produced by SetOmic and the red by Baseline SetQuence on the test subset.

Additionally, we analysed the most relevant biological annotations
via Gene Ontology (GO) enrichment with g:Profiler (Reimand et al.,
2007), for the Top-100 expression loci sorted by Input X Grad attribu-
tion (in the TCGA-BRCA data-set). The most significant GO biological
processes were extracellular matrix (ECM) organisation (𝑝adj = 1.346 ⋅
0−8), collagen fibril organisation (𝑝adj = 2.480 ⋅10−8) and supra-molecular
ibre organisation (𝑝adj = 1.246 ⋅10−6). These processes have been widely

studied as potential targets for Breast Cancer treatment (Vargas et al.,
2012; Wang et al., 2018; Henke et al., 2020).

6.3.2. Nucleotide-level attribution discovers cancer-relevant motifs
We extracted the top five statistically significant motifs (𝑝adj <

0.005) using Input X Grad from sequences with highest attribution
cores, for TCGA-BRCA mutomes (see Table 8). They are: the GAGA site
romoting tumour proliferation, metastasis (Saux et al., 1999; Ferreira
t al., 2021), HMG box motif, lymphocyte transcriptional activator (van
e Wetering et al., 1993), E2F1 regulatory element, BRCA-1 promoter
ctivator region (Pignatelli et al., 2003), and Metal responsive elements
MREs), found in the core promoter of various human genes; associated
ith malignant progression (Murphy et al., 1999). These motifs do
ot necessarily correspond to the mutation events, but to sequences
hat might be important for the function of a genomic region, as for
xample, the motif TCTGAG.
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Table 8
Top 5 sequence motifs detected from Input X Grad attribution scores using SetOmic on
he TCGA-BRCA test cohort.
Motif Function

AAGAGAG GAGA site at the regulatory region of genes such as
LOXL2, promoting tumour proliferation and metastasis
(Saux et al., 1999; Ferreira et al., 2021)

TCAAAG HMG box motif, transcriptional activator in lymphocytes.
van de Wetering et al. (1993)

TCTGAG E2F1 regulatory element, BRCA-1 promoter activator
region (Pignatelli et al., 2003)

TTATCTG GATA-regulatory element; over-expression of hPTTG1 to
promote cell invasion and metastasis in Breast Cancer
(Pei, 2001; Bagu and Santos, 2011; Liao et al., 2011)

TGCACGT MREs, found in the core promoter of various human
genes; associated with malignant progression (Murphy
et al., 1999)

Table 9
Top 5 non-coding sequences with highest Input X Grad attribution values from the
COSMIC breast cancer subset using Optimised SetQuence. All variants occur only once at
he test set and were unseen during training. Features filtered by attribution scores
re assessed via RegulomeDB (Boyle et al., 2012), to detect motifs and regulatory
nnotations; Rank 2b: TF binding + any motif + DNase Footprint + DNase peak; Rank
a: TF binding + any motif + DNase peak.
Motif RegulomeDB target Rank

CTTACCTGT ZEB1, associated with poor survival,
resistance and metastatic risk (Wu
et al., 2020)

2b

GTTGGGAGG IKZF1, chromatin remodelling and
the regulation of lymphocyte
differentiation

2b

TTTGGGAAT TBK1, pharmacological target;
activation of T-cell immunity (Runde
et al., 2022)

3a

TATTTATAG MEF2A, mediates metastasis via
TGF-𝛽 upregulation of MMP10 (Xiao
et al., 2021)

2b

ACAGATTGT NR3C1, tumour suppression in
estrogen receptor-positive (ER+)
(Snider et al., 2019)

2b

6.3.3. The attribution of non-coding features
The Optimised SetQuence was analysed on non-coding variant-

associated sequences with high Input X Grad attribution. Table 9 shows
the top 5 sequences with highest attribution scores. Upon RegulomeDB
analysis (Boyle et al., 2012), the SNPs underlying these high score
sequences map to regions and motifs with previously known roles in
breast cancer physiology. We further tested whether these features,
often unique in the dataset, were indeed important for classification, via
per-patient feature removal: omitting the 2 or 4 features with highest
positive attribution (in favour of breast cancer classification), Top-1
accuracy of SetQuenceNCV dropped from 0.649 to 0.497 and 0.422;
removing the 2 and 4 features with most negative attribution (against
breast cancer classification) improved accuracy to 0.761 and 0.814.

7. Discussion

The exponential growth of cancer patient omic data has led to an in-
crease in the need for models that are robust, reproducible, immutable,
and interpretable, in particular for personalised treatments. Keeping
these in mind, we constructed a feasibility study; we took advantage of
NLP-inspired DL techniques, investigated their performance, improved
their efficiency and explored their explainability and generalisation in
an omics context. For the purpose of demonstrating the capabilities of
our models, we chose tumour type classification as our use case.
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More precisely, we introduced Baseline SetQuence, an encoder-pooler-
decoder DNN, for arbitrarily many variant-associated sequences. We
explored various pooling strategies where we discovered permutation
and cardinality (order and measure of a set respectively) invariant PMA
and a selective fine-tuning strategy produced highest testing accuracy.
Then, by means of a DNABERT encoder and a FC+ReLU decoder, Baseline
SetQuence showed significantly better performance than GIT, a com-
parable method to perform oncology-relevant downstream tasks from
variant-associated sequences. In contrast to prior methods for mutome
representation mentioned in Section 2, our approach is more expressive
and robust, and has the potential to better generalise to unseen muta-
tions at coding and non-coding regions. From the confusion matrices,
we observe that SetQuence learns biologically meaningful information
from patient’s variant-associated sequences, enough to predict primary
sites.

We first performed the feasibility study on sequence variant data
from the TCGA database. We concluded that it is limiting to analyse
coding only data, especially since the non-coding genome in a sig-
nificant player in tumour analysis (Ling et al., 2015). We set out to
overcome the clinically-relevant gaps discussed in Section 2 by consid-
ering whole-exome and whole-genome sequence variants themselves.
The use of non-fixed sets of sequences as input via a transformers-
based architecture allowed us to represent long range interactions
between tokens across the genome/exome as well as their contextual
information. From the hardware optimisation point of view, it also
allows for parallel processing (Vaswani et al., 2017b), and thus opens
up the possibility of processing large amounts of data.

To do so, we first identified and addressed the architectural lim-
itations that came with introducing this additional data, namely by
applying load balancing of patient sequences, knowledge distillation
of the encoder module from 12 to 3 transformer blocks, a 𝑞-sequence
freezing method that reduced memory constraints at the encoder, and
a JIT-mode pooler/decoder to reduce CPU bottlenecks (Section 5.2).
Combining these optimisations, with respect to the original implemen-
tation, wall times improved >3x and scalability became near linear
when distributing training on up to 8 GPU workers on a single node
(Section 5.3). This was shown to impact final model metrics (Fig. 5) if
the same number of iterations are applied during training. Therefore,
while there is a trade-off between computational efficiency at scale
and final model quality, increasing the number of iterations could
lead to comparable or even improved accuracy. Regardless, the new
optimisations led to the ability to investigate the large dataset of non-
coding variant-associated sequences. Looking at the applicability of
Optimised SetQuence on the COSMIC dataset, increasing the number
of pooler seeds to 𝑘 = 4000 produced the best model performance,
which are located at wider local minima in the loss landscape over
the parameter space indicating better model generalisation to unseen
data as noted in previous theoretical and empirical research on vanilla
NNs (Hochreiter and Schmidhuber, 1997; Dinh et al., 2017; Keskar
et al., 2017) and transformer-like models (Yang et al., 2021; Caillon
and Cerisara, 2021).

When exploring how our model behaves when trained on either
coding or non-coding variants, we show in Table 4 that an ensemble of
Optimised SetQuence models (either CV or CV+NCV) and an RF for RMD
signatures yielded the model performance of all SetQuence and baseline

odels. RMD signatures contain information beyond the mere sequence
pace, as not just the sequence, but also its topological position, drive
he functional implications of a genomic region. We hypothesise that
ur latent-space features from coding variant-associated sequences are
omparable to the frequency of non-synonymous mutations as input,
nd complementary to RMDs in the case of non-coding variants.

It was possible to classify test patient data consisting of coding
ariants with a model trained only on non-coding variants, and vice-
ersa; on the other hand, attribution values were independent from the
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number of occurrences of a variant in the dataset (Table 9). Moreover,
we show that using our replacement LM pre-trained on T2T assembly
changes model quality compared to the original DNABERT, although
both have the same architecture (Table 5). This further corroborates,
first, how the encoder (DNABERT) in SetQuence represents genomic
sequences into a functional space, similar to reported in other LM
for biological sequences and in the NLP field for Sentence-BERT-like
models (Reimers and Gurevych, 2019; Iuchi et al., 2021); second, that
the LM itself is critical for the quality of latent-space representations of
variant-associated sequences.

To incorporate set representations of a patient’s multi-omics, we
introduced SetOmic. We provide a proof of concept approach where
we investigate the inclusion of expression count data, shown to be
extensively used in tumour type classification (Lu and Han, 2003),
together with our model built on variant-associated sequences. Based
on comparisons between Figs. 6 and 9, classification of tumour types
improved with SetOmic compared to SetQuence, signalling that differ-
ences between tumour types is clearer after incorporation of multiple
sources of omics data. This is further shown by the ROC curve analysis
in 6.1. Based on macro-averaged metrics of SetOmic-exp we also notice
that a model built on expression data performs well, however, the
incorporation of both variant-associated sequence data and expres-
sion count data resulted in the model performance. This shows the
importance of a multi-omics approach to a model’s architecture and
therefore to precision oncology, in line with previous studies (Nicora
et al., 2020). In conclusion, SetOmic reaches comparable results to
a more coarse and limited VAE approach, OmiEmbed (Zhang et al.,
2021), while providing more granularity as well as insights into long
range interactions between features for a specific classification at the
nucleotide level.

We illustrated the fulfilment of the explainability design principle
by the use of XAI techniques at individual genes (loci) and at indi-
vidual nucleotides. With our approach, we recapitulated subsets of
input feature sets with a significant enrichment on biological functions
important for tumour development; this illustrated the potential of our
tool for a better genome-wide understanding of tumours at coding and
non-coding regions.

8. Future directions

8.1. Model improvement

First, we propose further exploration of load imbalance and training
strategies. Model complexity has potential to be reduced using various
computational optimisation strategies. To address the trade-off between
computational efficiency at scale and final model quality, two direc-
tions can be explored. On the one hand, by implementing strategies
focused on reducing communication volume, such as those introduced
by Alistarh et al. (2017), Bernstein et al. (2018), Rajbhandari et al.
(2021), Li and Hoefler (2022) and Dettmers et al. (2022), although
these may further impact model quality. On the other hand, by per-
forming additional hyperparameter optimisation to compensate for the
impact on model metrics upon increasing the batch size or number of
parallel steps per training.

Second, architectural improvements, for example, implementation
of the latest LM models can be explored, such as LOGO (Yang et al.,
2022), which relies on convolution modules for feature extraction and
tokenization based on byte-pair encoding, or SNP2Vec (Cahyawijaya
et al., 2022). In addition, the PMA configuration, although improved
over the original 𝑘 = 1, still consists of only one block; thus, it only
models low-order interactions (pairwise) between encoded sequences.
Consequently, future work on pooling strategies would further improve
model generalisation.

Third, model validation and further generalisation can be explored
by using alternative data-sets investigating the same questions as ex-
plored in this paper and also other clinically relevant questions such
12
as how germline mutations effect tumour type classification. This ap-
proach evaluates the quantification and cohort bias, however, is chal-
lenging from the data integration point of view; each database has
differing data representation and applies unique data pre-processing or
processing pipelines.

In Section 6.1.2, we compare our method (a DNN) against RFs
which, together with Support-Vector Machines and other Bayesian
approaches, are known to generally perform better than DNN for these
classification goals (Lee et al., 2019b; Chakraborty et al., 2021b). Thus,
the fourth direction is to explore alternative downstream classifiers
from the feature space encoded and pooled using SetQuence. In addi-
tion, we report that classification quality is affected by class imbalance
(i.e., as in the low predictive quality for Large Intestine and Ovarian
cancer). Although this study relied on loss weighting, other direct
approaches, such as over- or under-sampling (Chawla et al., 2002), as
well as indirect approaches, such as noise stability regularisation (Hua
et al., 2021), which could help reduce overfitting to overrepresented
classes, or the lack of convergence to underrepresented classes.

Finally, some interpretability perspectives still need to be addressed,
such as through clustering and correlation analysis of embedding and
latent spaces to biological features. The embedding and attention mech-
anisms have been used in other fields to more systematically explain
input and latent spaces (i.e., to recapitulate graph learning in bioinfor-
matics, or to identify clusters of similar shapes in biomedical imaging
data Nelson et al., 2019; Hagenah et al., 2019). In addition, alternative
XAI approaches such as the Interaction Detection, could further explain
the role of features as an ensemble.

8.2. Model applicability

Taking our paper from the feasibility study level to the applicability
and predictive level, multiple further clinically-relevant downstream
tasks can be performed. One of particular importance is improved tu-
mour sub-type classification. Our model can be used to indicate existing
and novel coding and non-coding regions which are significantly asso-
ciated to a certain subtype. This can lead to clearer distinction between
tumour sub-types which are often misidentified, mistreated, or under-
studied, and improved personalised treatments (Richards et al., 2022;
Yao et al., 2018; Heo et al., 2021). However, patient data availability
per certain tumour types tends to be sparse, especially rare tumour
types or sub-types. Therefore, the main condition to be satisfied for
state-of-the-art classification metrics of our model is the availability of
enough samples per tumour type, as the larger the feature space, the
more patient samples are required.

The second applicability direction is germline variant exploration.
Due to how our architecture is built, it is relatively easy to apply it to a
different use case and even a different dataset such as germline variant
data. As a proof of concept study, we investigated the Pancreatic Cancer
(PDAC) dataset, provided by Al-Fatlawi et al. (2021), and replicated
their classification study using our model. We distinguished between
the Pancreatic Cancer (either as resectable Pancreatic Adenocarcinoma,
or non-resectable Pancreatic Carcinoma), from general Chronic Pan-
creatitis, motivating another clinically relevant use-case, distinguishing
between cancerous vs. non-cancerous diseases.

We were able to extract Pancreatic Cancer specific variant-
associated sequences per patient with high attribution scores, such
as STAT3 and B4GALT5 (Corcoran et al., 2011; Indellicato et al.,
2020). This shows the capabilities of our models when applied on
germline variants and the potential of it to be used in their studies.
In addition, SetQuence can distinguish between Pancreatic Cancer and
Chronic Pancreatitis on mutually exclusive feature spaces (i.e., when
variants across training and testing data are in mutually exclusive
genome regions). This makes SetQuence more advantageous to use in
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the direction of Precision Oncology than the original study (Al-Fatlawi
et al., 2021), which relies on roughly 70 variants as input features, such
that any of the fixed input variants must be present in a patient sample
to enable classification.

Third, to improve SetQuence, the prior hidden genome features
Chakraborty et al., 2021b) can be integrated into the LM encoder.
hese feature spaces could provide complementary views on genomic
ariation.

Fourth, variant sequence embeddings and gene expression data are
ood indicators for cancer patient survival analysis (Beristain et al.,
014), and has been explored by comparative models, OmiEmbed and
IT. Since our model outperforms OmiEmbed and GIT on the classifi-
ation task, it also has potential to reveal more insights into patient
urvival probabilities.

Fifth, inclusion of further Omic datasets in SetOmic could bring
ore insight into the multidimensionality of tumours (e.g., using DNA
ethylation data or Copy Number Variation profiles). Previous studies

how that the omics approach provides a more multi-faceted insight
nto individual tumour types and is of clear interest in the current
ancer research (Joshi et al., 2020; Hasin et al., 2017). However, what
hould be carefully considered is the type of data used and the infor-
ation about the disease it provides as well as the downstream task

hat is explored. We investigated adjusting SetOmic to predict tumour
ype from sets of methylated sequences and their 𝛽-values measured at
ach probe yielding state-of-the-art results. The possibility of classifying
rom mutually exclusive features for training and testing with models
upports how SetOmic maps the sequence space into a latent space that
oes not only reduce sparseness, but generalises to other raw input
paces.

Finally, the data we used are bulk tumour data which contains a
ixture of normal and tumour cells. Incorporating tumour purity data

r single-cell omics into the model can reveal further improvements
n accuracy, since beyond purity, heterogeneity of clones within the
umour need to be accounted for. This is of particular importance in
tudies of aggressive tumour sub-types such as the Triple Negative
reast Cancer (Deepak et al., 2020).

ata availability

Our models are available at https://github.com/danilexn/setquence.
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Appendix A. Data and its representation

A.1. Sequence representations

In our investigations we use variant-associated WES and WGS,
where a variant can be defined as alternative allele detected against
a reference. We take the sequence around this mutated allele, which
therefore indicates the location of this variant in the genome. More
specifically, for each patient sample 𝑖, the genomic coordinates (𝑙𝑠, 𝑙𝑒) of
each variant 𝑗 are queried against the corresponding reference genome
𝑎1...𝑎𝑙ref . This allows defining a sequence 𝑥𝑖,𝑗 as the so-called variant-
associated sequence: a string of length 𝑠 ⋅ 2 basepairs 𝑎𝑙𝑠−𝑠...𝑎𝑙𝑠 ,𝑙𝑒 ...𝑎𝑙𝑒+𝑠,
such that 𝑎𝑙𝑠 ,𝑙𝑒 contains sample’s 𝑖 allele for a variant 𝑗, in tuple 𝑣𝑖,𝑗 . In
practice, such string sets are later mapped into integer token matrices
such that X ⊆ N𝑛𝑖×𝑠max , where each string over the dimension 𝑛𝑖 is the
integer tokenization of the 𝑘-merized string (Ji et al., 2021).

Each sequence 𝑥𝜔mut
𝑖,𝑗 of nucleotides ∈ {𝐴, 𝑇 , 𝐶,𝐺} is 𝑘-mer coded

(i.e., tokenised into an ordered list of 𝑠 − 𝑘 sub-strings obtained by
concatenating 𝑘 consecutive nucleotides in a DNA sequence of length
𝑠). In each of these sets, a [CLS] token is appended to the head and
a [SEP] token to the tail, and [PAD] tokens to zero-pad sequences
shorter than 72 𝑘-mers. Then, each 𝑘-mer (token) is converted to a
numeric, integer value by means of a dictionary 𝑑𝑘. Dictionary size
depends on 𝑘-mer size, scaling as 4𝑘 + 2 (𝑘-mers + [CLS] + [SEP]),
with zero values being used for right-padding. Therefore, a context 𝑗
has 𝑡𝑖,𝑗 = 𝑛𝑗 − 𝑘 + 2 tokens, where 𝑛𝑗 is the number of nucleotides
and 𝑘 is the 𝑘-mer size, plus the additional delimiting tokens. 𝑥𝜔mut

𝑖
then has 𝑇𝑖 =

∑𝑁
𝑗=0(𝑛𝑗 − 𝑘 + 2) total tokens, maximally bounded by

𝑇 𝑚𝑎𝑥
𝑖 =

∑𝑁
𝑗=0(𝑛𝑚𝑎𝑥 − 𝑘+ 2) = 𝑁(𝑛𝑚𝑎𝑥 − 𝑘+ 2), where 𝑁 is the number of

annotated mutations for patient 𝑖, and 𝑛𝑚𝑎𝑥 is the number of base pairs
at the longest mutation context, 𝑗𝑚𝑎𝑥. Every element in a mutome set
is mapped to the Ensembl ID of the corresponding genomic region for
later processing (see Appendices A and B.2).

Individual sequences built using a sequence context of 𝑠 ⋅ 2 = 64,
yielding sequences of maximally 72 𝑘-mers with 𝑘 = 6, that is, SNPs and
short indels (i.e., insertions of maximally 72−64 = 8 bp) were considered
as variants. Sequences are treated as sets (i.e., were appended a [CLS]
token at the head, a [SEP] token at the tail, and [PAD] tokens to
zero-pad sequences shorter than 72 𝑘-mers).

A.2. TCGA: The cancer genome atlas

The Cancer Genome Atlas (TCGA) dataset was used for the somatic
mutation data from Whole Exome Sequencing (MAF files) and their
corresponding clinical annotations across 33 tumour types (Weinstein
et al., 2013) as well as transcriptome expression data in the SetOmic
model. This dataset was chosen as a baseline for tumour type classifica-
tion from omic data (Sections 4.2 and 6.2) and for the implementation
of optimisation strategies (Section 4.3). Individual data points (TCGA
barcodes) 𝑑 ∈ 𝐷 = {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1, where 𝑥𝑖 = {𝑥𝜔𝑖 }𝜔∈𝛺 ⊂ X is the
input for a patient 𝑖 (out of 𝑛), from omic sources 𝛺 and 𝑦𝑖 ∈ Y is a
clinically relevant predictor. The somatic mutation (mut) data obtained
were used to build, per patient code 𝑖, variant-associated sequence
sets {𝑥𝑖,𝑗}

𝑛𝑖
𝑗=1, mapping to the GRCh38 genome reference assembly

coordinates (GenBank accession GCA_000001405.29). In this dataset,
𝑛max = 500; that is, a sequence set maximally contains 500 variants per
patient. In cases where 𝑛𝑖 > 500, only the 500 variants with highest
frequency in tumour vs. paired normal tissue were kept. Tumour type
labels were used as the response variable 𝑦𝑖 ∈ Y for classification.

The gene expression (exp) count data of 60,483 genomic loci per
patient were processed into [0, 1] normalised, log2-transformed Frag-
ments Per Kilobase of transcript per Million mapped reads. NaN entries

𝜔exp 𝐺
were mapped to zeros. It can be represented as a set {𝑥𝑖,𝑔 }𝑗=1, where

https://github.com/danilexn/setquence
https://www.cancer.gov/tcga
https://cancer.sanger.ac.uk/cosmic/
https://cancer.sanger.ac.uk/cosmic/
https://cancer.sanger.ac.uk/cosmic/
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𝐺 is maximally 60,483, and each 𝑔 maps to an Ensembl gene ID. We
discretised it into 50 expression levels, such that 𝑥𝜔exp

𝑖,𝑔 ∈ {0,… , 50} via
𝑓𝑑 ∶ R → N. Each discrete expression level is paired to a corresponding
locus token 𝑔, as the tuple (𝑥

𝜔exp
𝑖,𝑔 , 𝑔).

We kept the sequences which overlap between filtered somatic
mutation data and transcriptome count data, excluding Acute Myeloid
Leukemia cohort due to minimal overlap. 544 healthy and 7518 tumour
samples across 32 tumour types remained.

A.3. Cosmic: Catalogue of somatic mutations in cancer

The v95 release (No. 2021) Cosmic (Tate et al., 2019) dataset was
used to analyse the impact on tumour type classification upon including
Whole-Genome (vs. Whole-Exome) somatic variation data. It provides
more than 20 million unique coding and non-coding somatic variants,
stratified into 49 tumour types. These data were collected from over
28,000 peer reviewed studies, and more than 39,000 screenings from
TCGA and ICGC, among others, providing WGS, WES and epigenomic
profiling data. For this study, coding and non-coding variants from
WGS/WES were downloaded from https://cancer.sanger.ac.uk. These
data were processed into (per-patient code 𝑖) variant-associated se-
quence sets, queried against the GRCh37 reference (GenBank accession
GCA_000001405.1). A maximum set cardinality of 𝑛max = 20,000 was
chosen and patients with less than 10 mutation events and tumour
types with less than 10 patient samples were filtered out to reduce
noise. Therefore, a total of 31,677 unique patient samples across 32
tumour types were used. Furthermore, the work presented in Sec-
tion 6.1.2 uses only a subset of coding variants. Section 6.1.3 uses a
subset of cases for which whole genome sequencing was performed,
thus, containing coding and non-coding variants. This subset contained
2913 patients across same 10 tumour types analysed by Chakraborty
et al. (2021b), for comparison purposes, after filtering for a minimum
of 10 variants per patient.

Appendix B. Explainability through primary attribution methods

We introduce an additional objective: finding a function 𝐴 ∶ X ×
𝜃 × Y → R that quantifies the contribution of inputs 𝑥𝑖 (or parameters
𝜃) when evaluating 𝑓𝜃(𝑥𝑖). For our study on tumour omics, we focus
on attribution methods that aim to generate a representation of a
model’s decisions from the input (or other hidden layers) that is easily
interpretable by humans.

B.1. Attribution methods

Primary attribution is defined through functions

𝐴𝑓𝜃 (𝑥𝑖,𝑗 , 𝑥
′
𝑖) = (𝑎1𝑖 ,… , 𝑎𝑛𝑖 ) ∈ R𝑛 (9)

that measure the contribution of input feature 𝑗 to the output 𝑦̂𝑖 = 𝑓𝜃(𝑥𝑖)
(with dimension 𝑛), for a sample 𝑖 with respect to a baseline input
𝑥′𝑖 = {0}𝑛. Attribution was assessed via four different back-propagation-
based methods: Integrated Gradients (Sundararajan et al., 2017), Input
X Grad (Simonyan et al., 2014), DeepLIFT (Shrikumar et al., 2017) and
SHAP (Lundberg and Lee, 2017). In particular, primary attribution was
studied from two perspectives: (i) at the token level, for a sequence
𝑥mut
𝑖,𝑗 = 𝑎1...𝑎𝑆 with 𝑆 integer tokens 𝑎𝑠, attributions are obtained

by back-propagation using any of the attribution methods up to the
DNABERT embedding layer and (ii) for an input consisting of a set of
𝑛 elements {𝑥𝑖,𝑗}𝑛𝑗=1, attribution is a measure of the relevance of each
element represented by an intermediate encoding 𝑒′𝑖,𝑗 (e.g., individual
[CLS] outputs for DNABERT), calculated at an intermediate encoding
layer 𝑙 as 𝐴 (𝑒′ ).
14

𝑙 𝑖,𝑗
B.2. Measuring the biological significance of attribution scores

To assess the biological significance of attribution scores, a list of
the identifiers mapping to each feature 𝑗 of omic 𝜔 was retrieved from
inputs 𝑥𝜔𝑖,𝑗 across all patients 𝑖. These (Ensembl) IDs are subsequently
split into 𝐴-, 𝐴+ and 𝐴random lists, depending on the positive, negative
or random attribution score at different thresholds 𝐴thr ∈ [𝐴min, 𝐴max],
such that 𝐴(𝑥𝜔𝑖,𝑗 ∈ 𝐴+) ≥ 𝐴thr and 𝐴(𝑥𝜔𝑖,𝑗 ∈ 𝐴-) < 𝐴thr, ∀𝑖, 𝑗.
Then, attribution values are averaged across patients 𝑖 for each 𝜔. The
nsembl ID of genes with known impact on cancer were retrieved
rom GeneCards (Stelzer et al., 2016). TP (true positives), TN (true
egatives), FN (false negatives), FP (false positives), and the Area under
he ROCAUC(⋅) Curve metric were measured with respect to the gene
ists 𝐴-, 𝐴+ and 𝐴random from the database.

In the case of mutomes, we additionally measured the relevance of
ndividual nucleotides in tumour type prediction. From the attribution
cores at each input token (which can be mapped back to nucleotides),
elevant sequence motifs were obtained, using the tools described in Ji
t al. (2021).
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