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Abstract
Background Transcription factors regulate gene expression by binding to transcription factor binding sites (TFBSs). 
Most models for predicting TFBSs are based on position weight matrices (PWMs), which require a specific motif to 
be present in the DNA sequence and do not consider interdependencies of nucleotides. Novel approaches such as 
Transcription Factor Flexible Models or recurrent neural networks consequently provide higher accuracies. However, it 
is unclear whether such approaches can uncover novel non-canonical, hitherto unexpected TFBSs relevant to human 
transcriptional regulation.

Results In this study, we trained a convolutional recurrent neural network with HT-SELEX data for GRHL1 binding and 
applied it to a set of GRHL1 binding sites obtained from ChIP-Seq experiments from human cells. We identified 46 
non-canonical GRHL1 binding sites, which were not found by a conventional PWM approach. Unexpectedly, some of 
the newly predicted binding sequences lacked the CNNG core motif, so far considered obligatory for GRHL1 binding. 
Using isothermal titration calorimetry, we experimentally confirmed binding between the GRHL1-DNA binding 
domain and predicted GRHL1 binding sites, including a non-canonical GRHL1 binding site. Mutagenesis of individual 
nucleotides revealed a correlation between predicted binding strength and experimentally validated binding affinity 
across representative sequences. This correlation was neither observed with a PWM-based nor another deep learning 
approach.

Conclusions Our results show that convolutional recurrent neural networks may uncover unanticipated binding 
sites and facilitate quantitative transcription factor binding predictions.
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Background
Transcription factors are proteins that regulate gene 
expression by binding to specific DNA sequences, 
referred to as transcription factor binding sites (TFBSs). 
Traditionally, TFBSs have been characterised by posi-
tional weight matrices (PWMs), providing a probabilis-
tic representation of binding motifs [1, 2]. Today, PWMs 
are derived from DNA sequences obtained from high-
throughput experiments such as high-throughput sys-
tematic evolution of ligands by exponential enrichment 
(HT-SELEX) or chromatin immunoprecipitation with 
sequencing (ChIP-Seq) [3–5]. PWMs have been deter-
mined for various transcription factors across multiple 
species [6, 7]. However, PWMs have limitations, includ-
ing the assumed independence of nucleotides within the 
sequence and a poor representation of motifs with low 
binding affinities [8]. Transcription factor flexible models 
(TFFMs) are based on Hidden Markov Models and over-
come some of these limitations by conserving first-order 
interactions between the bases [9].

The significant advances in deep learning technologies 
over the last decade have also led to the development of 
artificial neural networks (ANNs), such as convolutional 
and recurrent neural networks, for the identification of 
TFBSs (for recent reviews, see [10–13]). ANNs extract 
binding motif characteristics directly from sequencing 
data, learn higher-level interdependencies between all 
bases, and encompass different forms of architectures. 
While the training data must be pre-labelled (i.e. bind-
ing vs. non-binding), learning of dependencies between 
the nucleotides occurs automatically during the training 
process. For example, DeepBind, a method published in 
2015, uses deep convolutional neural networks (CNNs) 
to discover binding patterns of transcription factors in 
experimental data [14]. DeepBind highlights the poten-
tial of ANNs to find new binding sites and to predict the 
effect of DNA variants on transcription factor binding. 
More recent models also incorporate recurrent neural 
networks (RNNs) [15–17], which are better suited to pro-
cess sequential data [18].

The transcription factor grainyhead-like 1 (GRHL1 
gene) belongs to the family of grainyhead (Grh) tran-
scription factors first described in drosophila [19, 20]. 
GRHL1 is mainly expressed in the developing surface 
ectoderm and hair follicles as well as the developing 
and mature epidermis [21]. It plays a critical role in the 
formation of desmosomes between keratin-expressing 
epithelial cells and directly regulates the expression of 
desmoglein 1 (DSG1) [22]. Consequently, Grhl1-null 
mice exhibit abnormal hair and skin phenotypes, such 
as delayed coat growth, premature hair loss, and pal-
moplantar keratoderma [22], a congenital disorder also 
found in humans [23]. Additionally, several studies impli-
cate a functional role for the GRHL1 protein in cancer 

[24–26], further underscoring its potential role in genetic 
disease. The highly conserved GRHL1 consensus motif 
(5’-AACCGGTT-3’) has long been known [27] and the 
structural basis of its recognition by the GRHL1 DNA-
binding domain has been unveiled [28]. So far, no addi-
tional binding motifs have been reported. However, it is 
crucial to identify all potential binding sites throughout 
the genome to fully understand the underlying molecular 
basis of transcriptional regulation, regulatory networks, 
genomic traits, and genetic disease [29–32] mediated by 
GRHL1.

In this work, we trained, validated, and tested a neu-
ral network that combines the technologies of CNN 
and RNN on HT-SELEX data enriched for GRHL1. For 
simplicity, our model will be referred to as RNN. We 
next tested the ability of the RNN to discriminate true 
GRHL1 binding sites from binding sites for another tran-
scription factor (MYOD) in human ChIP-Seq data. We 
compared the performance of the RNN with the classi-
cal PWM-based approach using Find Individual Motif 
Occurrences (FIMO [33]), and with DeepBind [14]. The 
RNN accurately identified binding sites with the long-
known GRHL1 consensus binding motif but also discov-
ered novel non-canonical GRHL1 binding sites that were 
missed entirely by FIMO’s traditional PWM-based prob-
abilistic method as well as by DeepBind. In addition, we 
tested whether the RNN could predict the quantitative 
effect of single nucleotide variants on GRHL1 binding 
affinity. GRHL1 binding affinities to a spectrum of repre-
sentative DNA sequences, including non-canonical bind-
ing sites, were validated experimentally using isothermal 
titration calorimetry (ITC) experiments.

Materials and methods
GRHL1 expression and purification
The GRHL1-DNA binding domain construct (Uni-
ProtKB: Q9NZI5, aa 248–485) was cloned into the 
pQlinkH vector [34] as reported earlier [28]. It was 
transformed into Escherichia coli BL 21 (DE3) – T1R 
chemocompetent cells. Large-scale cultures were 
induced at 18  °C with 0.5 mM isopropyl β-D-1-
thiogalactopyranoside (IPTG). The harvested cells were 
resuspended in lysis buffer (1 x PBS pH 7.5, 500 mM 
NaCl, 5% glycerol, 0.5 mM DTT, 40 mM imidazole, 1 mg/
ml lysozyme, 1  mg/ml DNAse supplemented with 1 
Pierce protease inhibitor tablet (Pierce, USA) per 50 ml of 
buffer). The supernatant was applied on a HisTrapTM FF 
Crude (Cytiva, USA) column equilibrated with H4 buf-
fer (1 x PBS pH 7.5, 500 mM NaCl, 5% glycerol, 0.5 mM 
DTT, 40 mM imidazole) and eluted with H10 buffer (1 
x PBS pH 7.5, 500 mM NaCl, 5% glycerol, 0.5 mM DTT, 
400 mM imidazole). The eluent was dialysed vs. H4 buf-
fer, and the His6-tag was cleaved off with TEV protease. 
The tag was bound to HisTrapTM FF Crude, at the same 
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time, the protein-containing flow-through fractions were 
concentrated and applied onto HiLoad 16/600 Superdex 
200 pg columns (Cytiva, USA) equilibrated with ITC buf-
fer (20 mM HEPES-NaOH pH 7.2, 125 mM NaCl, 2 mM 
DTT). The sample was concentrated using Vivaspin fil-
ters to up to 156 µM for the first batch and to 200 µM for 
the second. All purification steps were performed at 4 °C. 
The protein purification was controlled through SDS-
PAGE electrophoresis.

Double-stranded (ds) DNA preparation
Selected single-stranded DNAs and their reverse comple-
mentary fragments were synthesised by Eurofins, Lux-
emburg. Samples were dissolved in nuclease-free water 
(Thermo Fisher Scientific, USA). Their concentration was 
measured in triplicates using NanoDrop OneC (Thermo 
Fisher Scientific, USA). The forward and reverse frag-
ments were mixed in a 1: 1 molar ratio and heated up 
to 60  °C. The samples were slowly (1  °C/5 min) cooled 
to room temperature and then incubated at 10  °C for 
another two hours. dsDNA samples were dialysed at 
10 °C overnight vs. ITC buffer and diluted to a concentra-
tion of approximately 10 µM.

Isothermal titration calorimetry (ITC) experiments
We used a MicroCal PEAQ-ITC microcalorimeter 
(Malvern Panalytical GmbH, Germany) for ITC mea-
surements. Experiments were performed in ITC buffer 
(20 mM HEPES-NaOH pH 7.2, 125 mM NaCl, 2 mM 
DTT). GRHL1 was titrated in 19 or 24 steps (1.5-2  µl) 
into a dsDNA ligand solution in a calorimeter cell. The 
reference cell contained the ITC buffer. The mean signal 
resulting from titrating GRHL1 into ITC buffer was sub-
tracted. After initial testing, the dsDNA:protein ratio was 
fixed as 1:2 to reflect the known binding model of two 
GRHL1 DNA-binding domains binding one motif-con-
taining dsDNA molecule. Measurements were performed 
in triplicate for each ligand. Data analysis (baseline 
adjustment, peak integration, normalisation of the reac-
tion heats, data fitting, and evaluation) was performed 
using the MicroCal PEAQ-ITC Analysis software.

Results
Training, validation, and selection of the RNN model on in 
vitro data
We used the same GRHL1 binding sequences as 
employed by DeepBind from a HT-SELEX experiment, 
consisting of 203,209 artificially created sequences of 
20 nucleotides [5] to build our RNN model. To generate 
control, non-binding sequences, we shuffled the position 
of each base, thereby breaking up the binding site pat-
terns while keeping the abundance of each dinucleotide 
and overall GC content consistent [35]. This shuffle was 
achieved using “fasta-shuffle-letters” with k-mer set to 2 

from the meme suite version 5.3.3 [36]. The dataset was 
then randomly split into training, validation, and testing 
subsets in the ratio of 70% / 15% / 15%. This process cre-
ated a balanced dataset with an equal abundance of bind-
ing and non-binding sequences.

We built several RNNs in python using the pysster 
package [37] on the HT-SELEX training data subset 
using various hyperparameters (Fig.  1A). Hyperparam-
eters, such as the model architecture or the dropout 
ratios, control the learning process and are essential for 
optimising the model. They cannot be derived from the 
data in the training process and must therefore be cho-
sen beforehand. Selecting the best hyperparameters can 
be done by comparing the performance of the different 
models after training has concluded.

Here, we trained RNNs with and without a convolu-
tional layer, with different lengths for the kernel in the 
convolutional layer, different dropout ratios for the dense 
layer, and with a uni- or bidirectional RNN architecture 
(Supplementary Table 1). Final hyperparameters (Supple-
mentary Table 1) were selected based on their perfor-
mance as indicated by the area under the curve (AUC) of 
the receiver operator characteristic (ROC) curve on the 
validation data subset (Fig. 1A).

The final set of hyperparameters was additionally tested 
for consistency by rerunning the training process 100 
times using different training test and validation splits 
(Supplementary Table 2).

To ensure that our selected model performs well, 
we compared it against the established probabilistic 
approach of FIMO (applying the PWM MA0647.1 from 
JASPAR [7]) and the GRHL1 DeepBind model [14], by 
applying all three models to the same previously unseen 
test dataset (Fig. 1A). The final performance was assessed 
by calculating the AUC on ROC (Fig. 1B) and precision-
recall curves for each model (Fig.  1C). Our final RNN 
(architecture depicted in Fig. 2) outperformed FIMO and 
was on par with DeepBind on the HT-SELEX test dataset.

The RNN model performs better than other approaches on 
in vivo data
After successful model selection, we ran the RNN, FIMO, 
and DeepBind on 7,857 high-confidence GRHL1-DNA 
ChIP-Seq peaks within the human genome from an 
experiment in human MCF-7 cells (SRA accession num-
ber SRX7122002) to test their performance on never-
before-seen in vivo data [38]. As a negative dataset we 
used 9,509 MYOD ChIP-Seq peaks from myoblasts 
(SRA accession number SRX341010) [39]. MyoD had the 
least overlap with GRHL1 ChIP-Seq peaks of the nega-
tive datasets tested. We used the intersect function from 
BEDtools (version 2.30.0) [40] to confirm minimal over-
lap of genomic regions between the positive and negative 
datasets. GRHL1 and MYOD ChIP-Seq peaks showed 
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Fig. 2 Architecture of the final RNN model. Input sequences (N sequences of length 20) were transformed into numerical data using one-hot encoding. 
The model used a convolutional layer (CNN) and a recurrent layer (RNN) to extract features from the input sequences. Model regularization techniques 
like dropout, max pooling, and max norms were used throughout the model to prevent overfitting. The extracted features were fed into a dense, or 
fully connected layer. As a result, sequences were classified as “binding” or “non-binding” by the final dense layer (output layer). Model optimisation was 
achieved by parameter update via backpropagation

 

Fig. 1 Performance of the RNN model on HT-SELEX data. (A) Workflow for training, validation, and testing of the RNN model on HT-SELEX data. The data-
set (203,209 sequences) was split into a training, validation, and testing subset in the ratio 70% / 15% / 15%. The final performance in the testing data sub-
set was evaluated for the selected RNN model, FIMO, and DeepBind. (B) Area under the curve (AUC) for the receiver operator characteristic (ROC) curve of 
the tested models. (C) AUC for the receiver precision-recall curve of the tested models. The grey dotted line depicts random predictions with an AUC of 0.5
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only 201 overlapping sequences that were removed from 
the negative data set.

We used sequences of 100 nucleotides centred around 
the ChIP-Seq peak summit (qval < 1E-05 for GRHL1 
and qval < 1E-20 for MYOD). As the RNN was trained 
to score sequences of 20 nucleotides, we used a sliding-
window approach to identify the highest-scoring 20-mer 
within each ChIP-Seq peak. Score ranges vary widely 
between methods, with high scores within each range 
indicating a sequence is designated as binding, while 
low scores imply no binding. In the case of our RNN, 
scores can range from 0 to 1, with scores > 0.5 denoting 
a positive binding prediction. The RNN model showed a 
clearer difference in score distribution between the posi-
tive GRHL1 and negative MYOD class than both FIMO 
and DeepBind (Fig.  3). Individual prediction scores 
and respective percentiles for each GRHL1 and MYOD 
sequence can be found in Supplementary Tables 3 and 4.

To compare the RNN, FIMO, and DeepBind, we cal-
culated ROC curves for each model on 16 bins of 500 
GRHL1 ChIP-Seq peaks, sorted by decreasing ChIP-
Seq score for GRHL1 binding (Fig. 4A). As the negative 
dataset we picked a random set of 500 MYOD ChIP-Seq 
peaks for each bin. The calculation was repeated 1000 
times with different randomly picked MYOD sequences 
to reduce potential effects of the selection of non-binding 

sequences on the prediction (randomly selected peaks for 
each run see Supplementary Table 5).

All models could discriminate between true and 
pseudo binding sites with an AUC higher than 0.75. 
Both deep learning approaches, the RNN and Deep-
Bind, outperformed FIMO across nearly all bins, and 
they performed nearly equally for bins representing high 
ChIP-Seq scores. However, compared to our RNN, the 
performance of DeepBind dropped faster for bins rep-
resenting lower ChIP-Seq scores that presumably reflect 
lower affinity binding sites (Fig. 4A).

The RNN and DeepBind also showed the best per-
formance when considering the whole dataset as deter-
mined by the AUC on the corresponding ROC (Fig. 4B) 
and precision-recall curve (Fig. 4C).

The RNN model identifies novel GRHL1 binding sites
We hypothesised that high-scoring predictions of the 
RNN without predicted binding by FIMO could be 
used to identify previously unknown GRHL1 binding 
sites, which escape the more traditional PWM-based 
approach. To filter for such non-canonical binding sites 
identified by the RNN, we selected DNA sequences from 
the human GRHL1 ChIP-Seq dataset, which were clearly 
classified as binding by the RNN (RNN score > 0.99), and 
non-binding by FIMO (FIMO score < 0). These filtering 

Fig. 3 Score distribution assigned by the three models for GRHL1 and MYOD ChIP-Seq peaks. Note that the different approaches have different score 
ranges, with higher values representing stronger binding within each approach. The arrowheads indicate the scores assigned to a GRHL1 ChIP-Seq peak 
containing a novel non-canonical GRHL1 sequence identified by the RNN model (“Novel”, see below)
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steps identified 46 GRHL1 TFBSs identified exclusively 
by the deep learning-based RNN within the GRHL1 
ChIP-Seq dataset (Supplementary Table 6).

The RNN can accurately predict GRHL1 binding affinity
We selected one novel binding site identified by the RNN, 
from here on referred to as “Novel”, for further validation. 

For this sequence, the RNN predicted binding with very 
high confidence. Although DeepBind also identified a 
potential hit within the corresponding GRHL1 ChIP-Seq 
peak, the predicted binding sequence had a relatively low 
prediction score and differed from the sequence identi-
fied by the RNN (arrow heads in Fig. 3).

Fig. 4 Performance of the RNN model on in vivo ChIP-Seq data. (A) Area under the curve (AUC) for the receiver operator characteristic (ROC) curve of the 
tested models on binned data. The 7,857 GRHL1 ChIP-Seq peaks were sorted by decreasing ChIP-Seq score and divided into bins of 500 sequences (357 
in the last bin). 500 random MYOD peaks were selected as the negative dataset. The left y-axis corresponds to the AUC for each bin; the right y-axis and 
grey dotted line show the mean ChIP-Seq score per bin. AUCs are depicted as mean. (B) AUC for the ROC curve of the tested models on all 7,857 GRHL1 
ChIP-Seq peaks. (C) AUC for the precision-recall curve of the tested models on all 7,857 GRHL1 ChIP-Seq peaks. The grey dotted lines in (B) and (C) depict 
the performance of a random guesser
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The “Novel” sequence identified by the RNN completely 
lacked the highly conserved GRHL1 CNNG core motif, 
which so far has been considered obligatory for GRHL1-
DNA binding (Fig.  5) [28]. Microcalorimetric measure-
ments of the binding affinity of GRHL1 towards this 
predicted non-canonical binding sequence determined a 
dissociation constant (Kd) in the nanomolar range, indi-
cating strong binding of substrate DNA (Table 1, Supple-
mentary Figure S1A). A positive control (“Pos_Ctrl”), 
which is closely resembling the known GRHL1 binding 
motif AAACCGGTTT and for which both the RNN and 
FIMO predicted strong binding, showed a similar Kd as 
the “Novel” sequence (Table  1, Supplementary Figure 
S2A). For the negative control (“Neg_Ctrl”), selected 
from the non-binding MYOD dataset, no binding was 
observed (Table 1).

The RNN can predict affinity changes caused by single 
nucleotide variants
We introduced all possible base exchanges into the posi-
tive control and “Novel” binding site and calculated the 
respective RNN binding scores to evaluate the RNNs’ 
ability to determine binding strength changes for sin-
gle nucleotide variants (SNVs) within a binding site 
(Supplementary Table 7). We selected sequences with 
the mutation in position 12 for experimental valida-
tion based on the large differences in predicted binding 
strength between the original and the variant sequences 
(Supplementary Table 8). Obtained results proved bind-
ing of GRHL1 to high-scoring sequence variants, while 
sequences with an RNN score lower than 0.5 were below 
the experimental threshold for GRHL1 binding in our 
experiment (Table  1, Supplementary Figure S1B-D, and 
2B-D).

Fig. 5 Comparison of (A) the canonical GRHL1 motif as a PWM (MA0647.1 from JASPAR), (B) the positive control sequence containing the GRHL1 core 
motif, and (C) the “Novel” non-canonical GRHL1 binding sequence lacking the CNNG core motif. Please note that B and C depict real sequences, not 
motifs
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RNN predictions highly correlate with experimentally 
determined GRHL1 binding affinity
For some experimentally tested sequences, we observed 
binding affinities lower by at least one order of mag-
nitude compared to the positive control (Table  1). 
These sequences were considered binding by the RNN 
but showed a lower score. To estimate how accurately 
our RNN model can predict actual binding strength, 
we compared the predicted binding probability of the 
selected sequences of length 20 against the measured 
Kd values. Calculated correlation coefficients showed 
a strong correlation with a Pearson correlation of 0.926 
(r^2 = 0.858) and a corresponding Spearman correlation 
of 0.966 (Fig.  6A, Supplementary Table 9). The correla-
tion was much lower for DeepBind (Fig. 6B) and FIMO 
(Fig. 6C). This indicates that our RNN could predict the 
actual binding strength most closely and that RNN scores 
might serve as an indicator for the actual binding affinity 
(Fig. 6D, Supplementary Table 9).

Discussion
Transcription factors from the Grh family have been our 
focus for some time now. They play a significant role in 
embryonic development as well as tumour formation and 
progression [41, 42]. Thus, an in-depth understanding of 
their regulatory properties, including the identification of 
TFBSs throughout the genome, is crucial.

In this study, we trained a neural network using a com-
bination of CNN and RNN architecture specifically for 
the transcription factor GRHL1, a representative of the 
Grh family. Our goal was to identify potential non-canon-
ical TFBSs not represented by the known GRHL1 bind-
ing motif and to validate our predictions experimentally.

The ability of ANNs to learn longer-range interac-
tions and interdependencies of all bases to one another 
adds a fundamental advantage over the traditional PWM 
approach in learning the syntax of TFBSs [14]. PWMs 
are based on simple mathematical concepts of observed 
occurrences of nucleotides at certain positions within the 
sequence and are therefore easy to interpret. One of the 
greatest disadvantages of PWMs is their complete igno-
rance of interdependencies of the nucleotides within a 
sequence. Therefore, PWMs are often outperformed by 
models that take these interdependencies into account 
[43]. PWMs tend to overrepresent TFBSs containing 
canonical sequences with high binding affinity and can 
have difficulties to accurately capture complex binding 
motifs [8]. TFFMs and ANNs reduce the potential of 
missing functionally relevant low-affinity binding sites 
within the genome [9, 44].

We compared the performance of our RNN to estab-
lished methods based either on a PWM (FIMO) or a 
CNN model (DeepBind). Unsurprisingly, both our RNN 
and DeepBind performed generally better than the Ta
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PWM-approach on both the HT-SELEX and the ChIP-
Seq dataset. Although trained on the same data, our 
RNN performed slightly better than DeepBind and iden-
tified a new binding site not discovered by DeepBind. 
This improvement may be explained by the additional use 
of a recurrent layer in our model, which has been shown 
previously to perform better than a CNN alone [15–17]. 

The recurrent layer allows the model to treat the bases 
of the binding sequences as ordered data, such that each 
position of the sequence is read in order. This enables the 
network to decide how much of the previous information 
should be retained during each subsequent step. This 
method is usually used in natural language processing 
settings. However, as properties similar to grammar and 

Fig. 6 Correlation of experimentally determined dissociation constant (Kd) and predicted binding scores: (A) RNN predictions. (B) DeepBind predic-
tions. (C) FIMO predictions. (D) Correlation of prediction scores and Kd for all three models. A linear regression (grey line in plots) was used to determine 
the correlation. Pearson correlation calculated on raw values did not include non-binding sequences, while Spearman correlation calculated on ranked 
data considered all values. Non-binding sequences were set to a value of 10, as 9 is the detection threshold for the Kd. Thresholds of binding versus non-
binding are depicted as grey dotted lines; symbols represent the corresponding group
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syntax can also be found in DNA the serial properties of 
RNNs can be advantageous in the context of TFBS iden-
tification within sequences [45–47].

It has been demonstrated before that ANNs can be 
utilized for identifying novel binding motifs or predict-
ing the consequence of variants within a TFBS [14]. 
Indeed, our RNN was able to identify 46 additional 
GRHL1 binding sites within a ChIP-Seq dataset that were 
missed entirely by FIMO. We experimentally confirmed 
a selected sequence as a novel GRHL1 binding site. 
Interestingly, this novel binding sequence shared very 
little similarity with the canonical GRHL1 motif AAAC-
CGGTTT (MA0647.1 from JASPAR [7]) and lacked 
the CNNG core motif. The discovery of this alternative 
binding sequence in the current study seems particularly 
significant. Our recent biochemical and structural analy-
sis of GRHL1 binding to double-stranded target DNA 
[28] fully explained the transcription factor’s high affin-
ity for the canonical GRHL1 motif. The novel sequence 
was bound by GRHL1 with comparable affinity but must 
require an alternative protein-DNA interface with a new 
and unknown set of interatomic contacts.

In addition, our RNN was able to predict the effects of 
single nucleotide variants on GRHL1 binding affinity with 
higher accuracy than FIMO and DeepBind. RNN-based 
prediction scores highly correlated with experimentally 
determined GRHL1 binding affinities. Although the set 
of sequences for the correlation calculation was relatively 
small, the results indicate that RNN scores might serve 
as an indicator for the actual binding affinity and that our 
model is sensitive to single nucleotide variants.

Conclusions
This study did not only identify and confirm a novel bind-
ing site for the transcription factor GRHL1, but also the 
capabilities of neural networks to make prediction on 
binding strength during binding prediction. Future stud-
ies of other transcription factors may benefit from this 
capability when exploring the role of disease-associated 
variants within hitherto unknown binding motifs.

We were unable to apply this method to other tran-
scription factors because ITC experiments are time con-
suming and require the purified transcription factor. We 
do however believe that it should be possible to expand 
our approach to other transcription factors and produce 
comparable results.
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